summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
authorSrinivasarao P <spathi@codeaurora.org>2019-11-20 12:08:40 +0530
committerSrinivasarao P <spathi@codeaurora.org>2019-11-20 12:09:34 +0530
commitacd0aacb7e54796116ea6964c17e8874376dbe34 (patch)
treee04df133c86b366b7596e1e58e32b4e3557bdf66 /Documentation
parent1c5aa324afccfea7716b594cc47bbc7be8aaab00 (diff)
parenta4d443b76f662953674703f370c312461b9b7b55 (diff)
Merge android-4.4-p.202 (a4d443b7) into msm-4.4
* refs/heads/tmp-a4d443b7 Linux 4.4.202 x86/bugs: Add ITLB_MULTIHIT bug infrastructure x86/speculation/taa: Fix printing of TAA_MSG_SMT on IBRS_ALL CPUs x86/tsx: Add config options to set tsx=on|off|auto x86/speculation/taa: Add documentation for TSX Async Abort x86/tsx: Add "auto" option to the tsx= cmdline parameter kvm/x86: Export MDS_NO=0 to guests when TSX is enabled x86/speculation/taa: Add sysfs reporting for TSX Async Abort x86/speculation/taa: Add mitigation for TSX Async Abort x86/cpu: Add a "tsx=" cmdline option with TSX disabled by default x86/cpu: Add a helper function x86_read_arch_cap_msr() x86/msr: Add the IA32_TSX_CTRL MSR KVM: x86: use Intel speculation bugs and features as derived in generic x86 code kvm: x86: IA32_ARCH_CAPABILITIES is always supported KVM: x86: Emulate MSR_IA32_ARCH_CAPABILITIES on AMD hosts KVM: Introduce kvm_get_arch_capabilities() powerpc/boot: Request no dynamic linker for boot wrapper powerpc: Fix compiling a BE kernel with a powerpc64le toolchain powerpc/Makefile: Use cflags-y/aflags-y for setting endian options MIPS: BCM63XX: fix switch core reset on BCM6368 kvm: mmu: Don't read PDPTEs when paging is not enabled Change-Id: I3a31ea51ed63a4ac72279a09d4bcba64868c803e Signed-off-by: Srinivasarao P <spathi@codeaurora.org>
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/sysfs-devices-system-cpu2
-rw-r--r--Documentation/hw-vuln/tsx_async_abort.rst268
-rw-r--r--Documentation/kernel-parameters.txt62
-rw-r--r--Documentation/x86/tsx_async_abort.rst117
4 files changed, 449 insertions, 0 deletions
diff --git a/Documentation/ABI/testing/sysfs-devices-system-cpu b/Documentation/ABI/testing/sysfs-devices-system-cpu
index e4cd3be77663..f97d1aaec1f9 100644
--- a/Documentation/ABI/testing/sysfs-devices-system-cpu
+++ b/Documentation/ABI/testing/sysfs-devices-system-cpu
@@ -279,6 +279,8 @@ What: /sys/devices/system/cpu/vulnerabilities
/sys/devices/system/cpu/vulnerabilities/spec_store_bypass
/sys/devices/system/cpu/vulnerabilities/l1tf
/sys/devices/system/cpu/vulnerabilities/mds
+ /sys/devices/system/cpu/vulnerabilities/tsx_async_abort
+ /sys/devices/system/cpu/vulnerabilities/itlb_multihit
Date: January 2018
Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
Description: Information about CPU vulnerabilities
diff --git a/Documentation/hw-vuln/tsx_async_abort.rst b/Documentation/hw-vuln/tsx_async_abort.rst
new file mode 100644
index 000000000000..38beda735f39
--- /dev/null
+++ b/Documentation/hw-vuln/tsx_async_abort.rst
@@ -0,0 +1,268 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+TAA - TSX Asynchronous Abort
+======================================
+
+TAA is a hardware vulnerability that allows unprivileged speculative access to
+data which is available in various CPU internal buffers by using asynchronous
+aborts within an Intel TSX transactional region.
+
+Affected processors
+-------------------
+
+This vulnerability only affects Intel processors that support Intel
+Transactional Synchronization Extensions (TSX) when the TAA_NO bit (bit 8)
+is 0 in the IA32_ARCH_CAPABILITIES MSR. On processors where the MDS_NO bit
+(bit 5) is 0 in the IA32_ARCH_CAPABILITIES MSR, the existing MDS mitigations
+also mitigate against TAA.
+
+Whether a processor is affected or not can be read out from the TAA
+vulnerability file in sysfs. See :ref:`tsx_async_abort_sys_info`.
+
+Related CVEs
+------------
+
+The following CVE entry is related to this TAA issue:
+
+ ============== ===== ===================================================
+ CVE-2019-11135 TAA TSX Asynchronous Abort (TAA) condition on some
+ microprocessors utilizing speculative execution may
+ allow an authenticated user to potentially enable
+ information disclosure via a side channel with
+ local access.
+ ============== ===== ===================================================
+
+Problem
+-------
+
+When performing store, load or L1 refill operations, processors write
+data into temporary microarchitectural structures (buffers). The data in
+those buffers can be forwarded to load operations as an optimization.
+
+Intel TSX is an extension to the x86 instruction set architecture that adds
+hardware transactional memory support to improve performance of multi-threaded
+software. TSX lets the processor expose and exploit concurrency hidden in an
+application due to dynamically avoiding unnecessary synchronization.
+
+TSX supports atomic memory transactions that are either committed (success) or
+aborted. During an abort, operations that happened within the transactional region
+are rolled back. An asynchronous abort takes place, among other options, when a
+different thread accesses a cache line that is also used within the transactional
+region when that access might lead to a data race.
+
+Immediately after an uncompleted asynchronous abort, certain speculatively
+executed loads may read data from those internal buffers and pass it to dependent
+operations. This can be then used to infer the value via a cache side channel
+attack.
+
+Because the buffers are potentially shared between Hyper-Threads cross
+Hyper-Thread attacks are possible.
+
+The victim of a malicious actor does not need to make use of TSX. Only the
+attacker needs to begin a TSX transaction and raise an asynchronous abort
+which in turn potenitally leaks data stored in the buffers.
+
+More detailed technical information is available in the TAA specific x86
+architecture section: :ref:`Documentation/x86/tsx_async_abort.rst <tsx_async_abort>`.
+
+
+Attack scenarios
+----------------
+
+Attacks against the TAA vulnerability can be implemented from unprivileged
+applications running on hosts or guests.
+
+As for MDS, the attacker has no control over the memory addresses that can
+be leaked. Only the victim is responsible for bringing data to the CPU. As
+a result, the malicious actor has to sample as much data as possible and
+then postprocess it to try to infer any useful information from it.
+
+A potential attacker only has read access to the data. Also, there is no direct
+privilege escalation by using this technique.
+
+
+.. _tsx_async_abort_sys_info:
+
+TAA system information
+-----------------------
+
+The Linux kernel provides a sysfs interface to enumerate the current TAA status
+of mitigated systems. The relevant sysfs file is:
+
+/sys/devices/system/cpu/vulnerabilities/tsx_async_abort
+
+The possible values in this file are:
+
+.. list-table::
+
+ * - 'Vulnerable'
+ - The CPU is affected by this vulnerability and the microcode and kernel mitigation are not applied.
+ * - 'Vulnerable: Clear CPU buffers attempted, no microcode'
+ - The system tries to clear the buffers but the microcode might not support the operation.
+ * - 'Mitigation: Clear CPU buffers'
+ - The microcode has been updated to clear the buffers. TSX is still enabled.
+ * - 'Mitigation: TSX disabled'
+ - TSX is disabled.
+ * - 'Not affected'
+ - The CPU is not affected by this issue.
+
+.. _ucode_needed:
+
+Best effort mitigation mode
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+If the processor is vulnerable, but the availability of the microcode-based
+mitigation mechanism is not advertised via CPUID the kernel selects a best
+effort mitigation mode. This mode invokes the mitigation instructions
+without a guarantee that they clear the CPU buffers.
+
+This is done to address virtualization scenarios where the host has the
+microcode update applied, but the hypervisor is not yet updated to expose the
+CPUID to the guest. If the host has updated microcode the protection takes
+effect; otherwise a few CPU cycles are wasted pointlessly.
+
+The state in the tsx_async_abort sysfs file reflects this situation
+accordingly.
+
+
+Mitigation mechanism
+--------------------
+
+The kernel detects the affected CPUs and the presence of the microcode which is
+required. If a CPU is affected and the microcode is available, then the kernel
+enables the mitigation by default.
+
+
+The mitigation can be controlled at boot time via a kernel command line option.
+See :ref:`taa_mitigation_control_command_line`.
+
+.. _virt_mechanism:
+
+Virtualization mitigation
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Affected systems where the host has TAA microcode and TAA is mitigated by
+having disabled TSX previously, are not vulnerable regardless of the status
+of the VMs.
+
+In all other cases, if the host either does not have the TAA microcode or
+the kernel is not mitigated, the system might be vulnerable.
+
+
+.. _taa_mitigation_control_command_line:
+
+Mitigation control on the kernel command line
+---------------------------------------------
+
+The kernel command line allows to control the TAA mitigations at boot time with
+the option "tsx_async_abort=". The valid arguments for this option are:
+
+ ============ =============================================================
+ off This option disables the TAA mitigation on affected platforms.
+ If the system has TSX enabled (see next parameter) and the CPU
+ is affected, the system is vulnerable.
+
+ full TAA mitigation is enabled. If TSX is enabled, on an affected
+ system it will clear CPU buffers on ring transitions. On
+ systems which are MDS-affected and deploy MDS mitigation,
+ TAA is also mitigated. Specifying this option on those
+ systems will have no effect.
+ ============ =============================================================
+
+Not specifying this option is equivalent to "tsx_async_abort=full".
+
+The kernel command line also allows to control the TSX feature using the
+parameter "tsx=" on CPUs which support TSX control. MSR_IA32_TSX_CTRL is used
+to control the TSX feature and the enumeration of the TSX feature bits (RTM
+and HLE) in CPUID.
+
+The valid options are:
+
+ ============ =============================================================
+ off Disables TSX on the system.
+
+ Note that this option takes effect only on newer CPUs which are
+ not vulnerable to MDS, i.e., have MSR_IA32_ARCH_CAPABILITIES.MDS_NO=1
+ and which get the new IA32_TSX_CTRL MSR through a microcode
+ update. This new MSR allows for the reliable deactivation of
+ the TSX functionality.
+
+ on Enables TSX.
+
+ Although there are mitigations for all known security
+ vulnerabilities, TSX has been known to be an accelerator for
+ several previous speculation-related CVEs, and so there may be
+ unknown security risks associated with leaving it enabled.
+
+ auto Disables TSX if X86_BUG_TAA is present, otherwise enables TSX
+ on the system.
+ ============ =============================================================
+
+Not specifying this option is equivalent to "tsx=off".
+
+The following combinations of the "tsx_async_abort" and "tsx" are possible. For
+affected platforms tsx=auto is equivalent to tsx=off and the result will be:
+
+ ========= ========================== =========================================
+ tsx=on tsx_async_abort=full The system will use VERW to clear CPU
+ buffers. Cross-thread attacks are still
+ possible on SMT machines.
+ tsx=on tsx_async_abort=off The system is vulnerable.
+ tsx=off tsx_async_abort=full TSX might be disabled if microcode
+ provides a TSX control MSR. If so,
+ system is not vulnerable.
+ tsx=off tsx_async_abort=off ditto
+ ========= ========================== =========================================
+
+
+For unaffected platforms "tsx=on" and "tsx_async_abort=full" does not clear CPU
+buffers. For platforms without TSX control (MSR_IA32_ARCH_CAPABILITIES.MDS_NO=0)
+"tsx" command line argument has no effect.
+
+For the affected platforms below table indicates the mitigation status for the
+combinations of CPUID bit MD_CLEAR and IA32_ARCH_CAPABILITIES MSR bits MDS_NO
+and TSX_CTRL_MSR.
+
+ ======= ========= ============= ========================================
+ MDS_NO MD_CLEAR TSX_CTRL_MSR Status
+ ======= ========= ============= ========================================
+ 0 0 0 Vulnerable (needs microcode)
+ 0 1 0 MDS and TAA mitigated via VERW
+ 1 1 0 MDS fixed, TAA vulnerable if TSX enabled
+ because MD_CLEAR has no meaning and
+ VERW is not guaranteed to clear buffers
+ 1 X 1 MDS fixed, TAA can be mitigated by
+ VERW or TSX_CTRL_MSR
+ ======= ========= ============= ========================================
+
+Mitigation selection guide
+--------------------------
+
+1. Trusted userspace and guests
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+If all user space applications are from a trusted source and do not execute
+untrusted code which is supplied externally, then the mitigation can be
+disabled. The same applies to virtualized environments with trusted guests.
+
+
+2. Untrusted userspace and guests
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+If there are untrusted applications or guests on the system, enabling TSX
+might allow a malicious actor to leak data from the host or from other
+processes running on the same physical core.
+
+If the microcode is available and the TSX is disabled on the host, attacks
+are prevented in a virtualized environment as well, even if the VMs do not
+explicitly enable the mitigation.
+
+
+.. _taa_default_mitigations:
+
+Default mitigations
+-------------------
+
+The kernel's default action for vulnerable processors is:
+
+ - Deploy TSX disable mitigation (tsx_async_abort=full tsx=off).
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index b3c7bdffbdc0..d170c8fcced6 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -2240,6 +2240,7 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
spectre_v2_user=off [X86]
spec_store_bypass_disable=off [X86]
mds=off [X86]
+ tsx_async_abort=off [X86]
auto (default)
Mitigate all CPU vulnerabilities, but leave SMT
@@ -4131,6 +4132,67 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
platforms where RDTSC is slow and this accounting
can add overhead.
+ tsx= [X86] Control Transactional Synchronization
+ Extensions (TSX) feature in Intel processors that
+ support TSX control.
+
+ This parameter controls the TSX feature. The options are:
+
+ on - Enable TSX on the system. Although there are
+ mitigations for all known security vulnerabilities,
+ TSX has been known to be an accelerator for
+ several previous speculation-related CVEs, and
+ so there may be unknown security risks associated
+ with leaving it enabled.
+
+ off - Disable TSX on the system. (Note that this
+ option takes effect only on newer CPUs which are
+ not vulnerable to MDS, i.e., have
+ MSR_IA32_ARCH_CAPABILITIES.MDS_NO=1 and which get
+ the new IA32_TSX_CTRL MSR through a microcode
+ update. This new MSR allows for the reliable
+ deactivation of the TSX functionality.)
+
+ auto - Disable TSX if X86_BUG_TAA is present,
+ otherwise enable TSX on the system.
+
+ Not specifying this option is equivalent to tsx=off.
+
+ See Documentation/hw-vuln/tsx_async_abort.rst
+ for more details.
+
+ tsx_async_abort= [X86,INTEL] Control mitigation for the TSX Async
+ Abort (TAA) vulnerability.
+
+ Similar to Micro-architectural Data Sampling (MDS)
+ certain CPUs that support Transactional
+ Synchronization Extensions (TSX) are vulnerable to an
+ exploit against CPU internal buffers which can forward
+ information to a disclosure gadget under certain
+ conditions.
+
+ In vulnerable processors, the speculatively forwarded
+ data can be used in a cache side channel attack, to
+ access data to which the attacker does not have direct
+ access.
+
+ This parameter controls the TAA mitigation. The
+ options are:
+
+ full - Enable TAA mitigation on vulnerable CPUs
+ if TSX is enabled.
+
+ off - Unconditionally disable TAA mitigation
+
+ Not specifying this option is equivalent to
+ tsx_async_abort=full. On CPUs which are MDS affected
+ and deploy MDS mitigation, TAA mitigation is not
+ required and doesn't provide any additional
+ mitigation.
+
+ For details see:
+ Documentation/hw-vuln/tsx_async_abort.rst
+
turbografx.map[2|3]= [HW,JOY]
TurboGraFX parallel port interface
Format:
diff --git a/Documentation/x86/tsx_async_abort.rst b/Documentation/x86/tsx_async_abort.rst
new file mode 100644
index 000000000000..4a4336a89372
--- /dev/null
+++ b/Documentation/x86/tsx_async_abort.rst
@@ -0,0 +1,117 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+TSX Async Abort (TAA) mitigation
+================================
+
+.. _tsx_async_abort:
+
+Overview
+--------
+
+TSX Async Abort (TAA) is a side channel attack on internal buffers in some
+Intel processors similar to Microachitectural Data Sampling (MDS). In this
+case certain loads may speculatively pass invalid data to dependent operations
+when an asynchronous abort condition is pending in a Transactional
+Synchronization Extensions (TSX) transaction. This includes loads with no
+fault or assist condition. Such loads may speculatively expose stale data from
+the same uarch data structures as in MDS, with same scope of exposure i.e.
+same-thread and cross-thread. This issue affects all current processors that
+support TSX.
+
+Mitigation strategy
+-------------------
+
+a) TSX disable - one of the mitigations is to disable TSX. A new MSR
+IA32_TSX_CTRL will be available in future and current processors after
+microcode update which can be used to disable TSX. In addition, it
+controls the enumeration of the TSX feature bits (RTM and HLE) in CPUID.
+
+b) Clear CPU buffers - similar to MDS, clearing the CPU buffers mitigates this
+vulnerability. More details on this approach can be found in
+:ref:`Documentation/hw-vuln/mds.rst <mds>`.
+
+Kernel internal mitigation modes
+--------------------------------
+
+ ============= ============================================================
+ off Mitigation is disabled. Either the CPU is not affected or
+ tsx_async_abort=off is supplied on the kernel command line.
+
+ tsx disabled Mitigation is enabled. TSX feature is disabled by default at
+ bootup on processors that support TSX control.
+
+ verw Mitigation is enabled. CPU is affected and MD_CLEAR is
+ advertised in CPUID.
+
+ ucode needed Mitigation is enabled. CPU is affected and MD_CLEAR is not
+ advertised in CPUID. That is mainly for virtualization
+ scenarios where the host has the updated microcode but the
+ hypervisor does not expose MD_CLEAR in CPUID. It's a best
+ effort approach without guarantee.
+ ============= ============================================================
+
+If the CPU is affected and the "tsx_async_abort" kernel command line parameter is
+not provided then the kernel selects an appropriate mitigation depending on the
+status of RTM and MD_CLEAR CPUID bits.
+
+Below tables indicate the impact of tsx=on|off|auto cmdline options on state of
+TAA mitigation, VERW behavior and TSX feature for various combinations of
+MSR_IA32_ARCH_CAPABILITIES bits.
+
+1. "tsx=off"
+
+========= ========= ============ ============ ============== =================== ======================
+MSR_IA32_ARCH_CAPABILITIES bits Result with cmdline tsx=off
+---------------------------------- -------------------------------------------------------------------------
+TAA_NO MDS_NO TSX_CTRL_MSR TSX state VERW can clear TAA mitigation TAA mitigation
+ after bootup CPU buffers tsx_async_abort=off tsx_async_abort=full
+========= ========= ============ ============ ============== =================== ======================
+ 0 0 0 HW default Yes Same as MDS Same as MDS
+ 0 0 1 Invalid case Invalid case Invalid case Invalid case
+ 0 1 0 HW default No Need ucode update Need ucode update
+ 0 1 1 Disabled Yes TSX disabled TSX disabled
+ 1 X 1 Disabled X None needed None needed
+========= ========= ============ ============ ============== =================== ======================
+
+2. "tsx=on"
+
+========= ========= ============ ============ ============== =================== ======================
+MSR_IA32_ARCH_CAPABILITIES bits Result with cmdline tsx=on
+---------------------------------- -------------------------------------------------------------------------
+TAA_NO MDS_NO TSX_CTRL_MSR TSX state VERW can clear TAA mitigation TAA mitigation
+ after bootup CPU buffers tsx_async_abort=off tsx_async_abort=full
+========= ========= ============ ============ ============== =================== ======================
+ 0 0 0 HW default Yes Same as MDS Same as MDS
+ 0 0 1 Invalid case Invalid case Invalid case Invalid case
+ 0 1 0 HW default No Need ucode update Need ucode update
+ 0 1 1 Enabled Yes None Same as MDS
+ 1 X 1 Enabled X None needed None needed
+========= ========= ============ ============ ============== =================== ======================
+
+3. "tsx=auto"
+
+========= ========= ============ ============ ============== =================== ======================
+MSR_IA32_ARCH_CAPABILITIES bits Result with cmdline tsx=auto
+---------------------------------- -------------------------------------------------------------------------
+TAA_NO MDS_NO TSX_CTRL_MSR TSX state VERW can clear TAA mitigation TAA mitigation
+ after bootup CPU buffers tsx_async_abort=off tsx_async_abort=full
+========= ========= ============ ============ ============== =================== ======================
+ 0 0 0 HW default Yes Same as MDS Same as MDS
+ 0 0 1 Invalid case Invalid case Invalid case Invalid case
+ 0 1 0 HW default No Need ucode update Need ucode update
+ 0 1 1 Disabled Yes TSX disabled TSX disabled
+ 1 X 1 Enabled X None needed None needed
+========= ========= ============ ============ ============== =================== ======================
+
+In the tables, TSX_CTRL_MSR is a new bit in MSR_IA32_ARCH_CAPABILITIES that
+indicates whether MSR_IA32_TSX_CTRL is supported.
+
+There are two control bits in IA32_TSX_CTRL MSR:
+
+ Bit 0: When set it disables the Restricted Transactional Memory (RTM)
+ sub-feature of TSX (will force all transactions to abort on the
+ XBEGIN instruction).
+
+ Bit 1: When set it disables the enumeration of the RTM and HLE feature
+ (i.e. it will make CPUID(EAX=7).EBX{bit4} and
+ CPUID(EAX=7).EBX{bit11} read as 0).