summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLinux Build Service Account <lnxbuild@localhost>2016-12-19 00:44:35 -0800
committerGerrit - the friendly Code Review server <code-review@localhost>2016-12-19 00:44:34 -0800
commitd763842b90f2ad43a7f48749cb9bc1e1565983a9 (patch)
treeef74f4a2be5ac4c5298d215a97bd975c86f365c8
parent7afb1a9d6584fda79488176b2e3de039c10c0d15 (diff)
parent207b7ee89cebfe4a9779014a57de2417d4d2b3f2 (diff)
Merge "msm: rdbg: Add snapshot of remote debugger driver"
-rw-r--r--Documentation/arm/msm/remote_debug_drv.txt468
-rw-r--r--drivers/char/Kconfig21
-rw-r--r--drivers/char/Makefile1
-rw-r--r--drivers/char/rdbg.c1165
4 files changed, 1648 insertions, 7 deletions
diff --git a/Documentation/arm/msm/remote_debug_drv.txt b/Documentation/arm/msm/remote_debug_drv.txt
new file mode 100644
index 000000000000..13a35f43e86b
--- /dev/null
+++ b/Documentation/arm/msm/remote_debug_drv.txt
@@ -0,0 +1,468 @@
+Introduction
+============
+
+The goal of this debug feature is to provide a reliable, responsive,
+accurate and secure debug capability to developers interested in
+debugging MSM subsystem processor images without the use of a hardware
+debugger.
+
+The Debug Agent along with the Remote Debug Driver implements a shared
+memory based transport mechanism that allows for a debugger (ex. GDB)
+running on a host PC to communicate with a remote stub running on
+peripheral subsystems such as the ADSP, MODEM etc.
+
+The diagram below depicts end to end the components involved to
+support remote debugging:
+
+
+: :
+: HOST (PC) : MSM
+: ,--------, : ,-------,
+: | | : | Debug | ,--------,
+: |Debugger|<--:-->| Agent | | Remote |
+: | | : | App | +----->| Debug |
+: `--------` : |-------| ,--------, | | Stub |
+: : | Remote| | |<---+ `--------`
+: : | Debug |<-->|--------|
+: : | Driver| | |<---+ ,--------,
+: : `-------` `--------` | | Remote |
+: : LA Shared +----->| Debug |
+: : Memory | Stub |
+: : `--------`
+: : Peripheral Subsystems
+: : (ADSP, MODEM, ...)
+
+
+Debugger: Debugger application running on the host PC that
+ communicates with the remote stub.
+ Examples: GDB, LLDB
+
+Debug Agent: Software that runs on the Linux Android platform
+ that provides connectivity from the MSM to the
+ host PC. This involves two portions:
+ 1) User mode Debug Agent application that discovers
+ processes running on the subsystems and creates
+ TCP/IP sockets for the host to connect to. In addition
+ to this, it creates an info (or meta) port that
+ users can connect to discover the various
+ processes and their corresponding debug ports.
+
+Remote Debug A character based driver that the Debug
+Driver: Agent uses to transport the payload received from the
+ host to the debug stub running on the subsystem
+ processor over shared memory and vice versa.
+
+Shared Memory: Shared memory from the SMEM pool that is accessible
+ from the Applications Processor (AP) and the
+ subsystem processors.
+
+Remote Debug Privileged code that runs in the kernels of the
+Stub: subsystem processors that receives debug commands
+ from the debugger running on the host and
+ acts on these commands. These commands include reading
+ and writing to registers and memory belonging to the
+ subsystem's address space, setting breakpoints,
+ single stepping etc.
+
+Hardware description
+====================
+
+The Remote Debug Driver interfaces with the Remote Debug stubs
+running on the subsystem processors and does not drive or
+manage any hardware resources.
+
+Software description
+====================
+
+The debugger and the remote stubs use Remote Serial Protocol (RSP)
+to communicate with each other. This is widely used protocol by both
+software and hardware debuggers. RSP is an ASCII based protocol
+and used when it is not possible to run GDB server on the target under
+debug.
+
+The Debug Agent application along with the Remote Debug Driver
+is responsible for establishing a bi-directional connection from
+the debugger application running on the host to the remote debug
+stub running on a subsystem. The Debug Agent establishes connectivity
+to the host PC via TCP/IP sockets.
+
+This feature uses ADB port forwarding to establish connectivity
+between the debugger running on the host and the target under debug.
+
+Please note the Debug Agent does not expose HLOS memory to the
+remote subsystem processors.
+
+Design
+======
+
+Here is the overall flow:
+
+1) When the Debug Agent application starts up, it opens up a shared memory
+based transport channel to the various subsystem processor images.
+
+2) The Debug Agent application sends messages across to the remote stubs
+to discover the various processes that are running on the subsystem and
+creates debug sockets for each of them.
+
+3) Whenever a process running on a subsystem exits, the Debug Agent
+is notified by the stub so that the debug port and other resources
+can be reclaimed.
+
+4) The Debug Agent uses the services of the Remote Debug Driver to
+transport payload from the host debugger to the remote stub and vice versa.
+
+5) Communication between the Remote Debug Driver and the Remote Debug stub
+running on the subsystem processor is done over shared memory (see figure).
+SMEM services are used to allocate the shared memory that will
+be readable and writeable by the AP and the subsystem image under debug.
+
+A separate SMEM allocation takes place for each subsystem processor
+involved in remote debugging. The remote stub running on each of the
+subsystems allocates a SMEM buffer using a unique identifier so that both
+the AP and subsystem get the same physical block of memory. It should be
+noted that subsystem images can be restarted at any time.
+However, when a subsystem comes back up, its stub uses the same unique
+SMEM identifier to allocate the SMEM block. This would not result in a
+new allocation rather the same block of memory in the first bootup instance
+is provided back to the stub running on the subsystem.
+
+An 8KB chunk of shared memory is allocated and used for communication
+per subsystem. For multi-process capable subsystems, 16KB chunk of shared
+memory is allocated to allow for simultaneous debugging of more than one
+process running on a single subsystem.
+
+The shared memory is used as a circular ring buffer in each direction.
+Thus we have a bi-directional shared memory channel between the AP
+and a subsystem. We call this SMQ. Each memory channel contains a header,
+data and a control mechanism that is used to synchronize read and write
+of data between the AP and the remote subsystem.
+
+Overall SMQ memory view:
+:
+: +------------------------------------------------+
+: | SMEM buffer |
+: |-----------------------+------------------------|
+: |Producer: LA | Producer: Remote |
+: |Consumer: Remote | subsystem |
+: | subsystem | Consumer: LA |
+: | | |
+: | Producer| Consumer|
+: +-----------------------+------------------------+
+: | |
+: | |
+: | +--------------------------------------+
+: | |
+: | |
+: v v
+: +--------------------------------------------------------------+
+: | Header | Data | Control |
+: +-----------+---+---+---+-----+----+--+--+-----+---+--+--+-----+
+: | | b | b | b | | S |n |n | | S |n |n | |
+: | Producer | l | l | l | | M |o |o | | M |o |o | |
+: | Ver | o | o | o | | Q |d |d | | Q |d |d | |
+: |-----------| c | c | c | ... | |e |e | ... | |e |e | ... |
+: | | k | k | k | | O | | | | I | | | |
+: | Consumer | | | | | u |0 |1 | | n |0 |1 | |
+: | Ver | 0 | 1 | 2 | | t | | | | | | | |
+: +-----------+---+---+---+-----+----+--+--+-----+---+--+--+-----+
+: | |
+: + |
+: |
+: +------------------------+
+: |
+: v
+: +----+----+----+----+
+: | SMQ Nodes |
+: |----|----|----|----|
+: Node # | 0 | 1 | 2 | ...|
+: |----|----|----|----|
+: Starting Block Index # | 0 | 3 | 8 | ...|
+: |----|----|----|----|
+: # of blocks | 3 | 5 | 1 | ...|
+: +----+----+----+----+
+:
+
+Header: Contains version numbers for software compatibility to ensure
+that both producers and consumers on the AP and subsystems know how to
+read from and write to the queue.
+Both the producer and consumer versions are 1.
+: +---------+-------------------+
+: | Size | Field |
+: +---------+-------------------+
+: | 1 byte | Producer Version |
+: +---------+-------------------+
+: | 1 byte | Consumer Version |
+: +---------+-------------------+
+
+
+Data: The data portion contains multiple blocks [0..N] of a fixed size.
+The block size SM_BLOCKSIZE is fixed to 128 bytes for header version #1.
+Payload sent from the debug agent app is split (if necessary) and placed
+in these blocks. The first data block is placed at the next 8 byte aligned
+address after the header.
+
+The number of blocks for a given SMEM allocation is derived as follows:
+ Number of Blocks = ((Total Size - Alignment - Size of Header
+ - Size of SMQIn - Size of SMQOut)/(SM_BLOCKSIZE))
+
+The producer maintains a private block map of each of these blocks to
+determine which of these blocks in the queue is available and which are free.
+
+Control:
+The control portion contains a list of nodes [0..N] where N is number
+of available data blocks. Each node identifies the data
+block indexes that contain a particular debug message to be transferred,
+and the number of blocks it took to hold the contents of the message.
+
+Each node has the following structure:
+: +---------+-------------------+
+: | Size | Field |
+: +---------+-------------------+
+: | 2 bytes |Staring Block Index|
+: +---------+-------------------+
+: | 2 bytes |Number of Blocks |
+: +---------+-------------------+
+
+The producer and the consumer update different parts of the control channel
+(SMQOut / SMQIn) respectively. Each of these control data structures contains
+information about the last node that was written / read, and the actual nodes
+that were written/read.
+
+SMQOut Structure (R/W by producer, R by consumer):
+: +---------+-------------------+
+: | Size | Field |
+: +---------+-------------------+
+: | 4 bytes | Magic Init Number |
+: +---------+-------------------+
+: | 4 bytes | Reset |
+: +---------+-------------------+
+: | 4 bytes | Last Sent Index |
+: +---------+-------------------+
+: | 4 bytes | Index Free Read |
+: +---------+-------------------+
+
+SMQIn Structure (R/W by consumer, R by producer):
+: +---------+-------------------+
+: | Size | Field |
+: +---------+-------------------+
+: | 4 bytes | Magic Init Number |
+: +---------+-------------------+
+: | 4 bytes | Reset ACK |
+: +---------+-------------------+
+: | 4 bytes | Last Read Index |
+: +---------+-------------------+
+: | 4 bytes | Index Free Write |
+: +---------+-------------------+
+
+Magic Init Number:
+Both SMQ Out and SMQ In initialize this field with a predefined magic
+number so as to make sure that both the consumer and producer blocks
+have fully initialized and have valid data in the shared memory control area.
+ Producer Magic #: 0xFF00FF01
+ Consumer Magic #: 0xFF00FF02
+
+SMQ Out's Last Sent Index and Index Free Read:
+ Only a producer can write to these indexes and they are updated whenever
+ there is new payload to be inserted into the SMQ in order to be sent to a
+ consumer.
+
+ The number of blocks required for the SMQ allocation is determined as:
+ (payload size + SM_BLOCKSIZE - 1) / SM_BLOCKSIZE
+
+ The private block map is searched for a large enough continuous set of blocks
+ and the user data is copied into the data blocks.
+
+ The starting index of the free block(s) is updated in the SMQOut's Last Sent
+ Index. This update keeps track of which index was last written to and the
+ producer uses it to determine where the the next allocation could be done.
+
+ Every allocation, a producer updates the Index Free Read from its
+ collaborating consumer's Index Free Write field (if they are unequal).
+ This index value indicates that the consumer has read all blocks associated
+ with allocation on the SMQ and that the producer can reuse these blocks for
+ subsquent allocations since this is a circular queue.
+
+ At cold boot and restart, these indexes are initialized to zero and all
+ blocks are marked as available for allocation.
+
+SMQ In's Last Read Index and Index Free Write:
+ These indexes are written to only by a consumer and are updated whenever
+ there is new payload to be read from the SMQ. The Last Read Index keeps
+ track of which index was last read by the consumer and using this, it
+ determines where the next read should be done.
+ After completing a read, Last Read Index is incremented to the
+ next block index. A consumer updates Index Free Write to the starting
+ index of an allocation whenever it has completed processing the blocks.
+ This is an optimization that can be used to prevent an additional copy
+ of data from the queue into a client's data buffer and the data in the queue
+ itself can be used.
+ Once Index Free Write is updated, the collaborating producer (on the next
+ data allocation) reads the updated Index Free Write value and it then
+ updates its corresponding SMQ Out's Index Free Read and marks the blocks
+ associated with that index as available for allocation. At cold boot and
+ restart, these indexes are initialized to zero.
+
+SMQ Out Reset# and SMQ In Reset ACK #:
+ Since subsystems can restart at anytime, the data blocks and control channel
+ can be in an inconsistent state when a producer or consumer comes up.
+ We use Reset and Reset ACK to manage this. At cold boot, the producer
+ initializes the Reset# to a known number ex. 1. Every other reset that the
+ producer undergoes, the Reset#1 is simply incremented by 1. All the producer
+ indexes are reset.
+ When the producer notifies the consumer of data availability, the consumer
+ reads the producers Reset # and copies that into its SMQ In Reset ACK#
+ field when they differ. When that occurs, the consumer resets its
+ indexes to 0.
+
+6) Asynchronous notifications between a producer and consumer are
+done using the SMP2P service which is interrupt based.
+
+Power Management
+================
+
+None
+
+SMP/multi-core
+==============
+
+The driver uses completion to wake up the Debug Agent client threads.
+
+Security
+========
+
+From the perspective of the subsystem, the AP is untrusted. The remote
+stubs consult the secure debug fuses to determine whether or not the
+remote debugging will be enabled at the subsystem.
+
+If the hardware debug fuses indicate that debugging is disabled, the
+remote stubs will not be functional on the subsystem. Writes to the
+queue will only be done if the driver sees that the remote stub has been
+initialized on the subsystem.
+
+Therefore even if any untrusted software running on the AP requests
+the services of the Remote Debug Driver and inject RSP messages
+into the shared memory buffer, these RSP messages will be discarded and
+an appropriate error code will be sent up to the invoking application.
+
+Performance
+===========
+
+During operation, the Remote Debug Driver copies RSP messages
+asynchronously sent from the host debugger to the remote stub and vice
+versa. The debug messages are ASCII based and relatively short
+(<25 bytes) and may once in a while go up to a maximum 700 bytes
+depending on the command the user requested. Thus we do not
+anticipate any major performance impact. Moreover, in a typical
+functional debug scenario performance should not be a concern.
+
+Interface
+=========
+
+The Remote Debug Driver is a character based device that manages
+a piece of shared memory that is used as a bi-directional
+single producer/consumer circular queue using a next fit allocator.
+Every subsystem, has its own shared memory buffer that is managed
+like a separate device.
+
+The driver distinguishes each subsystem processor's buffer by
+registering a node with a different minor number.
+
+For each subsystem that is supported, the driver exposes a user space
+interface through the following node:
+ - /dev/rdbg-<subsystem>
+ Ex. /dev/rdbg-adsp (for the ADSP subsystem)
+
+The standard open(), close(), read() and write() API set is
+implemented.
+
+The open() syscall will fail if a subsystem is not present or supported
+by the driver or a shared memory buffer cannot be allocated for the
+AP - subsystem communication. It will also fail if the subsytem has
+not initialized the queue on its side. Here are the error codes returned
+in case a call to open() fails:
+ENODEV - memory was not yet allocated for the device
+EEXIST - device is already opened
+ENOMEM - SMEM allocation failed
+ECOMM - Subsytem queue is not yet setup
+ENOMEM - Failure to initialize SMQ
+
+read() is a blocking call that will return with the number of bytes written
+by the subsystem whenever the subsystem sends it some payload. Here are the
+error codes returned in case a call to read() fails:
+EINVAL - Invalid input
+ENODEV - Device has not been opened yet
+ERESTARTSYS - call to wait_for_completion_interruptible is interrupted
+ENODATA - call to smq_receive failed
+
+write() attempts to send user mode payload out to the subsystem. It can fail
+if the SMQ is full. The number of bytes written is returned back to the user.
+Here are the error codes returned in case a call to write() fails:
+EINVAL - Invalid input
+ECOMM - SMQ send failed
+
+In the close() syscall, the control information state of the SMQ is
+initialized to zero thereby preventing any further communication between
+the AP and the subsystem. Here is the error code returned in case
+a call to close() fails:
+ENODEV - device wasn't opened/initialized
+
+The Remote Debug driver uses SMP2P for bi-directional AP to subsystem
+notification. Notifications are sent to indicate that there are new
+debug messages available for processing. Each subsystem that is
+supported will need to add a device tree entry per the usage
+specification of SMP2P driver.
+
+In case the remote stub becomes non operational or the security configuration
+on the subsystem does not permit debugging, any messages put in the SMQ will
+not be responded to. It is the responsibility of the Debug Agent app and the
+host debugger application such as GDB to timeout and notify the user of the
+non availability of remote debugging.
+
+Driver parameters
+=================
+
+None
+
+Config options
+==============
+
+The driver is configured with a device tree entry to map an SMP2P entry
+to the device. The SMP2P entry name used is "rdbg". Please see
+kernel\Documentation\arm\msm\msm_smp2p.txt for information about the
+device tree entry required to configure SMP2P.
+
+The driver uses the SMEM allocation type SMEM_LC_DEBUGGER to allocate memory
+for the queue that is used to share data with the subsystems.
+
+Dependencies
+============
+
+The Debug Agent driver requires services of SMEM to
+allocate shared memory buffers.
+
+SMP2P is used as a bi-directional notification
+mechanism between the AP and a subsystem processor.
+
+User space utilities
+====================
+
+This driver is meant to be used in conjunction with the user mode
+Remote Debug Agent application.
+
+Other
+=====
+
+None
+
+Known issues
+============
+For targets with an external subsystem, we cannot use
+shared memory for communication and would have to use the prevailing
+transport mechanisms that exists between the AP and the external subsystem.
+
+This driver cannot be leveraged for such targets.
+
+To do
+=====
+
+None
diff --git a/drivers/char/Kconfig b/drivers/char/Kconfig
index 1046c262b46b..8e3bff9c7fe9 100644
--- a/drivers/char/Kconfig
+++ b/drivers/char/Kconfig
@@ -606,13 +606,20 @@ config TILE_SROM
source "drivers/char/xillybus/Kconfig"
config MSM_ADSPRPC
- tristate "Qualcomm ADSP RPC driver"
- depends on MSM_SMD
- help
- Provides a communication mechanism that allows for clients to
- make remote method invocations across processor boundary to
- applications DSP processor. Say M if you want to enable this
- module.
+ tristate "QTI ADSP RPC driver"
+ depends on MSM_SMD
+ help
+ Provides a communication mechanism that allows for clients to
+ make remote method invocations across processor boundary to
+ applications DSP processor. Say M if you want to enable this
+ module.
+
+config MSM_RDBG
+ tristate "QTI Remote debug driver"
+ help
+ Implements a shared memory based transport mechanism that allows
+ for a debugger running on a host PC to communicate with a remote
+ stub running on peripheral subsystems such as the ADSP, MODEM etc.
endmenu
diff --git a/drivers/char/Makefile b/drivers/char/Makefile
index e180562c725e..7b0bd5408324 100644
--- a/drivers/char/Makefile
+++ b/drivers/char/Makefile
@@ -65,3 +65,4 @@ obj-$(CONFIG_MSM_ADSPRPC) += adsprpc.o
ifdef CONFIG_COMPAT
obj-$(CONFIG_MSM_ADSPRPC) += adsprpc_compat.o
endif
+obj-$(CONFIG_MSM_RDBG) += rdbg.o
diff --git a/drivers/char/rdbg.c b/drivers/char/rdbg.c
new file mode 100644
index 000000000000..0823ed78485e
--- /dev/null
+++ b/drivers/char/rdbg.c
@@ -0,0 +1,1165 @@
+/*
+ * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ */
+
+#include <linux/cdev.h>
+#include <linux/device.h>
+#include <linux/fs.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/of_gpio.h>
+#include <soc/qcom/smsm.h>
+#include <linux/uaccess.h>
+#include <linux/interrupt.h>
+
+#define SMP2P_NUM_PROCS 8
+#define MAX_RETRIES 20
+
+#define SM_VERSION 1
+#define SM_BLOCKSIZE 128
+
+#define SMQ_MAGIC_INIT 0xFF00FF00
+#define SMQ_MAGIC_PRODUCER (SMQ_MAGIC_INIT | 0x1)
+#define SMQ_MAGIC_CONSUMER (SMQ_MAGIC_INIT | 0x2)
+
+enum SMQ_STATUS {
+ SMQ_SUCCESS = 0,
+ SMQ_ENOMEMORY = -1,
+ SMQ_EBADPARM = -2,
+ SMQ_UNDERFLOW = -3,
+ SMQ_OVERFLOW = -4
+};
+
+enum smq_type {
+ PRODUCER = 1,
+ CONSUMER = 2,
+ INVALID = 3
+};
+
+struct smq_block_map {
+ uint32_t index_read;
+ uint32_t num_blocks;
+ uint8_t *map;
+};
+
+struct smq_node {
+ uint16_t index_block;
+ uint16_t num_blocks;
+} __attribute__ ((__packed__));
+
+struct smq_hdr {
+ uint8_t producer_version;
+ uint8_t consumer_version;
+} __attribute__ ((__packed__));
+
+struct smq_out_state {
+ uint32_t init;
+ uint32_t index_check_queue_for_reset;
+ uint32_t index_sent_write;
+ uint32_t index_free_read;
+} __attribute__ ((__packed__));
+
+struct smq_out {
+ struct smq_out_state s;
+ struct smq_node sent[1];
+};
+
+struct smq_in_state {
+ uint32_t init;
+ uint32_t index_check_queue_for_reset_ack;
+ uint32_t index_sent_read;
+ uint32_t index_free_write;
+} __attribute__ ((__packed__));
+
+struct smq_in {
+ struct smq_in_state s;
+ struct smq_node free[1];
+};
+
+struct smq {
+ struct smq_hdr *hdr;
+ struct smq_out *out;
+ struct smq_in *in;
+ uint8_t *blocks;
+ uint32_t num_blocks;
+ struct mutex *lock;
+ uint32_t initialized;
+ struct smq_block_map block_map;
+ enum smq_type type;
+};
+
+struct gpio_info {
+ int gpio_base_id;
+ int irq_base_id;
+};
+
+struct rdbg_data {
+ struct device *device;
+ struct completion work;
+ struct gpio_info in;
+ struct gpio_info out;
+ bool device_initialized;
+ int gpio_out_offset;
+ bool device_opened;
+ void *smem_addr;
+ size_t smem_size;
+ struct smq producer_smrb;
+ struct smq consumer_smrb;
+ struct mutex write_mutex;
+};
+
+struct rdbg_device {
+ struct cdev cdev;
+ struct class *class;
+ dev_t dev_no;
+ int num_devices;
+ struct rdbg_data *rdbg_data;
+};
+
+static struct rdbg_device g_rdbg_instance = {
+ { {0} },
+ NULL,
+ 0,
+ SMP2P_NUM_PROCS,
+ NULL
+};
+
+struct processor_specific_info {
+ char *name;
+ unsigned int smem_buffer_addr;
+ size_t smem_buffer_size;
+};
+
+static struct processor_specific_info proc_info[SMP2P_NUM_PROCS] = {
+ {0}, /*APPS*/
+ {"rdbg_modem", 0, 0}, /*MODEM*/
+ {"rdbg_adsp", SMEM_LC_DEBUGGER, 16*1024}, /*ADSP*/
+ {0}, /*SMP2P_RESERVED_PROC_1*/
+ {"rdbg_wcnss", 0, 0}, /*WCNSS*/
+ {0}, /*SMP2P_RESERVED_PROC_2*/
+ {0}, /*SMP2P_POWER_PROC*/
+ {0} /*SMP2P_REMOTE_MOCK_PROC*/
+};
+
+static int smq_blockmap_get(struct smq_block_map *block_map,
+ uint32_t *block_index, uint32_t n)
+{
+ uint32_t start;
+ uint32_t mark = 0;
+ uint32_t found = 0;
+ uint32_t i = 0;
+
+ start = block_map->index_read;
+
+ if (n == 1) {
+ do {
+ if (!block_map->map[block_map->index_read]) {
+ *block_index = block_map->index_read;
+ block_map->map[block_map->index_read] = 1;
+ block_map->index_read++;
+ block_map->index_read %= block_map->num_blocks;
+ return SMQ_SUCCESS;
+ }
+ block_map->index_read++;
+ } while (start != (block_map->index_read %=
+ block_map->num_blocks));
+ } else {
+ mark = block_map->num_blocks;
+
+ do {
+ if (!block_map->map[block_map->index_read]) {
+ if (mark > block_map->index_read) {
+ mark = block_map->index_read;
+ start = block_map->index_read;
+ found = 0;
+ }
+
+ found++;
+ if (found == n) {
+ *block_index = mark;
+ for (i = 0; i < n; i++)
+ block_map->map[mark + i] =
+ (uint8_t)(n - i);
+ block_map->index_read += block_map->map
+ [block_map->index_read] - 1;
+ return SMQ_SUCCESS;
+ }
+ } else {
+ found = 0;
+ block_map->index_read += block_map->map
+ [block_map->index_read] - 1;
+ mark = block_map->num_blocks;
+ }
+ block_map->index_read++;
+ } while (start != (block_map->index_read %=
+ block_map->num_blocks));
+ }
+
+ return SMQ_ENOMEMORY;
+}
+
+static void smq_blockmap_put(struct smq_block_map *block_map, uint32_t i)
+{
+ uint32_t num_blocks = block_map->map[i];
+
+ while (num_blocks--) {
+ block_map->map[i] = 0;
+ i++;
+ }
+}
+
+static int smq_blockmap_reset(struct smq_block_map *block_map)
+{
+ if (!block_map->map)
+ return SMQ_ENOMEMORY;
+ memset(block_map->map, 0, block_map->num_blocks + 1);
+ block_map->index_read = 0;
+
+ return SMQ_SUCCESS;
+}
+
+static int smq_blockmap_ctor(struct smq_block_map *block_map,
+ uint32_t num_blocks)
+{
+ if (num_blocks <= 1)
+ return SMQ_ENOMEMORY;
+
+ block_map->map = kcalloc(num_blocks, sizeof(uint8_t), GFP_KERNEL);
+ if (!block_map->map)
+ return SMQ_ENOMEMORY;
+
+ block_map->num_blocks = num_blocks - 1;
+ smq_blockmap_reset(block_map);
+
+ return SMQ_SUCCESS;
+}
+
+static void smq_blockmap_dtor(struct smq_block_map *block_map)
+{
+ kfree(block_map->map);
+ block_map->map = NULL;
+}
+
+static int smq_free(struct smq *smq, void *data)
+{
+ struct smq_node node;
+ uint32_t index_block;
+ int err = SMQ_SUCCESS;
+
+ if (smq->lock)
+ mutex_lock(smq->lock);
+
+ if ((smq->hdr->producer_version != SM_VERSION) &&
+ (smq->out->s.init != SMQ_MAGIC_PRODUCER)) {
+ err = SMQ_UNDERFLOW;
+ goto bail;
+ }
+
+ index_block = ((uint8_t *)data - smq->blocks) / SM_BLOCKSIZE;
+ if (index_block >= smq->num_blocks) {
+ err = SMQ_EBADPARM;
+ goto bail;
+ }
+
+ node.index_block = (uint16_t)index_block;
+ node.num_blocks = 0;
+ *((struct smq_node *)(smq->in->free + smq->in->
+ s.index_free_write)) = node;
+
+ smq->in->s.index_free_write = (smq->in->s.index_free_write + 1)
+ % smq->num_blocks;
+
+bail:
+ if (smq->lock)
+ mutex_unlock(smq->lock);
+ return err;
+}
+
+static int smq_receive(struct smq *smq, void **pp, int *pnsize, int *pbmore)
+{
+ struct smq_node *node;
+ int err = SMQ_SUCCESS;
+ int more = 0;
+
+ if ((smq->hdr->producer_version != SM_VERSION) &&
+ (smq->out->s.init != SMQ_MAGIC_PRODUCER))
+ return SMQ_UNDERFLOW;
+
+ if (smq->in->s.index_sent_read == smq->out->s.index_sent_write) {
+ err = SMQ_UNDERFLOW;
+ goto bail;
+ }
+
+ node = (struct smq_node *)(smq->out->sent + smq->in->s.index_sent_read);
+ if (node->index_block >= smq->num_blocks) {
+ err = SMQ_EBADPARM;
+ goto bail;
+ }
+
+ smq->in->s.index_sent_read = (smq->in->s.index_sent_read + 1)
+ % smq->num_blocks;
+
+ *pp = smq->blocks + (node->index_block * SM_BLOCKSIZE);
+ *pnsize = SM_BLOCKSIZE * node->num_blocks;
+
+ /* Ensure that the reads and writes are updated in the memory
+ * when they are done and not cached. Also, ensure that the reads
+ * and writes are not reordered as they are shared between two cores.
+ */
+ rmb();
+ if (smq->in->s.index_sent_read != smq->out->s.index_sent_write)
+ more = 1;
+
+bail:
+ *pbmore = more;
+ return err;
+}
+
+static int smq_alloc_send(struct smq *smq, const uint8_t *pcb, int nsize)
+{
+ void *pv = 0;
+ int num_blocks;
+ uint32_t index_block = 0;
+ int err = SMQ_SUCCESS;
+ struct smq_node *node = NULL;
+
+ mutex_lock(smq->lock);
+
+ if ((smq->in->s.init == SMQ_MAGIC_CONSUMER) &&
+ (smq->hdr->consumer_version == SM_VERSION)) {
+ if (smq->out->s.index_check_queue_for_reset ==
+ smq->in->s.index_check_queue_for_reset_ack) {
+ while (smq->out->s.index_free_read !=
+ smq->in->s.index_free_write) {
+ node = (struct smq_node *)(
+ smq->in->free +
+ smq->out->s.index_free_read);
+ if (node->index_block >= smq->num_blocks) {
+ err = SMQ_EBADPARM;
+ goto bail;
+ }
+
+ smq->out->s.index_free_read =
+ (smq->out->s.index_free_read + 1)
+ % smq->num_blocks;
+
+ smq_blockmap_put(&smq->block_map,
+ node->index_block);
+ /* Ensure that the reads and writes are
+ * updated in the memory when they are done
+ * and not cached. Also, ensure that the reads
+ * and writes are not reordered as they are
+ * shared between two cores.
+ */
+ rmb();
+ }
+ }
+ }
+
+ num_blocks = ALIGN(nsize, SM_BLOCKSIZE)/SM_BLOCKSIZE;
+ err = smq_blockmap_get(&smq->block_map, &index_block, num_blocks);
+ if (err != SMQ_SUCCESS)
+ goto bail;
+
+ pv = smq->blocks + (SM_BLOCKSIZE * index_block);
+
+ err = copy_from_user((void *)pv, (void *)pcb, nsize);
+ if (err != 0)
+ goto bail;
+
+ ((struct smq_node *)(smq->out->sent +
+ smq->out->s.index_sent_write))->index_block
+ = (uint16_t)index_block;
+ ((struct smq_node *)(smq->out->sent +
+ smq->out->s.index_sent_write))->num_blocks
+ = (uint16_t)num_blocks;
+
+ smq->out->s.index_sent_write = (smq->out->s.index_sent_write + 1)
+ % smq->num_blocks;
+
+bail:
+ if (err != SMQ_SUCCESS) {
+ if (pv)
+ smq_blockmap_put(&smq->block_map, index_block);
+ }
+ mutex_unlock(smq->lock);
+ return err;
+}
+
+static int smq_reset_producer_queue_internal(struct smq *smq,
+ uint32_t reset_num)
+{
+ int retval = 0;
+ uint32_t i;
+
+ if (smq->type != PRODUCER)
+ goto bail;
+
+ mutex_lock(smq->lock);
+ if (smq->out->s.index_check_queue_for_reset != reset_num) {
+ smq->out->s.index_check_queue_for_reset = reset_num;
+ for (i = 0; i < smq->num_blocks; i++)
+ (smq->out->sent + i)->index_block = 0xFFFF;
+
+ smq_blockmap_reset(&smq->block_map);
+ smq->out->s.index_sent_write = 0;
+ smq->out->s.index_free_read = 0;
+ retval = 1;
+ }
+ mutex_unlock(smq->lock);
+
+bail:
+ return retval;
+}
+
+static int smq_check_queue_reset(struct smq *p_cons, struct smq *p_prod)
+{
+ int retval = 0;
+ uint32_t reset_num, i;
+
+ if ((p_cons->type != CONSUMER) ||
+ (p_cons->out->s.init != SMQ_MAGIC_PRODUCER) ||
+ (p_cons->hdr->producer_version != SM_VERSION))
+ goto bail;
+
+ reset_num = p_cons->out->s.index_check_queue_for_reset;
+ if (p_cons->in->s.index_check_queue_for_reset_ack != reset_num) {
+ p_cons->in->s.index_check_queue_for_reset_ack = reset_num;
+ for (i = 0; i < p_cons->num_blocks; i++)
+ (p_cons->in->free + i)->index_block = 0xFFFF;
+
+ p_cons->in->s.index_sent_read = 0;
+ p_cons->in->s.index_free_write = 0;
+
+ retval = smq_reset_producer_queue_internal(p_prod, reset_num);
+ }
+
+bail:
+ return retval;
+}
+
+static int check_subsystem_debug_enabled(void *base_addr, int size)
+{
+ int num_blocks;
+ uint8_t *pb_orig;
+ uint8_t *pb;
+ struct smq smq;
+ int err = 0;
+
+ pb = pb_orig = (uint8_t *)base_addr;
+ pb += sizeof(struct smq_hdr);
+ pb = PTR_ALIGN(pb, 8);
+ size -= pb - (uint8_t *)pb_orig;
+ num_blocks = (int)((size - sizeof(struct smq_out_state) -
+ sizeof(struct smq_in_state))/(SM_BLOCKSIZE +
+ sizeof(struct smq_node) * 2));
+ if (num_blocks <= 0) {
+ err = SMQ_EBADPARM;
+ goto bail;
+ }
+
+ pb += num_blocks * SM_BLOCKSIZE;
+ smq.out = (struct smq_out *)pb;
+ pb += sizeof(struct smq_out_state) + (num_blocks *
+ sizeof(struct smq_node));
+ smq.in = (struct smq_in *)pb;
+
+ if (smq.in->s.init != SMQ_MAGIC_CONSUMER) {
+ pr_err("%s, smq in consumer not initialized", __func__);
+ err = -ECOMM;
+ }
+
+bail:
+ return err;
+}
+
+static void smq_dtor(struct smq *smq)
+{
+ if (smq->initialized == SMQ_MAGIC_INIT) {
+ switch (smq->type) {
+ case PRODUCER:
+ smq->out->s.init = 0;
+ smq_blockmap_dtor(&smq->block_map);
+ break;
+ case CONSUMER:
+ smq->in->s.init = 0;
+ break;
+ default:
+ case INVALID:
+ break;
+ }
+
+ smq->initialized = 0;
+ }
+}
+
+/*
+ * The shared memory is used as a circular ring buffer in each direction.
+ * Thus we have a bi-directional shared memory channel between the AP
+ * and a subsystem. We call this SMQ. Each memory channel contains a header,
+ * data and a control mechanism that is used to synchronize read and write
+ * of data between the AP and the remote subsystem.
+ *
+ * Overall SMQ memory view:
+ *
+ * +------------------------------------------------+
+ * | SMEM buffer |
+ * |-----------------------+------------------------|
+ * |Producer: LA | Producer: Remote |
+ * |Consumer: Remote | subsystem |
+ * | subsystem | Consumer: LA |
+ * | | |
+ * | Producer| Consumer|
+ * +-----------------------+------------------------+
+ * | |
+ * | |
+ * | +--------------------------------------+
+ * | |
+ * | |
+ * v v
+ * +--------------------------------------------------------------+
+ * | Header | Data | Control |
+ * +-----------+---+---+---+-----+----+--+--+-----+---+--+--+-----+
+ * | | b | b | b | | S |n |n | | S |n |n | |
+ * | Producer | l | l | l | | M |o |o | | M |o |o | |
+ * | Ver | o | o | o | | Q |d |d | | Q |d |d | |
+ * |-----------| c | c | c | ... | |e |e | ... | |e |e | ... |
+ * | | k | k | k | | O | | | | I | | | |
+ * | Consumer | | | | | u |0 |1 | | n |0 |1 | |
+ * | Ver | 0 | 1 | 2 | | t | | | | | | | |
+ * +-----------+---+---+---+-----+----+--+--+-----+---+--+--+-----+
+ * | |
+ * + |
+ * |
+ * +------------------------+
+ * |
+ * v
+ * +----+----+----+----+
+ * | SMQ Nodes |
+ * |----|----|----|----|
+ * Node # | 0 | 1 | 2 | ...|
+ * |----|----|----|----|
+ * Starting Block Index # | 0 | 3 | 8 | ...|
+ * |----|----|----|----|
+ * # of blocks | 3 | 5 | 1 | ...|
+ * +----+----+----+----+
+ *
+ * Header: Contains version numbers for software compatibility to ensure
+ * that both producers and consumers on the AP and subsystems know how to
+ * read from and write to the queue.
+ * Both the producer and consumer versions are 1.
+ * +---------+-------------------+
+ * | Size | Field |
+ * +---------+-------------------+
+ * | 1 byte | Producer Version |
+ * +---------+-------------------+
+ * | 1 byte | Consumer Version |
+ * +---------+-------------------+
+ *
+ * Data: The data portion contains multiple blocks [0..N] of a fixed size.
+ * The block size SM_BLOCKSIZE is fixed to 128 bytes for header version #1.
+ * Payload sent from the debug agent app is split (if necessary) and placed
+ * in these blocks. The first data block is placed at the next 8 byte aligned
+ * address after the header.
+ *
+ * The number of blocks for a given SMEM allocation is derived as follows:
+ * Number of Blocks = ((Total Size - Alignment - Size of Header
+ * - Size of SMQIn - Size of SMQOut)/(SM_BLOCKSIZE))
+ *
+ * The producer maintains a private block map of each of these blocks to
+ * determine which of these blocks in the queue is available and which are free.
+ *
+ * Control:
+ * The control portion contains a list of nodes [0..N] where N is number
+ * of available data blocks. Each node identifies the data
+ * block indexes that contain a particular debug message to be transferred,
+ * and the number of blocks it took to hold the contents of the message.
+ *
+ * Each node has the following structure:
+ * +---------+-------------------+
+ * | Size | Field |
+ * +---------+-------------------+
+ * | 2 bytes |Staring Block Index|
+ * +---------+-------------------+
+ * | 2 bytes |Number of Blocks |
+ * +---------+-------------------+
+ *
+ * The producer and the consumer update different parts of the control channel
+ * (SMQOut / SMQIn) respectively. Each of these control data structures contains
+ * information about the last node that was written / read, and the actual nodes
+ * that were written/read.
+ *
+ * SMQOut Structure (R/W by producer, R by consumer):
+ * +---------+-------------------+
+ * | Size | Field |
+ * +---------+-------------------+
+ * | 4 bytes | Magic Init Number |
+ * +---------+-------------------+
+ * | 4 bytes | Reset |
+ * +---------+-------------------+
+ * | 4 bytes | Last Sent Index |
+ * +---------+-------------------+
+ * | 4 bytes | Index Free Read |
+ * +---------+-------------------+
+ *
+ * SMQIn Structure (R/W by consumer, R by producer):
+ * +---------+-------------------+
+ * | Size | Field |
+ * +---------+-------------------+
+ * | 4 bytes | Magic Init Number |
+ * +---------+-------------------+
+ * | 4 bytes | Reset ACK |
+ * +---------+-------------------+
+ * | 4 bytes | Last Read Index |
+ * +---------+-------------------+
+ * | 4 bytes | Index Free Write |
+ * +---------+-------------------+
+ *
+ * Magic Init Number:
+ * Both SMQ Out and SMQ In initialize this field with a predefined magic
+ * number so as to make sure that both the consumer and producer blocks
+ * have fully initialized and have valid data in the shared memory control area.
+ * Producer Magic #: 0xFF00FF01
+ * Consumer Magic #: 0xFF00FF02
+ */
+static int smq_ctor(struct smq *smq, void *base_addr, int size,
+ enum smq_type type, struct mutex *lock_ptr)
+{
+ int num_blocks;
+ uint8_t *pb_orig;
+ uint8_t *pb;
+ uint32_t i;
+ int err;
+
+ if (smq->initialized == SMQ_MAGIC_INIT) {
+ err = SMQ_EBADPARM;
+ goto bail;
+ }
+
+ if (!base_addr || !size) {
+ err = SMQ_EBADPARM;
+ goto bail;
+ }
+
+ if (type == PRODUCER)
+ smq->lock = lock_ptr;
+
+ pb_orig = (uint8_t *)base_addr;
+ smq->hdr = (struct smq_hdr *)pb_orig;
+ pb = pb_orig;
+ pb += sizeof(struct smq_hdr);
+ pb = PTR_ALIGN(pb, 8);
+ size -= pb - (uint8_t *)pb_orig;
+ num_blocks = (int)((size - sizeof(struct smq_out_state) -
+ sizeof(struct smq_in_state))/(SM_BLOCKSIZE +
+ sizeof(struct smq_node) * 2));
+ if (num_blocks <= 0) {
+ err = SMQ_ENOMEMORY;
+ goto bail;
+ }
+
+ smq->blocks = pb;
+ smq->num_blocks = num_blocks;
+ pb += num_blocks * SM_BLOCKSIZE;
+ smq->out = (struct smq_out *)pb;
+ pb += sizeof(struct smq_out_state) + (num_blocks *
+ sizeof(struct smq_node));
+ smq->in = (struct smq_in *)pb;
+ smq->type = type;
+ if (type == PRODUCER) {
+ smq->hdr->producer_version = SM_VERSION;
+ for (i = 0; i < smq->num_blocks; i++)
+ (smq->out->sent + i)->index_block = 0xFFFF;
+
+ err = smq_blockmap_ctor(&smq->block_map, smq->num_blocks);
+ if (err != SMQ_SUCCESS)
+ goto bail;
+
+ smq->out->s.index_sent_write = 0;
+ smq->out->s.index_free_read = 0;
+ if (smq->out->s.init == SMQ_MAGIC_PRODUCER) {
+ smq->out->s.index_check_queue_for_reset += 1;
+ } else {
+ smq->out->s.index_check_queue_for_reset = 1;
+ smq->out->s.init = SMQ_MAGIC_PRODUCER;
+ }
+ } else {
+ smq->hdr->consumer_version = SM_VERSION;
+ for (i = 0; i < smq->num_blocks; i++)
+ (smq->in->free + i)->index_block = 0xFFFF;
+
+ smq->in->s.index_sent_read = 0;
+ smq->in->s.index_free_write = 0;
+ if (smq->out->s.init == SMQ_MAGIC_PRODUCER) {
+ smq->in->s.index_check_queue_for_reset_ack =
+ smq->out->s.index_check_queue_for_reset;
+ } else {
+ smq->in->s.index_check_queue_for_reset_ack = 0;
+ }
+
+ smq->in->s.init = SMQ_MAGIC_CONSUMER;
+ }
+ smq->initialized = SMQ_MAGIC_INIT;
+ err = SMQ_SUCCESS;
+
+bail:
+ return err;
+}
+
+static void send_interrupt_to_subsystem(struct rdbg_data *rdbgdata)
+{
+ int offset = rdbgdata->gpio_out_offset;
+ int val = 1 ^ gpio_get_value(rdbgdata->out.gpio_base_id + offset);
+
+ gpio_set_value(rdbgdata->out.gpio_base_id + offset, val);
+ rdbgdata->gpio_out_offset = (offset + 1) % 32;
+
+ dev_dbg(rdbgdata->device, "%s: sent interrupt %d to subsystem",
+ __func__, val);
+}
+
+static irqreturn_t on_interrupt_from(int irq, void *ptr)
+{
+ struct rdbg_data *rdbgdata = (struct rdbg_data *) ptr;
+
+ dev_dbg(rdbgdata->device, "%s: Received interrupt %d from subsystem",
+ __func__, irq);
+
+ complete(&(rdbgdata->work));
+ return IRQ_HANDLED;
+}
+
+static int initialize_smq(struct rdbg_data *rdbgdata)
+{
+ int err = 0;
+ unsigned char *smem_consumer_buffer = rdbgdata->smem_addr;
+
+ smem_consumer_buffer += (rdbgdata->smem_size/2);
+
+ if (smq_ctor(&(rdbgdata->producer_smrb), (void *)(rdbgdata->smem_addr),
+ ((rdbgdata->smem_size)/2), PRODUCER, &rdbgdata->write_mutex)) {
+ dev_err(rdbgdata->device, "%s: smq producer allocation failed",
+ __func__);
+ err = -ENOMEM;
+ goto bail;
+ }
+
+ if (smq_ctor(&(rdbgdata->consumer_smrb), (void *)smem_consumer_buffer,
+ ((rdbgdata->smem_size)/2), CONSUMER, NULL)) {
+ dev_err(rdbgdata->device, "%s: smq conmsumer allocation failed",
+ __func__);
+ err = -ENOMEM;
+ }
+
+bail:
+ return err;
+
+}
+
+static int rdbg_open(struct inode *inode, struct file *filp)
+{
+ int device_id = -1;
+ struct rdbg_device *device = &g_rdbg_instance;
+ struct rdbg_data *rdbgdata = NULL;
+ int err = 0;
+
+ if (!inode || !device->rdbg_data) {
+ pr_err("Memory not allocated yet");
+ err = -ENODEV;
+ goto bail;
+ }
+
+ device_id = MINOR(inode->i_rdev);
+ rdbgdata = &device->rdbg_data[device_id];
+
+ if (rdbgdata->device_opened) {
+ dev_err(rdbgdata->device, "%s: Device already opened",
+ __func__);
+ err = -EEXIST;
+ goto bail;
+ }
+
+ rdbgdata->smem_size = proc_info[device_id].smem_buffer_size;
+ if (!rdbgdata->smem_size) {
+ dev_err(rdbgdata->device, "%s: smem not initialized", __func__);
+ err = -ENOMEM;
+ goto bail;
+ }
+
+ rdbgdata->smem_addr = smem_find(proc_info[device_id].smem_buffer_addr,
+ rdbgdata->smem_size, 0, SMEM_ANY_HOST_FLAG);
+ if (!rdbgdata->smem_addr) {
+ dev_err(rdbgdata->device, "%s: Could not allocate smem memory",
+ __func__);
+ err = -ENOMEM;
+ goto bail;
+ }
+ dev_dbg(rdbgdata->device, "%s: SMEM address=0x%lx smem_size=%d",
+ __func__, (unsigned long)rdbgdata->smem_addr,
+ (unsigned int)rdbgdata->smem_size);
+
+ if (check_subsystem_debug_enabled(rdbgdata->smem_addr,
+ rdbgdata->smem_size/2)) {
+ dev_err(rdbgdata->device, "%s: Subsystem %s is not debug enabled",
+ __func__, proc_info[device_id].name);
+ err = -ECOMM;
+ goto bail;
+ }
+
+ init_completion(&rdbgdata->work);
+
+ err = request_irq(rdbgdata->in.irq_base_id, on_interrupt_from,
+ IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
+ proc_info[device_id].name,
+ (void *)&device->rdbg_data[device_id]);
+ if (err) {
+ dev_err(rdbgdata->device,
+ "%s: Failed to register interrupt.Err=%d,irqid=%d.",
+ __func__, err, rdbgdata->in.irq_base_id);
+ goto irq_bail;
+ }
+
+ err = enable_irq_wake(rdbgdata->in.irq_base_id);
+ if (err < 0) {
+ dev_dbg(rdbgdata->device, "enable_irq_wake() failed with err=%d",
+ err);
+ err = 0;
+ }
+
+ mutex_init(&rdbgdata->write_mutex);
+
+ err = initialize_smq(rdbgdata);
+ if (err) {
+ dev_err(rdbgdata->device, "Error initializing smq. Err=%d",
+ err);
+ goto smq_bail;
+ }
+
+ rdbgdata->device_opened = 1;
+
+ filp->private_data = (void *)rdbgdata;
+
+ return 0;
+
+smq_bail:
+ smq_dtor(&(rdbgdata->producer_smrb));
+ smq_dtor(&(rdbgdata->consumer_smrb));
+ mutex_destroy(&rdbgdata->write_mutex);
+irq_bail:
+ free_irq(rdbgdata->in.irq_base_id, (void *)
+ &device->rdbg_data[device_id]);
+bail:
+ return err;
+}
+
+static int rdbg_release(struct inode *inode, struct file *filp)
+{
+ int device_id = -1;
+ struct rdbg_device *rdbgdevice = &g_rdbg_instance;
+ struct rdbg_data *rdbgdata = NULL;
+ int err = 0;
+
+ if (!inode || !rdbgdevice->rdbg_data) {
+ pr_err("Memory not allocated yet");
+ err = -ENODEV;
+ goto bail;
+ }
+
+ device_id = MINOR(inode->i_rdev);
+ rdbgdata = &rdbgdevice->rdbg_data[device_id];
+
+ if (rdbgdata->device_opened == 1) {
+ dev_dbg(rdbgdata->device, "%s: Destroying %s.", __func__,
+ proc_info[device_id].name);
+ rdbgdata->device_opened = 0;
+ complete(&(rdbgdata->work));
+ free_irq(rdbgdata->in.irq_base_id, (void *)
+ &rdbgdevice->rdbg_data[device_id]);
+ if (rdbgdevice->rdbg_data[device_id].producer_smrb.initialized)
+ smq_dtor(&(rdbgdevice->rdbg_data[device_id].
+ producer_smrb));
+ if (rdbgdevice->rdbg_data[device_id].consumer_smrb.initialized)
+ smq_dtor(&(rdbgdevice->rdbg_data[device_id].
+ consumer_smrb));
+ mutex_destroy(&rdbgdata->write_mutex);
+ }
+
+ filp->private_data = NULL;
+
+bail:
+ return err;
+}
+
+static ssize_t rdbg_read(struct file *filp, char __user *buf, size_t size,
+ loff_t *offset)
+{
+ int err = 0;
+ struct rdbg_data *rdbgdata = filp->private_data;
+ void *p_sent_buffer = NULL;
+ int nsize = 0;
+ int more = 0;
+
+ if (!rdbgdata) {
+ pr_err("Invalid argument");
+ err = -EINVAL;
+ goto bail;
+ }
+
+ dev_dbg(rdbgdata->device, "%s: In receive", __func__);
+ err = wait_for_completion_interruptible(&(rdbgdata->work));
+ if (err) {
+ dev_err(rdbgdata->device, "%s: Error in wait", __func__);
+ goto bail;
+ }
+
+ smq_check_queue_reset(&(rdbgdata->consumer_smrb),
+ &(rdbgdata->producer_smrb));
+ if (smq_receive(&(rdbgdata->consumer_smrb), &p_sent_buffer,
+ &nsize, &more) != SMQ_SUCCESS) {
+ dev_err(rdbgdata->device, "%s: Error in smq_recv(). Err code = %d",
+ __func__, err);
+ err = -ENODATA;
+ goto bail;
+ }
+
+ size = ((size < nsize) ? size : nsize);
+ err = copy_to_user(buf, p_sent_buffer, size);
+ if (err != 0) {
+ dev_err(rdbgdata->device, "%s: Error in copy_to_user(). Err code = %d",
+ __func__, err);
+ err = -ENODATA;
+ goto bail;
+ }
+
+ smq_free(&(rdbgdata->consumer_smrb), p_sent_buffer);
+ err = size;
+ dev_dbg(rdbgdata->device, "%s: Read data to buffer with address 0x%lx",
+ __func__, (unsigned long) buf);
+
+bail:
+ return err;
+}
+
+static ssize_t rdbg_write(struct file *filp, const char __user *buf,
+ size_t size, loff_t *offset)
+{
+ int err = 0;
+ int num_retries = 0;
+ struct rdbg_data *rdbgdata = filp->private_data;
+
+ if (!rdbgdata) {
+ pr_err("Invalid argument");
+ err = -EINVAL;
+ goto bail;
+ }
+
+ do {
+ err = smq_alloc_send(&(rdbgdata->producer_smrb), buf, size);
+ dev_dbg(rdbgdata->device, "%s, smq_alloc_send returned %d.",
+ __func__, err);
+ } while (err != 0 && num_retries++ < MAX_RETRIES);
+
+ if (err != 0) {
+ err = -ECOMM;
+ goto bail;
+ }
+
+ send_interrupt_to_subsystem(rdbgdata);
+
+ err = size;
+
+bail:
+ return err;
+}
+
+
+static const struct file_operations rdbg_fops = {
+ .open = rdbg_open,
+ .read = rdbg_read,
+ .write = rdbg_write,
+ .release = rdbg_release,
+};
+
+static int register_smp2p(char *node_name, struct gpio_info *gpio_info_ptr)
+{
+ struct device_node *node = NULL;
+ int cnt = 0;
+ int id = 0;
+
+ node = of_find_compatible_node(NULL, NULL, node_name);
+ if (node) {
+ cnt = of_gpio_count(node);
+ if (cnt && gpio_info_ptr) {
+ id = of_get_gpio(node, 0);
+ gpio_info_ptr->gpio_base_id = id;
+ gpio_info_ptr->irq_base_id = gpio_to_irq(id);
+ return 0;
+ }
+ }
+ return -EINVAL;
+}
+
+static int __init rdbg_init(void)
+{
+ int err = 0;
+ struct rdbg_device *rdbgdevice = &g_rdbg_instance;
+ int minor = 0;
+ int major = 0;
+ int minor_nodes_created = 0;
+
+ char *rdbg_compatible_string = "qcom,smp2pgpio_client_rdbg_";
+ int max_len = strlen(rdbg_compatible_string) + strlen("xx_out");
+
+ char *node_name = kcalloc(max_len, sizeof(char), GFP_KERNEL);
+
+ if (!node_name) {
+ err = -ENOMEM;
+ goto bail;
+ }
+
+ if (rdbgdevice->num_devices < 1 ||
+ rdbgdevice->num_devices > SMP2P_NUM_PROCS) {
+ pr_err("rgdb: invalid num_devices");
+ err = -EDOM;
+ goto name_bail;
+ }
+
+ rdbgdevice->rdbg_data = kcalloc(rdbgdevice->num_devices,
+ sizeof(struct rdbg_data), GFP_KERNEL);
+ if (!rdbgdevice->rdbg_data) {
+ err = -ENOMEM;
+ goto name_bail;
+ }
+
+ err = alloc_chrdev_region(&rdbgdevice->dev_no, 0,
+ rdbgdevice->num_devices, "rdbgctl");
+ if (err) {
+ pr_err("Error in alloc_chrdev_region.");
+ goto data_bail;
+ }
+ major = MAJOR(rdbgdevice->dev_no);
+
+ cdev_init(&rdbgdevice->cdev, &rdbg_fops);
+ rdbgdevice->cdev.owner = THIS_MODULE;
+ err = cdev_add(&rdbgdevice->cdev, MKDEV(major, 0),
+ rdbgdevice->num_devices);
+ if (err) {
+ pr_err("Error in cdev_add");
+ goto chrdev_bail;
+ }
+
+ rdbgdevice->class = class_create(THIS_MODULE, "rdbg");
+ if (IS_ERR(rdbgdevice->class)) {
+ err = PTR_ERR(rdbgdevice->class);
+ pr_err("Error in class_create");
+ goto cdev_bail;
+ }
+
+ for (minor = 0; minor < rdbgdevice->num_devices; minor++) {
+ if (!proc_info[minor].name)
+ continue;
+
+ if (snprintf(node_name, max_len, "%s%d_in",
+ rdbg_compatible_string, minor) <= 0) {
+ pr_err("Error in snprintf");
+ err = -ENOMEM;
+ goto device_bail;
+ }
+
+ if (register_smp2p(node_name,
+ &rdbgdevice->rdbg_data[minor].in)) {
+ pr_debug("No incoming device tree entry found for %s",
+ proc_info[minor].name);
+ continue;
+ }
+
+ if (snprintf(node_name, max_len, "%s%d_out",
+ rdbg_compatible_string, minor) <= 0) {
+ pr_err("Error in snprintf");
+ err = -ENOMEM;
+ goto device_bail;
+ }
+
+ if (register_smp2p(node_name,
+ &rdbgdevice->rdbg_data[minor].out)) {
+ pr_err("No outgoing device tree entry found for %s",
+ proc_info[minor].name);
+ err = -EINVAL;
+ goto device_bail;
+ }
+
+ rdbgdevice->rdbg_data[minor].device = device_create(
+ rdbgdevice->class, NULL, MKDEV(major, minor),
+ NULL, "%s", proc_info[minor].name);
+ if (IS_ERR(rdbgdevice->rdbg_data[minor].device)) {
+ err = PTR_ERR(rdbgdevice->rdbg_data[minor].device);
+ pr_err("Error in device_create");
+ goto device_bail;
+ }
+ rdbgdevice->rdbg_data[minor].device_initialized = 1;
+ minor_nodes_created++;
+ dev_dbg(rdbgdevice->rdbg_data[minor].device,
+ "%s: created /dev/%s c %d %d'", __func__,
+ proc_info[minor].name, major, minor);
+ }
+
+ if (!minor_nodes_created) {
+ pr_err("No device tree entries found");
+ err = -EINVAL;
+ goto class_bail;
+ }
+
+ goto name_bail;
+
+device_bail:
+ for (--minor; minor >= 0; minor--) {
+ if (rdbgdevice->rdbg_data[minor].device_initialized)
+ device_destroy(rdbgdevice->class,
+ MKDEV(MAJOR(rdbgdevice->dev_no), minor));
+ }
+class_bail:
+ class_destroy(rdbgdevice->class);
+cdev_bail:
+ cdev_del(&rdbgdevice->cdev);
+chrdev_bail:
+ unregister_chrdev_region(rdbgdevice->dev_no, rdbgdevice->num_devices);
+data_bail:
+ kfree(rdbgdevice->rdbg_data);
+name_bail:
+ kfree(node_name);
+bail:
+ return err;
+}
+
+static void __exit rdbg_exit(void)
+{
+ struct rdbg_device *rdbgdevice = &g_rdbg_instance;
+ int minor;
+
+ for (minor = 0; minor < rdbgdevice->num_devices; minor++) {
+ if (rdbgdevice->rdbg_data[minor].device_initialized) {
+ device_destroy(rdbgdevice->class,
+ MKDEV(MAJOR(rdbgdevice->dev_no), minor));
+ }
+ }
+ class_destroy(rdbgdevice->class);
+ cdev_del(&rdbgdevice->cdev);
+ unregister_chrdev_region(rdbgdevice->dev_no, 1);
+ kfree(rdbgdevice->rdbg_data);
+}
+
+module_init(rdbg_init);
+module_exit(rdbg_exit);
+
+MODULE_DESCRIPTION("rdbg module");
+MODULE_LICENSE("GPL v2");