diff options
author | Christoffer Dall <c.dall@virtualopensystems.com> | 2013-01-20 18:47:42 -0500 |
---|---|---|
committer | Christoffer Dall <c.dall@virtualopensystems.com> | 2013-01-23 13:29:12 -0500 |
commit | f7ed45be3ba524e06a6d933f0517dc7ad2d06703 (patch) | |
tree | 9e3cc5b0441daf154bccec4e672f17522b9fe13a /arch/arm/kvm | |
parent | 86ce85352f0da7e1431ad8efcb04323819a620e7 (diff) |
KVM: ARM: World-switch implementation
Provides complete world-switch implementation to switch to other guests
running in non-secure modes. Includes Hyp exception handlers that
capture necessary exception information and stores the information on
the VCPU and KVM structures.
The following Hyp-ABI is also documented in the code:
Hyp-ABI: Calling HYP-mode functions from host (in SVC mode):
Switching to Hyp mode is done through a simple HVC #0 instruction. The
exception vector code will check that the HVC comes from VMID==0 and if
so will push the necessary state (SPSR, lr_usr) on the Hyp stack.
- r0 contains a pointer to a HYP function
- r1, r2, and r3 contain arguments to the above function.
- The HYP function will be called with its arguments in r0, r1 and r2.
On HYP function return, we return directly to SVC.
A call to a function executing in Hyp mode is performed like the following:
<svc code>
ldr r0, =BSYM(my_hyp_fn)
ldr r1, =my_param
hvc #0 ; Call my_hyp_fn(my_param) from HYP mode
<svc code>
Otherwise, the world-switch is pretty straight-forward. All state that
can be modified by the guest is first backed up on the Hyp stack and the
VCPU values is loaded onto the hardware. State, which is not loaded, but
theoretically modifiable by the guest is protected through the
virtualiation features to generate a trap and cause software emulation.
Upon guest returns, all state is restored from hardware onto the VCPU
struct and the original state is restored from the Hyp-stack onto the
hardware.
SMP support using the VMPIDR calculated on the basis of the host MPIDR
and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier.
Reuse of VMIDs has been implemented by Antonios Motakis and adapated from
a separate patch into the appropriate patches introducing the
functionality. Note that the VMIDs are stored per VM as required by the ARM
architecture reference manual.
To support VFP/NEON we trap those instructions using the HPCTR. When
we trap, we switch the FPU. After a guest exit, the VFP state is
returned to the host. When disabling access to floating point
instructions, we also mask FPEXC_EN in order to avoid the guest
receiving Undefined instruction exceptions before we have a chance to
switch back the floating point state. We are reusing vfp_hard_struct,
so we depend on VFPv3 being enabled in the host kernel, if not, we still
trap cp10 and cp11 in order to inject an undefined instruction exception
whenever the guest tries to use VFP/NEON. VFP/NEON developed by
Antionios Motakis and Rusty Russell.
Aborts that are permission faults, and not stage-1 page table walk, do
not report the faulting address in the HPFAR. We have to resolve the
IPA, and store it just like the HPFAR register on the VCPU struct. If
the IPA cannot be resolved, it means another CPU is playing with the
page tables, and we simply restart the guest. This quirk was fixed by
Marc Zyngier.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Diffstat (limited to 'arch/arm/kvm')
-rw-r--r-- | arch/arm/kvm/arm.c | 200 | ||||
-rw-r--r-- | arch/arm/kvm/interrupts.S | 396 | ||||
-rw-r--r-- | arch/arm/kvm/interrupts_head.S | 441 |
3 files changed, 1033 insertions, 4 deletions
diff --git a/arch/arm/kvm/arm.c b/arch/arm/kvm/arm.c index 2101152c3a4b..9e9fa4477884 100644 --- a/arch/arm/kvm/arm.c +++ b/arch/arm/kvm/arm.c @@ -40,6 +40,7 @@ #include <asm/kvm_arm.h> #include <asm/kvm_asm.h> #include <asm/kvm_mmu.h> +#include <asm/kvm_emulate.h> #ifdef REQUIRES_VIRT __asm__(".arch_extension virt"); @@ -49,6 +50,10 @@ static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); static struct vfp_hard_struct __percpu *kvm_host_vfp_state; static unsigned long hyp_default_vectors; +/* The VMID used in the VTTBR */ +static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); +static u8 kvm_next_vmid; +static DEFINE_SPINLOCK(kvm_vmid_lock); int kvm_arch_hardware_enable(void *garbage) { @@ -276,6 +281,8 @@ int __attribute_const__ kvm_target_cpu(void) int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) { + /* Force users to call KVM_ARM_VCPU_INIT */ + vcpu->arch.target = -1; return 0; } @@ -286,6 +293,7 @@ void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { vcpu->cpu = cpu; + vcpu->arch.vfp_host = this_cpu_ptr(kvm_host_vfp_state); } void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) @@ -316,9 +324,199 @@ int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) return 0; } +/* Just ensure a guest exit from a particular CPU */ +static void exit_vm_noop(void *info) +{ +} + +void force_vm_exit(const cpumask_t *mask) +{ + smp_call_function_many(mask, exit_vm_noop, NULL, true); +} + +/** + * need_new_vmid_gen - check that the VMID is still valid + * @kvm: The VM's VMID to checkt + * + * return true if there is a new generation of VMIDs being used + * + * The hardware supports only 256 values with the value zero reserved for the + * host, so we check if an assigned value belongs to a previous generation, + * which which requires us to assign a new value. If we're the first to use a + * VMID for the new generation, we must flush necessary caches and TLBs on all + * CPUs. + */ +static bool need_new_vmid_gen(struct kvm *kvm) +{ + return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen)); +} + +/** + * update_vttbr - Update the VTTBR with a valid VMID before the guest runs + * @kvm The guest that we are about to run + * + * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the + * VM has a valid VMID, otherwise assigns a new one and flushes corresponding + * caches and TLBs. + */ +static void update_vttbr(struct kvm *kvm) +{ + phys_addr_t pgd_phys; + u64 vmid; + + if (!need_new_vmid_gen(kvm)) + return; + + spin_lock(&kvm_vmid_lock); + + /* + * We need to re-check the vmid_gen here to ensure that if another vcpu + * already allocated a valid vmid for this vm, then this vcpu should + * use the same vmid. + */ + if (!need_new_vmid_gen(kvm)) { + spin_unlock(&kvm_vmid_lock); + return; + } + + /* First user of a new VMID generation? */ + if (unlikely(kvm_next_vmid == 0)) { + atomic64_inc(&kvm_vmid_gen); + kvm_next_vmid = 1; + + /* + * On SMP we know no other CPUs can use this CPU's or each + * other's VMID after force_vm_exit returns since the + * kvm_vmid_lock blocks them from reentry to the guest. + */ + force_vm_exit(cpu_all_mask); + /* + * Now broadcast TLB + ICACHE invalidation over the inner + * shareable domain to make sure all data structures are + * clean. + */ + kvm_call_hyp(__kvm_flush_vm_context); + } + + kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen); + kvm->arch.vmid = kvm_next_vmid; + kvm_next_vmid++; + + /* update vttbr to be used with the new vmid */ + pgd_phys = virt_to_phys(kvm->arch.pgd); + vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK; + kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK; + kvm->arch.vttbr |= vmid; + + spin_unlock(&kvm_vmid_lock); +} + +/* + * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on + * proper exit to QEMU. + */ +static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run, + int exception_index) +{ + run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + return 0; +} + +static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) +{ + if (likely(vcpu->arch.has_run_once)) + return 0; + + vcpu->arch.has_run_once = true; + return 0; +} + +/** + * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code + * @vcpu: The VCPU pointer + * @run: The kvm_run structure pointer used for userspace state exchange + * + * This function is called through the VCPU_RUN ioctl called from user space. It + * will execute VM code in a loop until the time slice for the process is used + * or some emulation is needed from user space in which case the function will + * return with return value 0 and with the kvm_run structure filled in with the + * required data for the requested emulation. + */ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) { - return -EINVAL; + int ret; + sigset_t sigsaved; + + /* Make sure they initialize the vcpu with KVM_ARM_VCPU_INIT */ + if (unlikely(vcpu->arch.target < 0)) + return -ENOEXEC; + + ret = kvm_vcpu_first_run_init(vcpu); + if (ret) + return ret; + + if (vcpu->sigset_active) + sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); + + ret = 1; + run->exit_reason = KVM_EXIT_UNKNOWN; + while (ret > 0) { + /* + * Check conditions before entering the guest + */ + cond_resched(); + + update_vttbr(vcpu->kvm); + + local_irq_disable(); + + /* + * Re-check atomic conditions + */ + if (signal_pending(current)) { + ret = -EINTR; + run->exit_reason = KVM_EXIT_INTR; + } + + if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) { + local_irq_enable(); + continue; + } + + /************************************************************** + * Enter the guest + */ + trace_kvm_entry(*vcpu_pc(vcpu)); + kvm_guest_enter(); + vcpu->mode = IN_GUEST_MODE; + + ret = kvm_call_hyp(__kvm_vcpu_run, vcpu); + + vcpu->mode = OUTSIDE_GUEST_MODE; + kvm_guest_exit(); + trace_kvm_exit(*vcpu_pc(vcpu)); + /* + * We may have taken a host interrupt in HYP mode (ie + * while executing the guest). This interrupt is still + * pending, as we haven't serviced it yet! + * + * We're now back in SVC mode, with interrupts + * disabled. Enabling the interrupts now will have + * the effect of taking the interrupt again, in SVC + * mode this time. + */ + local_irq_enable(); + + /* + * Back from guest + *************************************************************/ + + ret = handle_exit(vcpu, run, ret); + } + + if (vcpu->sigset_active) + sigprocmask(SIG_SETMASK, &sigsaved, NULL); + return ret; } static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) diff --git a/arch/arm/kvm/interrupts.S b/arch/arm/kvm/interrupts.S index f701aff31e44..c5400d2e97ca 100644 --- a/arch/arm/kvm/interrupts.S +++ b/arch/arm/kvm/interrupts.S @@ -20,9 +20,12 @@ #include <linux/const.h> #include <asm/unified.h> #include <asm/page.h> +#include <asm/ptrace.h> #include <asm/asm-offsets.h> #include <asm/kvm_asm.h> #include <asm/kvm_arm.h> +#include <asm/vfpmacros.h> +#include "interrupts_head.S" .text @@ -31,23 +34,164 @@ __kvm_hyp_code_start: /******************************************************************** * Flush per-VMID TLBs + * + * void __kvm_tlb_flush_vmid(struct kvm *kvm); + * + * We rely on the hardware to broadcast the TLB invalidation to all CPUs + * inside the inner-shareable domain (which is the case for all v7 + * implementations). If we come across a non-IS SMP implementation, we'll + * have to use an IPI based mechanism. Until then, we stick to the simple + * hardware assisted version. */ ENTRY(__kvm_tlb_flush_vmid) + push {r2, r3} + + add r0, r0, #KVM_VTTBR + ldrd r2, r3, [r0] + mcrr p15, 6, r2, r3, c2 @ Write VTTBR + isb + mcr p15, 0, r0, c8, c3, 0 @ TLBIALLIS (rt ignored) + dsb + isb + mov r2, #0 + mov r3, #0 + mcrr p15, 6, r2, r3, c2 @ Back to VMID #0 + isb @ Not necessary if followed by eret + + pop {r2, r3} bx lr ENDPROC(__kvm_tlb_flush_vmid) /******************************************************************** - * Flush TLBs and instruction caches of current CPU for all VMIDs + * Flush TLBs and instruction caches of all CPUs inside the inner-shareable + * domain, for all VMIDs + * + * void __kvm_flush_vm_context(void); */ ENTRY(__kvm_flush_vm_context) + mov r0, #0 @ rn parameter for c15 flushes is SBZ + + /* Invalidate NS Non-Hyp TLB Inner Shareable (TLBIALLNSNHIS) */ + mcr p15, 4, r0, c8, c3, 4 + /* Invalidate instruction caches Inner Shareable (ICIALLUIS) */ + mcr p15, 0, r0, c7, c1, 0 + dsb + isb @ Not necessary if followed by eret + bx lr ENDPROC(__kvm_flush_vm_context) + /******************************************************************** * Hypervisor world-switch code + * + * + * int __kvm_vcpu_run(struct kvm_vcpu *vcpu) */ ENTRY(__kvm_vcpu_run) - bx lr + @ Save the vcpu pointer + mcr p15, 4, vcpu, c13, c0, 2 @ HTPIDR + + save_host_regs + + @ Store hardware CP15 state and load guest state + read_cp15_state store_to_vcpu = 0 + write_cp15_state read_from_vcpu = 1 + + @ If the host kernel has not been configured with VFPv3 support, + @ then it is safer if we deny guests from using it as well. +#ifdef CONFIG_VFPv3 + @ Set FPEXC_EN so the guest doesn't trap floating point instructions + VFPFMRX r2, FPEXC @ VMRS + push {r2} + orr r2, r2, #FPEXC_EN + VFPFMXR FPEXC, r2 @ VMSR +#endif + + @ Configure Hyp-role + configure_hyp_role vmentry + + @ Trap coprocessor CRx accesses + set_hstr vmentry + set_hcptr vmentry, (HCPTR_TTA | HCPTR_TCP(10) | HCPTR_TCP(11)) + set_hdcr vmentry + + @ Write configured ID register into MIDR alias + ldr r1, [vcpu, #VCPU_MIDR] + mcr p15, 4, r1, c0, c0, 0 + + @ Write guest view of MPIDR into VMPIDR + ldr r1, [vcpu, #CP15_OFFSET(c0_MPIDR)] + mcr p15, 4, r1, c0, c0, 5 + + @ Set up guest memory translation + ldr r1, [vcpu, #VCPU_KVM] + add r1, r1, #KVM_VTTBR + ldrd r2, r3, [r1] + mcrr p15, 6, r2, r3, c2 @ Write VTTBR + + @ We're all done, just restore the GPRs and go to the guest + restore_guest_regs + clrex @ Clear exclusive monitor + eret + +__kvm_vcpu_return: + /* + * return convention: + * guest r0, r1, r2 saved on the stack + * r0: vcpu pointer + * r1: exception code + */ + save_guest_regs + + @ Set VMID == 0 + mov r2, #0 + mov r3, #0 + mcrr p15, 6, r2, r3, c2 @ Write VTTBR + + @ Don't trap coprocessor accesses for host kernel + set_hstr vmexit + set_hdcr vmexit + set_hcptr vmexit, (HCPTR_TTA | HCPTR_TCP(10) | HCPTR_TCP(11)) + +#ifdef CONFIG_VFPv3 + @ Save floating point registers we if let guest use them. + tst r2, #(HCPTR_TCP(10) | HCPTR_TCP(11)) + bne after_vfp_restore + + @ Switch VFP/NEON hardware state to the host's + add r7, vcpu, #VCPU_VFP_GUEST + store_vfp_state r7 + add r7, vcpu, #VCPU_VFP_HOST + ldr r7, [r7] + restore_vfp_state r7 + +after_vfp_restore: + @ Restore FPEXC_EN which we clobbered on entry + pop {r2} + VFPFMXR FPEXC, r2 +#endif + + @ Reset Hyp-role + configure_hyp_role vmexit + + @ Let host read hardware MIDR + mrc p15, 0, r2, c0, c0, 0 + mcr p15, 4, r2, c0, c0, 0 + + @ Back to hardware MPIDR + mrc p15, 0, r2, c0, c0, 5 + mcr p15, 4, r2, c0, c0, 5 + + @ Store guest CP15 state and restore host state + read_cp15_state store_to_vcpu = 1 + write_cp15_state read_from_vcpu = 0 + + restore_host_regs + clrex @ Clear exclusive monitor + mov r0, r1 @ Return the return code + mov r1, #0 @ Clear upper bits in return value + bx lr @ return to IOCTL /******************************************************************** * Call function in Hyp mode @@ -77,12 +221,258 @@ ENTRY(kvm_call_hyp) /******************************************************************** * Hypervisor exception vector and handlers + * + * + * The KVM/ARM Hypervisor ABI is defined as follows: + * + * Entry to Hyp mode from the host kernel will happen _only_ when an HVC + * instruction is issued since all traps are disabled when running the host + * kernel as per the Hyp-mode initialization at boot time. + * + * HVC instructions cause a trap to the vector page + offset 0x18 (see hyp_hvc + * below) when the HVC instruction is called from SVC mode (i.e. a guest or the + * host kernel) and they cause a trap to the vector page + offset 0xc when HVC + * instructions are called from within Hyp-mode. + * + * Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): + * Switching to Hyp mode is done through a simple HVC #0 instruction. The + * exception vector code will check that the HVC comes from VMID==0 and if + * so will push the necessary state (SPSR, lr_usr) on the Hyp stack. + * - r0 contains a pointer to a HYP function + * - r1, r2, and r3 contain arguments to the above function. + * - The HYP function will be called with its arguments in r0, r1 and r2. + * On HYP function return, we return directly to SVC. + * + * Note that the above is used to execute code in Hyp-mode from a host-kernel + * point of view, and is a different concept from performing a world-switch and + * executing guest code SVC mode (with a VMID != 0). */ +/* Handle undef, svc, pabt, or dabt by crashing with a user notice */ +.macro bad_exception exception_code, panic_str + push {r0-r2} + mrrc p15, 6, r0, r1, c2 @ Read VTTBR + lsr r1, r1, #16 + ands r1, r1, #0xff + beq 99f + + load_vcpu @ Load VCPU pointer + .if \exception_code == ARM_EXCEPTION_DATA_ABORT + mrc p15, 4, r2, c5, c2, 0 @ HSR + mrc p15, 4, r1, c6, c0, 0 @ HDFAR + str r2, [vcpu, #VCPU_HSR] + str r1, [vcpu, #VCPU_HxFAR] + .endif + .if \exception_code == ARM_EXCEPTION_PREF_ABORT + mrc p15, 4, r2, c5, c2, 0 @ HSR + mrc p15, 4, r1, c6, c0, 2 @ HIFAR + str r2, [vcpu, #VCPU_HSR] + str r1, [vcpu, #VCPU_HxFAR] + .endif + mov r1, #\exception_code + b __kvm_vcpu_return + + @ We were in the host already. Let's craft a panic-ing return to SVC. +99: mrs r2, cpsr + bic r2, r2, #MODE_MASK + orr r2, r2, #SVC_MODE +THUMB( orr r2, r2, #PSR_T_BIT ) + msr spsr_cxsf, r2 + mrs r1, ELR_hyp + ldr r2, =BSYM(panic) + msr ELR_hyp, r2 + ldr r0, =\panic_str + eret +.endm + + .text + .align 5 __kvm_hyp_vector: .globl __kvm_hyp_vector - nop + + @ Hyp-mode exception vector + W(b) hyp_reset + W(b) hyp_undef + W(b) hyp_svc + W(b) hyp_pabt + W(b) hyp_dabt + W(b) hyp_hvc + W(b) hyp_irq + W(b) hyp_fiq + + .align +hyp_reset: + b hyp_reset + + .align +hyp_undef: + bad_exception ARM_EXCEPTION_UNDEFINED, und_die_str + + .align +hyp_svc: + bad_exception ARM_EXCEPTION_HVC, svc_die_str + + .align +hyp_pabt: + bad_exception ARM_EXCEPTION_PREF_ABORT, pabt_die_str + + .align +hyp_dabt: + bad_exception ARM_EXCEPTION_DATA_ABORT, dabt_die_str + + .align +hyp_hvc: + /* + * Getting here is either becuase of a trap from a guest or from calling + * HVC from the host kernel, which means "switch to Hyp mode". + */ + push {r0, r1, r2} + + @ Check syndrome register + mrc p15, 4, r1, c5, c2, 0 @ HSR + lsr r0, r1, #HSR_EC_SHIFT +#ifdef CONFIG_VFPv3 + cmp r0, #HSR_EC_CP_0_13 + beq switch_to_guest_vfp +#endif + cmp r0, #HSR_EC_HVC + bne guest_trap @ Not HVC instr. + + /* + * Let's check if the HVC came from VMID 0 and allow simple + * switch to Hyp mode + */ + mrrc p15, 6, r0, r2, c2 + lsr r2, r2, #16 + and r2, r2, #0xff + cmp r2, #0 + bne guest_trap @ Guest called HVC + +host_switch_to_hyp: + pop {r0, r1, r2} + + push {lr} + mrs lr, SPSR + push {lr} + + mov lr, r0 + mov r0, r1 + mov r1, r2 + mov r2, r3 + +THUMB( orr lr, #1) + blx lr @ Call the HYP function + + pop {lr} + msr SPSR_csxf, lr + pop {lr} + eret + +guest_trap: + load_vcpu @ Load VCPU pointer to r0 + str r1, [vcpu, #VCPU_HSR] + + @ Check if we need the fault information + lsr r1, r1, #HSR_EC_SHIFT + cmp r1, #HSR_EC_IABT + mrceq p15, 4, r2, c6, c0, 2 @ HIFAR + beq 2f + cmp r1, #HSR_EC_DABT + bne 1f + mrc p15, 4, r2, c6, c0, 0 @ HDFAR + +2: str r2, [vcpu, #VCPU_HxFAR] + + /* + * B3.13.5 Reporting exceptions taken to the Non-secure PL2 mode: + * + * Abort on the stage 2 translation for a memory access from a + * Non-secure PL1 or PL0 mode: + * + * For any Access flag fault or Translation fault, and also for any + * Permission fault on the stage 2 translation of a memory access + * made as part of a translation table walk for a stage 1 translation, + * the HPFAR holds the IPA that caused the fault. Otherwise, the HPFAR + * is UNKNOWN. + */ + + /* Check for permission fault, and S1PTW */ + mrc p15, 4, r1, c5, c2, 0 @ HSR + and r0, r1, #HSR_FSC_TYPE + cmp r0, #FSC_PERM + tsteq r1, #(1 << 7) @ S1PTW + mrcne p15, 4, r2, c6, c0, 4 @ HPFAR + bne 3f + + /* Resolve IPA using the xFAR */ + mcr p15, 0, r2, c7, c8, 0 @ ATS1CPR + isb + mrrc p15, 0, r0, r1, c7 @ PAR + tst r0, #1 + bne 4f @ Failed translation + ubfx r2, r0, #12, #20 + lsl r2, r2, #4 + orr r2, r2, r1, lsl #24 + +3: load_vcpu @ Load VCPU pointer to r0 + str r2, [r0, #VCPU_HPFAR] + +1: mov r1, #ARM_EXCEPTION_HVC + b __kvm_vcpu_return + +4: pop {r0, r1, r2} @ Failed translation, return to guest + eret + +/* + * If VFPv3 support is not available, then we will not switch the VFP + * registers; however cp10 and cp11 accesses will still trap and fallback + * to the regular coprocessor emulation code, which currently will + * inject an undefined exception to the guest. + */ +#ifdef CONFIG_VFPv3 +switch_to_guest_vfp: + load_vcpu @ Load VCPU pointer to r0 + push {r3-r7} + + @ NEON/VFP used. Turn on VFP access. + set_hcptr vmexit, (HCPTR_TCP(10) | HCPTR_TCP(11)) + + @ Switch VFP/NEON hardware state to the guest's + add r7, r0, #VCPU_VFP_HOST + ldr r7, [r7] + store_vfp_state r7 + add r7, r0, #VCPU_VFP_GUEST + restore_vfp_state r7 + + pop {r3-r7} + pop {r0-r2} + eret +#endif + + .align +hyp_irq: + push {r0, r1, r2} + mov r1, #ARM_EXCEPTION_IRQ + load_vcpu @ Load VCPU pointer to r0 + b __kvm_vcpu_return + + .align +hyp_fiq: + b hyp_fiq + + .ltorg __kvm_hyp_code_end: .globl __kvm_hyp_code_end + + .section ".rodata" + +und_die_str: + .ascii "unexpected undefined exception in Hyp mode at: %#08x" +pabt_die_str: + .ascii "unexpected prefetch abort in Hyp mode at: %#08x" +dabt_die_str: + .ascii "unexpected data abort in Hyp mode at: %#08x" +svc_die_str: + .ascii "unexpected HVC/SVC trap in Hyp mode at: %#08x" diff --git a/arch/arm/kvm/interrupts_head.S b/arch/arm/kvm/interrupts_head.S new file mode 100644 index 000000000000..6a95d341e9c5 --- /dev/null +++ b/arch/arm/kvm/interrupts_head.S @@ -0,0 +1,441 @@ +#define VCPU_USR_REG(_reg_nr) (VCPU_USR_REGS + (_reg_nr * 4)) +#define VCPU_USR_SP (VCPU_USR_REG(13)) +#define VCPU_USR_LR (VCPU_USR_REG(14)) +#define CP15_OFFSET(_cp15_reg_idx) (VCPU_CP15 + (_cp15_reg_idx * 4)) + +/* + * Many of these macros need to access the VCPU structure, which is always + * held in r0. These macros should never clobber r1, as it is used to hold the + * exception code on the return path (except of course the macro that switches + * all the registers before the final jump to the VM). + */ +vcpu .req r0 @ vcpu pointer always in r0 + +/* Clobbers {r2-r6} */ +.macro store_vfp_state vfp_base + @ The VFPFMRX and VFPFMXR macros are the VMRS and VMSR instructions + VFPFMRX r2, FPEXC + @ Make sure VFP is enabled so we can touch the registers. + orr r6, r2, #FPEXC_EN + VFPFMXR FPEXC, r6 + + VFPFMRX r3, FPSCR + tst r2, #FPEXC_EX @ Check for VFP Subarchitecture + beq 1f + @ If FPEXC_EX is 0, then FPINST/FPINST2 reads are upredictable, so + @ we only need to save them if FPEXC_EX is set. + VFPFMRX r4, FPINST + tst r2, #FPEXC_FP2V + VFPFMRX r5, FPINST2, ne @ vmrsne + bic r6, r2, #FPEXC_EX @ FPEXC_EX disable + VFPFMXR FPEXC, r6 +1: + VFPFSTMIA \vfp_base, r6 @ Save VFP registers + stm \vfp_base, {r2-r5} @ Save FPEXC, FPSCR, FPINST, FPINST2 +.endm + +/* Assume FPEXC_EN is on and FPEXC_EX is off, clobbers {r2-r6} */ +.macro restore_vfp_state vfp_base + VFPFLDMIA \vfp_base, r6 @ Load VFP registers + ldm \vfp_base, {r2-r5} @ Load FPEXC, FPSCR, FPINST, FPINST2 + + VFPFMXR FPSCR, r3 + tst r2, #FPEXC_EX @ Check for VFP Subarchitecture + beq 1f + VFPFMXR FPINST, r4 + tst r2, #FPEXC_FP2V + VFPFMXR FPINST2, r5, ne +1: + VFPFMXR FPEXC, r2 @ FPEXC (last, in case !EN) +.endm + +/* These are simply for the macros to work - value don't have meaning */ +.equ usr, 0 +.equ svc, 1 +.equ abt, 2 +.equ und, 3 +.equ irq, 4 +.equ fiq, 5 + +.macro push_host_regs_mode mode + mrs r2, SP_\mode + mrs r3, LR_\mode + mrs r4, SPSR_\mode + push {r2, r3, r4} +.endm + +/* + * Store all host persistent registers on the stack. + * Clobbers all registers, in all modes, except r0 and r1. + */ +.macro save_host_regs + /* Hyp regs. Only ELR_hyp (SPSR_hyp already saved) */ + mrs r2, ELR_hyp + push {r2} + + /* usr regs */ + push {r4-r12} @ r0-r3 are always clobbered + mrs r2, SP_usr + mov r3, lr + push {r2, r3} + + push_host_regs_mode svc + push_host_regs_mode abt + push_host_regs_mode und + push_host_regs_mode irq + + /* fiq regs */ + mrs r2, r8_fiq + mrs r3, r9_fiq + mrs r4, r10_fiq + mrs r5, r11_fiq + mrs r6, r12_fiq + mrs r7, SP_fiq + mrs r8, LR_fiq + mrs r9, SPSR_fiq + push {r2-r9} +.endm + +.macro pop_host_regs_mode mode + pop {r2, r3, r4} + msr SP_\mode, r2 + msr LR_\mode, r3 + msr SPSR_\mode, r4 +.endm + +/* + * Restore all host registers from the stack. + * Clobbers all registers, in all modes, except r0 and r1. + */ +.macro restore_host_regs + pop {r2-r9} + msr r8_fiq, r2 + msr r9_fiq, r3 + msr r10_fiq, r4 + msr r11_fiq, r5 + msr r12_fiq, r6 + msr SP_fiq, r7 + msr LR_fiq, r8 + msr SPSR_fiq, r9 + + pop_host_regs_mode irq + pop_host_regs_mode und + pop_host_regs_mode abt + pop_host_regs_mode svc + + pop {r2, r3} + msr SP_usr, r2 + mov lr, r3 + pop {r4-r12} + + pop {r2} + msr ELR_hyp, r2 +.endm + +/* + * Restore SP, LR and SPSR for a given mode. offset is the offset of + * this mode's registers from the VCPU base. + * + * Assumes vcpu pointer in vcpu reg + * + * Clobbers r1, r2, r3, r4. + */ +.macro restore_guest_regs_mode mode, offset + add r1, vcpu, \offset + ldm r1, {r2, r3, r4} + msr SP_\mode, r2 + msr LR_\mode, r3 + msr SPSR_\mode, r4 +.endm + +/* + * Restore all guest registers from the vcpu struct. + * + * Assumes vcpu pointer in vcpu reg + * + * Clobbers *all* registers. + */ +.macro restore_guest_regs + restore_guest_regs_mode svc, #VCPU_SVC_REGS + restore_guest_regs_mode abt, #VCPU_ABT_REGS + restore_guest_regs_mode und, #VCPU_UND_REGS + restore_guest_regs_mode irq, #VCPU_IRQ_REGS + + add r1, vcpu, #VCPU_FIQ_REGS + ldm r1, {r2-r9} + msr r8_fiq, r2 + msr r9_fiq, r3 + msr r10_fiq, r4 + msr r11_fiq, r5 + msr r12_fiq, r6 + msr SP_fiq, r7 + msr LR_fiq, r8 + msr SPSR_fiq, r9 + + @ Load return state + ldr r2, [vcpu, #VCPU_PC] + ldr r3, [vcpu, #VCPU_CPSR] + msr ELR_hyp, r2 + msr SPSR_cxsf, r3 + + @ Load user registers + ldr r2, [vcpu, #VCPU_USR_SP] + ldr r3, [vcpu, #VCPU_USR_LR] + msr SP_usr, r2 + mov lr, r3 + add vcpu, vcpu, #(VCPU_USR_REGS) + ldm vcpu, {r0-r12} +.endm + +/* + * Save SP, LR and SPSR for a given mode. offset is the offset of + * this mode's registers from the VCPU base. + * + * Assumes vcpu pointer in vcpu reg + * + * Clobbers r2, r3, r4, r5. + */ +.macro save_guest_regs_mode mode, offset + add r2, vcpu, \offset + mrs r3, SP_\mode + mrs r4, LR_\mode + mrs r5, SPSR_\mode + stm r2, {r3, r4, r5} +.endm + +/* + * Save all guest registers to the vcpu struct + * Expects guest's r0, r1, r2 on the stack. + * + * Assumes vcpu pointer in vcpu reg + * + * Clobbers r2, r3, r4, r5. + */ +.macro save_guest_regs + @ Store usr registers + add r2, vcpu, #VCPU_USR_REG(3) + stm r2, {r3-r12} + add r2, vcpu, #VCPU_USR_REG(0) + pop {r3, r4, r5} @ r0, r1, r2 + stm r2, {r3, r4, r5} + mrs r2, SP_usr + mov r3, lr + str r2, [vcpu, #VCPU_USR_SP] + str r3, [vcpu, #VCPU_USR_LR] + + @ Store return state + mrs r2, ELR_hyp + mrs r3, spsr + str r2, [vcpu, #VCPU_PC] + str r3, [vcpu, #VCPU_CPSR] + + @ Store other guest registers + save_guest_regs_mode svc, #VCPU_SVC_REGS + save_guest_regs_mode abt, #VCPU_ABT_REGS + save_guest_regs_mode und, #VCPU_UND_REGS + save_guest_regs_mode irq, #VCPU_IRQ_REGS +.endm + +/* Reads cp15 registers from hardware and stores them in memory + * @store_to_vcpu: If 0, registers are written in-order to the stack, + * otherwise to the VCPU struct pointed to by vcpup + * + * Assumes vcpu pointer in vcpu reg + * + * Clobbers r2 - r12 + */ +.macro read_cp15_state store_to_vcpu + mrc p15, 0, r2, c1, c0, 0 @ SCTLR + mrc p15, 0, r3, c1, c0, 2 @ CPACR + mrc p15, 0, r4, c2, c0, 2 @ TTBCR + mrc p15, 0, r5, c3, c0, 0 @ DACR + mrrc p15, 0, r6, r7, c2 @ TTBR 0 + mrrc p15, 1, r8, r9, c2 @ TTBR 1 + mrc p15, 0, r10, c10, c2, 0 @ PRRR + mrc p15, 0, r11, c10, c2, 1 @ NMRR + mrc p15, 2, r12, c0, c0, 0 @ CSSELR + + .if \store_to_vcpu == 0 + push {r2-r12} @ Push CP15 registers + .else + str r2, [vcpu, #CP15_OFFSET(c1_SCTLR)] + str r3, [vcpu, #CP15_OFFSET(c1_CPACR)] + str r4, [vcpu, #CP15_OFFSET(c2_TTBCR)] + str r5, [vcpu, #CP15_OFFSET(c3_DACR)] + add r2, vcpu, #CP15_OFFSET(c2_TTBR0) + strd r6, r7, [r2] + add r2, vcpu, #CP15_OFFSET(c2_TTBR1) + strd r8, r9, [r2] + str r10, [vcpu, #CP15_OFFSET(c10_PRRR)] + str r11, [vcpu, #CP15_OFFSET(c10_NMRR)] + str r12, [vcpu, #CP15_OFFSET(c0_CSSELR)] + .endif + + mrc p15, 0, r2, c13, c0, 1 @ CID + mrc p15, 0, r3, c13, c0, 2 @ TID_URW + mrc p15, 0, r4, c13, c0, 3 @ TID_URO + mrc p15, 0, r5, c13, c0, 4 @ TID_PRIV + mrc p15, 0, r6, c5, c0, 0 @ DFSR + mrc p15, 0, r7, c5, c0, 1 @ IFSR + mrc p15, 0, r8, c5, c1, 0 @ ADFSR + mrc p15, 0, r9, c5, c1, 1 @ AIFSR + mrc p15, 0, r10, c6, c0, 0 @ DFAR + mrc p15, 0, r11, c6, c0, 2 @ IFAR + mrc p15, 0, r12, c12, c0, 0 @ VBAR + + .if \store_to_vcpu == 0 + push {r2-r12} @ Push CP15 registers + .else + str r2, [vcpu, #CP15_OFFSET(c13_CID)] + str r3, [vcpu, #CP15_OFFSET(c13_TID_URW)] + str r4, [vcpu, #CP15_OFFSET(c13_TID_URO)] + str r5, [vcpu, #CP15_OFFSET(c13_TID_PRIV)] + str r6, [vcpu, #CP15_OFFSET(c5_DFSR)] + str r7, [vcpu, #CP15_OFFSET(c5_IFSR)] + str r8, [vcpu, #CP15_OFFSET(c5_ADFSR)] + str r9, [vcpu, #CP15_OFFSET(c5_AIFSR)] + str r10, [vcpu, #CP15_OFFSET(c6_DFAR)] + str r11, [vcpu, #CP15_OFFSET(c6_IFAR)] + str r12, [vcpu, #CP15_OFFSET(c12_VBAR)] + .endif +.endm + +/* + * Reads cp15 registers from memory and writes them to hardware + * @read_from_vcpu: If 0, registers are read in-order from the stack, + * otherwise from the VCPU struct pointed to by vcpup + * + * Assumes vcpu pointer in vcpu reg + */ +.macro write_cp15_state read_from_vcpu + .if \read_from_vcpu == 0 + pop {r2-r12} + .else + ldr r2, [vcpu, #CP15_OFFSET(c13_CID)] + ldr r3, [vcpu, #CP15_OFFSET(c13_TID_URW)] + ldr r4, [vcpu, #CP15_OFFSET(c13_TID_URO)] + ldr r5, [vcpu, #CP15_OFFSET(c13_TID_PRIV)] + ldr r6, [vcpu, #CP15_OFFSET(c5_DFSR)] + ldr r7, [vcpu, #CP15_OFFSET(c5_IFSR)] + ldr r8, [vcpu, #CP15_OFFSET(c5_ADFSR)] + ldr r9, [vcpu, #CP15_OFFSET(c5_AIFSR)] + ldr r10, [vcpu, #CP15_OFFSET(c6_DFAR)] + ldr r11, [vcpu, #CP15_OFFSET(c6_IFAR)] + ldr r12, [vcpu, #CP15_OFFSET(c12_VBAR)] + .endif + + mcr p15, 0, r2, c13, c0, 1 @ CID + mcr p15, 0, r3, c13, c0, 2 @ TID_URW + mcr p15, 0, r4, c13, c0, 3 @ TID_URO + mcr p15, 0, r5, c13, c0, 4 @ TID_PRIV + mcr p15, 0, r6, c5, c0, 0 @ DFSR + mcr p15, 0, r7, c5, c0, 1 @ IFSR + mcr p15, 0, r8, c5, c1, 0 @ ADFSR + mcr p15, 0, r9, c5, c1, 1 @ AIFSR + mcr p15, 0, r10, c6, c0, 0 @ DFAR + mcr p15, 0, r11, c6, c0, 2 @ IFAR + mcr p15, 0, r12, c12, c0, 0 @ VBAR + + .if \read_from_vcpu == 0 + pop {r2-r12} + .else + ldr r2, [vcpu, #CP15_OFFSET(c1_SCTLR)] + ldr r3, [vcpu, #CP15_OFFSET(c1_CPACR)] + ldr r4, [vcpu, #CP15_OFFSET(c2_TTBCR)] + ldr r5, [vcpu, #CP15_OFFSET(c3_DACR)] + add r12, vcpu, #CP15_OFFSET(c2_TTBR0) + ldrd r6, r7, [r12] + add r12, vcpu, #CP15_OFFSET(c2_TTBR1) + ldrd r8, r9, [r12] + ldr r10, [vcpu, #CP15_OFFSET(c10_PRRR)] + ldr r11, [vcpu, #CP15_OFFSET(c10_NMRR)] + ldr r12, [vcpu, #CP15_OFFSET(c0_CSSELR)] + .endif + + mcr p15, 0, r2, c1, c0, 0 @ SCTLR + mcr p15, 0, r3, c1, c0, 2 @ CPACR + mcr p15, 0, r4, c2, c0, 2 @ TTBCR + mcr p15, 0, r5, c3, c0, 0 @ DACR + mcrr p15, 0, r6, r7, c2 @ TTBR 0 + mcrr p15, 1, r8, r9, c2 @ TTBR 1 + mcr p15, 0, r10, c10, c2, 0 @ PRRR + mcr p15, 0, r11, c10, c2, 1 @ NMRR + mcr p15, 2, r12, c0, c0, 0 @ CSSELR +.endm + +/* + * Save the VGIC CPU state into memory + * + * Assumes vcpu pointer in vcpu reg + */ +.macro save_vgic_state +.endm + +/* + * Restore the VGIC CPU state from memory + * + * Assumes vcpu pointer in vcpu reg + */ +.macro restore_vgic_state +.endm + +.equ vmentry, 0 +.equ vmexit, 1 + +/* Configures the HSTR (Hyp System Trap Register) on entry/return + * (hardware reset value is 0) */ +.macro set_hstr operation + mrc p15, 4, r2, c1, c1, 3 + ldr r3, =HSTR_T(15) + .if \operation == vmentry + orr r2, r2, r3 @ Trap CR{15} + .else + bic r2, r2, r3 @ Don't trap any CRx accesses + .endif + mcr p15, 4, r2, c1, c1, 3 +.endm + +/* Configures the HCPTR (Hyp Coprocessor Trap Register) on entry/return + * (hardware reset value is 0). Keep previous value in r2. */ +.macro set_hcptr operation, mask + mrc p15, 4, r2, c1, c1, 2 + ldr r3, =\mask + .if \operation == vmentry + orr r3, r2, r3 @ Trap coproc-accesses defined in mask + .else + bic r3, r2, r3 @ Don't trap defined coproc-accesses + .endif + mcr p15, 4, r3, c1, c1, 2 +.endm + +/* Configures the HDCR (Hyp Debug Configuration Register) on entry/return + * (hardware reset value is 0) */ +.macro set_hdcr operation + mrc p15, 4, r2, c1, c1, 1 + ldr r3, =(HDCR_TPM|HDCR_TPMCR) + .if \operation == vmentry + orr r2, r2, r3 @ Trap some perfmon accesses + .else + bic r2, r2, r3 @ Don't trap any perfmon accesses + .endif + mcr p15, 4, r2, c1, c1, 1 +.endm + +/* Enable/Disable: stage-2 trans., trap interrupts, trap wfi, trap smc */ +.macro configure_hyp_role operation + mrc p15, 4, r2, c1, c1, 0 @ HCR + bic r2, r2, #HCR_VIRT_EXCP_MASK + ldr r3, =HCR_GUEST_MASK + .if \operation == vmentry + orr r2, r2, r3 + ldr r3, [vcpu, #VCPU_IRQ_LINES] + orr r2, r2, r3 + .else + bic r2, r2, r3 + .endif + mcr p15, 4, r2, c1, c1, 0 +.endm + +.macro load_vcpu + mrc p15, 4, vcpu, c13, c0, 2 @ HTPIDR +.endm |