summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/00-INDEX2
-rw-r--r--Documentation/ABI/testing/procfs-concurrent_time16
-rw-r--r--Documentation/ABI/testing/sysfs-class-dual-role-usb71
-rw-r--r--Documentation/ABI/testing/sysfs-fs-f2fs112
-rw-r--r--Documentation/ABI/testing/sysfs-kernel-wakeup_reasons16
-rw-r--r--Documentation/android.txt121
-rw-r--r--Documentation/arm64/booting.txt20
-rw-r--r--Documentation/arm64/silicon-errata.txt59
-rw-r--r--Documentation/block/00-INDEX6
-rw-r--r--Documentation/block/mmc-max-speed.txt38
-rw-r--r--Documentation/cpu-freq/governors.txt85
-rw-r--r--Documentation/device-mapper/boot.txt42
-rw-r--r--Documentation/device-mapper/verity.txt51
-rw-r--r--Documentation/devicetree/bindings/arm/firmware/linaro,optee-tz.txt31
-rw-r--r--Documentation/devicetree/bindings/display/google,goldfish-fb.txt17
-rw-r--r--Documentation/devicetree/bindings/goldfish/audio.txt17
-rw-r--r--Documentation/devicetree/bindings/goldfish/battery.txt17
-rw-r--r--Documentation/devicetree/bindings/goldfish/events.txt17
-rw-r--r--Documentation/devicetree/bindings/goldfish/tty.txt17
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/google,goldfish-pic.txt30
-rw-r--r--Documentation/devicetree/bindings/misc/memory-state-time.txt8
-rw-r--r--Documentation/devicetree/bindings/misc/ramoops.txt43
-rw-r--r--Documentation/devicetree/bindings/power/mti,mips-cpc.txt8
-rw-r--r--Documentation/devicetree/bindings/rtc/google,goldfish-rtc.txt17
-rw-r--r--Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt360
-rw-r--r--Documentation/devicetree/bindings/vendor-prefixes.txt1
-rw-r--r--Documentation/features/time/irq-time-acct/arch-support.txt2
-rw-r--r--Documentation/features/vm/huge-vmap/arch-support.txt2
-rw-r--r--Documentation/filesystems/f2fs.txt61
-rw-r--r--Documentation/filesystems/proc.txt24
-rw-r--r--Documentation/input/event-codes.txt5
-rw-r--r--Documentation/ioctl/ioctl-number.txt1
-rw-r--r--Documentation/kasan.txt5
-rw-r--r--Documentation/kcov.txt111
-rw-r--r--Documentation/kernel-parameters.txt64
-rw-r--r--Documentation/networking/ip-sysctl.txt23
-rw-r--r--Documentation/ramoops.txt6
-rw-r--r--Documentation/scheduler/sched-energy.txt362
-rw-r--r--Documentation/scheduler/sched-tune.txt366
-rw-r--r--Documentation/sync.txt75
-rw-r--r--Documentation/sysctl/kernel.txt15
-rw-r--r--Documentation/sysctl/vm.txt45
-rw-r--r--Documentation/tee.txt127
-rw-r--r--Documentation/trace/events-power.txt1
-rw-r--r--Documentation/trace/ftrace.txt49
45 files changed, 2542 insertions, 24 deletions
diff --git a/Documentation/00-INDEX b/Documentation/00-INDEX
index cd077ca0e1b8..bd3f803a4e06 100644
--- a/Documentation/00-INDEX
+++ b/Documentation/00-INDEX
@@ -435,6 +435,8 @@ sysrq.txt
- info on the magic SysRq key.
target/
- directory with info on generating TCM v4 fabric .ko modules
+tee.txt
+ - info on the TEE subsystem and drivers
this_cpu_ops.txt
- List rationale behind and the way to use this_cpu operations.
thermal/
diff --git a/Documentation/ABI/testing/procfs-concurrent_time b/Documentation/ABI/testing/procfs-concurrent_time
new file mode 100644
index 000000000000..55b414289b40
--- /dev/null
+++ b/Documentation/ABI/testing/procfs-concurrent_time
@@ -0,0 +1,16 @@
+What: /proc/uid_concurrent_active_time
+Date: December 2018
+Contact: Connor O'Brien <connoro@google.com>
+Description:
+ The /proc/uid_concurrent_active_time file displays aggregated cputime
+ numbers for each uid, broken down by the total number of cores that were
+ active while the uid's task was running.
+
+What: /proc/uid_concurrent_policy_time
+Date: December 2018
+Contact: Connor O'Brien <connoro@google.com>
+Description:
+ The /proc/uid_concurrent_policy_time file displays aggregated cputime
+ numbers for each uid, broken down based on the cpufreq policy
+ of the core used by the uid's task and the number of cores associated
+ with that policy that were active while the uid's task was running.
diff --git a/Documentation/ABI/testing/sysfs-class-dual-role-usb b/Documentation/ABI/testing/sysfs-class-dual-role-usb
new file mode 100644
index 000000000000..a900fd75430c
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-class-dual-role-usb
@@ -0,0 +1,71 @@
+What: /sys/class/dual_role_usb/.../
+Date: June 2015
+Contact: Badhri Jagan Sridharan<badhri@google.com>
+Description:
+ Provide a generic interface to monitor and change
+ the state of dual role usb ports. The name here
+ refers to the name mentioned in the
+ dual_role_phy_desc that is passed while registering
+ the dual_role_phy_intstance through
+ devm_dual_role_instance_register.
+
+What: /sys/class/dual_role_usb/.../supported_modes
+Date: June 2015
+Contact: Badhri Jagan Sridharan<badhri@google.com>
+Description:
+ This is a static node, once initialized this
+ is not expected to change during runtime. "dfp"
+ refers to "downstream facing port" i.e. port can
+ only act as host. "ufp" refers to "upstream
+ facing port" i.e. port can only act as device.
+ "dfp ufp" refers to "dual role port" i.e. the port
+ can either be a host port or a device port.
+
+What: /sys/class/dual_role_usb/.../mode
+Date: June 2015
+Contact: Badhri Jagan Sridharan<badhri@google.com>
+Description:
+ The mode node refers to the current mode in which the
+ port is operating. "dfp" for host ports. "ufp" for device
+ ports and "none" when cable is not connected.
+
+ On devices where the USB mode is software-controllable,
+ userspace can change the mode by writing "dfp" or "ufp".
+ On devices where the USB mode is fixed in hardware,
+ this attribute is read-only.
+
+What: /sys/class/dual_role_usb/.../power_role
+Date: June 2015
+Contact: Badhri Jagan Sridharan<badhri@google.com>
+Description:
+ The power_role node mentions whether the port
+ is "sink"ing or "source"ing power. "none" if
+ they are not connected.
+
+ On devices implementing USB Power Delivery,
+ userspace can control the power role by writing "sink" or
+ "source". On devices without USB-PD, this attribute is
+ read-only.
+
+What: /sys/class/dual_role_usb/.../data_role
+Date: June 2015
+Contact: Badhri Jagan Sridharan<badhri@google.com>
+Description:
+ The data_role node mentions whether the port
+ is acting as "host" or "device" for USB data connection.
+ "none" if there is no active data link.
+
+ On devices implementing USB Power Delivery, userspace
+ can control the data role by writing "host" or "device".
+ On devices without USB-PD, this attribute is read-only
+
+What: /sys/class/dual_role_usb/.../powers_vconn
+Date: June 2015
+Contact: Badhri Jagan Sridharan<badhri@google.com>
+Description:
+ The powers_vconn node mentions whether the port
+ is supplying power for VCONN pin.
+
+ On devices with software control of VCONN,
+ userspace can disable the power supply to VCONN by writing "n",
+ or enable the power supply by writing "y".
diff --git a/Documentation/ABI/testing/sysfs-fs-f2fs b/Documentation/ABI/testing/sysfs-fs-f2fs
index 0345f2d1c727..f82da9bbb1fd 100644
--- a/Documentation/ABI/testing/sysfs-fs-f2fs
+++ b/Documentation/ABI/testing/sysfs-fs-f2fs
@@ -51,12 +51,33 @@ Description:
Controls the dirty page count condition for the in-place-update
policies.
+What: /sys/fs/f2fs/<disk>/min_hot_blocks
+Date: March 2017
+Contact: "Jaegeuk Kim" <jaegeuk@kernel.org>
+Description:
+ Controls the dirty page count condition for redefining hot data.
+
+What: /sys/fs/f2fs/<disk>/min_ssr_sections
+Date: October 2017
+Contact: "Chao Yu" <yuchao0@huawei.com>
+Description:
+ Controls the fee section threshold to trigger SSR allocation.
+
What: /sys/fs/f2fs/<disk>/max_small_discards
Date: November 2013
Contact: "Jaegeuk Kim" <jaegeuk.kim@samsung.com>
Description:
Controls the issue rate of small discard commands.
+What: /sys/fs/f2fs/<disk>/discard_granularity
+Date: July 2017
+Contact: "Chao Yu" <yuchao0@huawei.com>
+Description:
+ Controls discard granularity of inner discard thread, inner thread
+ will not issue discards with size that is smaller than granularity.
+ The unit size is one block, now only support configuring in range
+ of [1, 512].
+
What: /sys/fs/f2fs/<disk>/max_victim_search
Date: January 2014
Contact: "Jaegeuk Kim" <jaegeuk.kim@samsung.com>
@@ -80,6 +101,7 @@ Date: February 2015
Contact: "Jaegeuk Kim" <jaegeuk@kernel.org>
Description:
Controls the trimming rate in batch mode.
+ <deprecated>
What: /sys/fs/f2fs/<disk>/cp_interval
Date: October 2015
@@ -87,8 +109,98 @@ Contact: "Jaegeuk Kim" <jaegeuk@kernel.org>
Description:
Controls the checkpoint timing.
+What: /sys/fs/f2fs/<disk>/idle_interval
+Date: January 2016
+Contact: "Jaegeuk Kim" <jaegeuk@kernel.org>
+Description:
+ Controls the idle timing.
+
+What: /sys/fs/f2fs/<disk>/iostat_enable
+Date: August 2017
+Contact: "Chao Yu" <yuchao0@huawei.com>
+Description:
+ Controls to enable/disable IO stat.
+
What: /sys/fs/f2fs/<disk>/ra_nid_pages
Date: October 2015
Contact: "Chao Yu" <chao2.yu@samsung.com>
Description:
Controls the count of nid pages to be readaheaded.
+
+What: /sys/fs/f2fs/<disk>/dirty_nats_ratio
+Date: January 2016
+Contact: "Chao Yu" <chao2.yu@samsung.com>
+Description:
+ Controls dirty nat entries ratio threshold, if current
+ ratio exceeds configured threshold, checkpoint will
+ be triggered for flushing dirty nat entries.
+
+What: /sys/fs/f2fs/<disk>/lifetime_write_kbytes
+Date: January 2016
+Contact: "Shuoran Liu" <liushuoran@huawei.com>
+Description:
+ Shows total written kbytes issued to disk.
+
+What: /sys/fs/f2fs/<disk>/feature
+Date: July 2017
+Contact: "Jaegeuk Kim" <jaegeuk@kernel.org>
+Description:
+ Shows all enabled features in current device.
+
+What: /sys/fs/f2fs/<disk>/inject_rate
+Date: May 2016
+Contact: "Sheng Yong" <shengyong1@huawei.com>
+Description:
+ Controls the injection rate.
+
+What: /sys/fs/f2fs/<disk>/inject_type
+Date: May 2016
+Contact: "Sheng Yong" <shengyong1@huawei.com>
+Description:
+ Controls the injection type.
+
+What: /sys/fs/f2fs/<disk>/reserved_blocks
+Date: June 2017
+Contact: "Chao Yu" <yuchao0@huawei.com>
+Description:
+ Controls target reserved blocks in system, the threshold
+ is soft, it could exceed current available user space.
+
+What: /sys/fs/f2fs/<disk>/current_reserved_blocks
+Date: October 2017
+Contact: "Yunlong Song" <yunlong.song@huawei.com>
+Contact: "Chao Yu" <yuchao0@huawei.com>
+Description:
+ Shows current reserved blocks in system, it may be temporarily
+ smaller than target_reserved_blocks, but will gradually
+ increase to target_reserved_blocks when more free blocks are
+ freed by user later.
+
+What: /sys/fs/f2fs/<disk>/gc_urgent
+Date: August 2017
+Contact: "Jaegeuk Kim" <jaegeuk@kernel.org>
+Description:
+ Do background GC agressively
+
+What: /sys/fs/f2fs/<disk>/gc_urgent_sleep_time
+Date: August 2017
+Contact: "Jaegeuk Kim" <jaegeuk@kernel.org>
+Description:
+ Controls sleep time of GC urgent mode
+
+What: /sys/fs/f2fs/<disk>/readdir_ra
+Date: November 2017
+Contact: "Sheng Yong" <shengyong1@huawei.com>
+Description:
+ Controls readahead inode block in readdir.
+
+What: /sys/fs/f2fs/<disk>/extension_list
+Date: Feburary 2018
+Contact: "Chao Yu" <yuchao0@huawei.com>
+Description:
+ Used to control configure extension list:
+ - Query: cat /sys/fs/f2fs/<disk>/extension_list
+ - Add: echo '[h/c]extension' > /sys/fs/f2fs/<disk>/extension_list
+ - Del: echo '[h/c]!extension' > /sys/fs/f2fs/<disk>/extension_list
+ - [h] means add/del hot file extension
+ - [c] means add/del cold file extension
diff --git a/Documentation/ABI/testing/sysfs-kernel-wakeup_reasons b/Documentation/ABI/testing/sysfs-kernel-wakeup_reasons
new file mode 100644
index 000000000000..acb19b91c192
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-kernel-wakeup_reasons
@@ -0,0 +1,16 @@
+What: /sys/kernel/wakeup_reasons/last_resume_reason
+Date: February 2014
+Contact: Ruchi Kandoi <kandoiruchi@google.com>
+Description:
+ The /sys/kernel/wakeup_reasons/last_resume_reason is
+ used to report wakeup reasons after system exited suspend.
+
+What: /sys/kernel/wakeup_reasons/last_suspend_time
+Date: March 2015
+Contact: jinqian <jinqian@google.com>
+Description:
+ The /sys/kernel/wakeup_reasons/last_suspend_time is
+ used to report time spent in last suspend cycle. It contains
+ two numbers (in seconds) separated by space. First number is
+ the time spent in suspend and resume processes. Second number
+ is the time spent in sleep state. \ No newline at end of file
diff --git a/Documentation/android.txt b/Documentation/android.txt
new file mode 100644
index 000000000000..0f40a78b045f
--- /dev/null
+++ b/Documentation/android.txt
@@ -0,0 +1,121 @@
+ =============
+ A N D R O I D
+ =============
+
+Copyright (C) 2009 Google, Inc.
+Written by Mike Chan <mike@android.com>
+
+CONTENTS:
+---------
+
+1. Android
+ 1.1 Required enabled config options
+ 1.2 Required disabled config options
+ 1.3 Recommended enabled config options
+2. Contact
+
+
+1. Android
+==========
+
+Android (www.android.com) is an open source operating system for mobile devices.
+This document describes configurations needed to run the Android framework on
+top of the Linux kernel.
+
+To see a working defconfig look at msm_defconfig or goldfish_defconfig
+which can be found at http://android.git.kernel.org in kernel/common.git
+and kernel/msm.git
+
+
+1.1 Required enabled config options
+-----------------------------------
+After building a standard defconfig, ensure that these options are enabled in
+your .config or defconfig if they are not already. Based off the msm_defconfig.
+You should keep the rest of the default options enabled in the defconfig
+unless you know what you are doing.
+
+ANDROID_PARANOID_NETWORK
+ASHMEM
+CONFIG_FB_MODE_HELPERS
+CONFIG_FONT_8x16
+CONFIG_FONT_8x8
+CONFIG_YAFFS_SHORT_NAMES_IN_RAM
+DAB
+EARLYSUSPEND
+FB
+FB_CFB_COPYAREA
+FB_CFB_FILLRECT
+FB_CFB_IMAGEBLIT
+FB_DEFERRED_IO
+FB_TILEBLITTING
+HIGH_RES_TIMERS
+INOTIFY
+INOTIFY_USER
+INPUT_EVDEV
+INPUT_GPIO
+INPUT_MISC
+LEDS_CLASS
+LEDS_GPIO
+LOCK_KERNEL
+LkOGGER
+LOW_MEMORY_KILLER
+MISC_DEVICES
+NEW_LEDS
+NO_HZ
+POWER_SUPPLY
+PREEMPT
+RAMFS
+RTC_CLASS
+RTC_LIB
+SWITCH
+SWITCH_GPIO
+TMPFS
+UID_STAT
+UID16
+USB_FUNCTION
+USB_FUNCTION_ADB
+USER_WAKELOCK
+VIDEO_OUTPUT_CONTROL
+WAKELOCK
+YAFFS_AUTO_YAFFS2
+YAFFS_FS
+YAFFS_YAFFS1
+YAFFS_YAFFS2
+
+
+1.2 Required disabled config options
+------------------------------------
+CONFIG_YAFFS_DISABLE_LAZY_LOAD
+DNOTIFY
+
+
+1.3 Recommended enabled config options
+------------------------------
+ANDROID_PMEM
+PSTORE_CONSOLE
+PSTORE_RAM
+SCHEDSTATS
+DEBUG_PREEMPT
+DEBUG_MUTEXES
+DEBUG_SPINLOCK_SLEEP
+DEBUG_INFO
+FRAME_POINTER
+CPU_FREQ
+CPU_FREQ_TABLE
+CPU_FREQ_DEFAULT_GOV_ONDEMAND
+CPU_FREQ_GOV_ONDEMAND
+CRC_CCITT
+EMBEDDED
+INPUT_TOUCHSCREEN
+I2C
+I2C_BOARDINFO
+LOG_BUF_SHIFT=17
+SERIAL_CORE
+SERIAL_CORE_CONSOLE
+
+
+2. Contact
+==========
+website: http://android.git.kernel.org
+
+mailing-lists: android-kernel@googlegroups.com
diff --git a/Documentation/arm64/booting.txt b/Documentation/arm64/booting.txt
index 701d39d3171a..56d6d8b796db 100644
--- a/Documentation/arm64/booting.txt
+++ b/Documentation/arm64/booting.txt
@@ -109,7 +109,13 @@ Header notes:
1 - 4K
2 - 16K
3 - 64K
- Bits 3-63: Reserved.
+ Bit 3: Kernel physical placement
+ 0 - 2MB aligned base should be as close as possible
+ to the base of DRAM, since memory below it is not
+ accessible via the linear mapping
+ 1 - 2MB aligned base may be anywhere in physical
+ memory
+ Bits 4-63: Reserved.
- When image_size is zero, a bootloader should attempt to keep as much
memory as possible free for use by the kernel immediately after the
@@ -117,14 +123,14 @@ Header notes:
depending on selected features, and is effectively unbound.
The Image must be placed text_offset bytes from a 2MB aligned base
-address near the start of usable system RAM and called there. Memory
-below that base address is currently unusable by Linux, and therefore it
-is strongly recommended that this location is the start of system RAM.
-The region between the 2 MB aligned base address and the start of the
-image has no special significance to the kernel, and may be used for
-other purposes.
+address anywhere in usable system RAM and called there. The region
+between the 2 MB aligned base address and the start of the image has no
+special significance to the kernel, and may be used for other purposes.
At least image_size bytes from the start of the image must be free for
use by the kernel.
+NOTE: versions prior to v4.6 cannot make use of memory below the
+physical offset of the Image so it is recommended that the Image be
+placed as close as possible to the start of system RAM.
Any memory described to the kernel (even that below the start of the
image) which is not marked as reserved from the kernel (e.g., with a
diff --git a/Documentation/arm64/silicon-errata.txt b/Documentation/arm64/silicon-errata.txt
new file mode 100644
index 000000000000..ba4b6acfc545
--- /dev/null
+++ b/Documentation/arm64/silicon-errata.txt
@@ -0,0 +1,59 @@
+ Silicon Errata and Software Workarounds
+ =======================================
+
+Author: Will Deacon <will.deacon@arm.com>
+Date : 27 November 2015
+
+It is an unfortunate fact of life that hardware is often produced with
+so-called "errata", which can cause it to deviate from the architecture
+under specific circumstances. For hardware produced by ARM, these
+errata are broadly classified into the following categories:
+
+ Category A: A critical error without a viable workaround.
+ Category B: A significant or critical error with an acceptable
+ workaround.
+ Category C: A minor error that is not expected to occur under normal
+ operation.
+
+For more information, consult one of the "Software Developers Errata
+Notice" documents available on infocenter.arm.com (registration
+required).
+
+As far as Linux is concerned, Category B errata may require some special
+treatment in the operating system. For example, avoiding a particular
+sequence of code, or configuring the processor in a particular way. A
+less common situation may require similar actions in order to declassify
+a Category A erratum into a Category C erratum. These are collectively
+known as "software workarounds" and are only required in the minority of
+cases (e.g. those cases that both require a non-secure workaround *and*
+can be triggered by Linux).
+
+For software workarounds that may adversely impact systems unaffected by
+the erratum in question, a Kconfig entry is added under "Kernel
+Features" -> "ARM errata workarounds via the alternatives framework".
+These are enabled by default and patched in at runtime when an affected
+CPU is detected. For less-intrusive workarounds, a Kconfig option is not
+available and the code is structured (preferably with a comment) in such
+a way that the erratum will not be hit.
+
+This approach can make it slightly onerous to determine exactly which
+errata are worked around in an arbitrary kernel source tree, so this
+file acts as a registry of software workarounds in the Linux Kernel and
+will be updated when new workarounds are committed and backported to
+stable kernels.
+
+| Implementor | Component | Erratum ID | Kconfig |
++----------------+-----------------+-----------------+-------------------------+
+| ARM | Cortex-A53 | #826319 | ARM64_ERRATUM_826319 |
+| ARM | Cortex-A53 | #827319 | ARM64_ERRATUM_827319 |
+| ARM | Cortex-A53 | #824069 | ARM64_ERRATUM_824069 |
+| ARM | Cortex-A53 | #819472 | ARM64_ERRATUM_819472 |
+| ARM | Cortex-A53 | #845719 | ARM64_ERRATUM_845719 |
+| ARM | Cortex-A53 | #843419 | ARM64_ERRATUM_843419 |
+| ARM | Cortex-A57 | #832075 | ARM64_ERRATUM_832075 |
+| ARM | Cortex-A57 | #852523 | N/A |
+| ARM | Cortex-A57 | #834220 | ARM64_ERRATUM_834220 |
+| | | | |
+| Cavium | ThunderX ITS | #22375, #24313 | CAVIUM_ERRATUM_22375 |
+| Cavium | ThunderX GICv3 | #23154 | CAVIUM_ERRATUM_23154 |
+| Cavium | ThunderX Core | #27456 | CAVIUM_ERRATUM_27456 |
diff --git a/Documentation/block/00-INDEX b/Documentation/block/00-INDEX
index e840b47613f7..bc5148757edb 100644
--- a/Documentation/block/00-INDEX
+++ b/Documentation/block/00-INDEX
@@ -26,3 +26,9 @@ switching-sched.txt
- Switching I/O schedulers at runtime
writeback_cache_control.txt
- Control of volatile write back caches
+mmc-max-speed.txt
+ - eMMC layer speed simulation, related to /sys/block/mmcblk*/
+ attributes:
+ max_read_speed
+ max_write_speed
+ cache_size
diff --git a/Documentation/block/mmc-max-speed.txt b/Documentation/block/mmc-max-speed.txt
new file mode 100644
index 000000000000..3f052b9fb999
--- /dev/null
+++ b/Documentation/block/mmc-max-speed.txt
@@ -0,0 +1,38 @@
+eMMC Block layer simulation speed controls in /sys/block/mmcblk*/
+===============================================
+
+Turned on with CONFIG_MMC_SIMULATE_MAX_SPEED which enables MMC device speed
+limiting. Used to test and simulate the behavior of the system when
+confronted with a slow MMC.
+
+Enables max_read_speed, max_write_speed and cache_size attributes and module
+default parameters to control the write or read maximum KB/second speed
+behaviors.
+
+NB: There is room for improving the algorithm for aspects tied directly to
+eMMC specific behavior. For instance, wear leveling and stalls from an
+exhausted erase pool. We would expect that if there was a need to provide
+similar speed simulation controls to other types of block devices, aspects of
+their behavior are modelled separately (e.g. head seek times, heat assist,
+shingling and rotational latency).
+
+/sys/block/mmcblk0/max_read_speed:
+
+Number of KB/second reads allowed to the block device. Used to test and
+simulate the behavior of the system when confronted with a slow reading MMC.
+Set to 0 or "off" to place no speed limit.
+
+/sys/block/mmcblk0/max_write_speed:
+
+Number of KB/second writes allowed to the block device. Used to test and
+simulate the behavior of the system when confronted with a slow writing MMC.
+Set to 0 or "off" to place no speed limit.
+
+/sys/block/mmcblk0/cache_size:
+
+Number of MB of high speed memory or high speed SLC cache expected on the
+eMMC device being simulated. Used to help simulate the write-back behavior
+more accurately. The assumption is the cache has no delay, but draws down
+in the background to the MLC/TLC primary store at the max_write_speed rate.
+Any write speed delays will show up when the cache is full, or when an I/O
+request to flush is issued.
diff --git a/Documentation/cpu-freq/governors.txt b/Documentation/cpu-freq/governors.txt
index c15aa75f5227..ac8a37e0c76a 100644
--- a/Documentation/cpu-freq/governors.txt
+++ b/Documentation/cpu-freq/governors.txt
@@ -28,6 +28,7 @@ Contents:
2.3 Userspace
2.4 Ondemand
2.5 Conservative
+2.6 Interactive
3. The Governor Interface in the CPUfreq Core
@@ -218,6 +219,90 @@ a decision on when to decrease the frequency while running in any
speed. Load for frequency increase is still evaluated every
sampling rate.
+2.6 Interactive
+---------------
+
+The CPUfreq governor "interactive" is designed for latency-sensitive,
+interactive workloads. This governor sets the CPU speed depending on
+usage, similar to "ondemand" and "conservative" governors, but with a
+different set of configurable behaviors.
+
+The tuneable values for this governor are:
+
+target_loads: CPU load values used to adjust speed to influence the
+current CPU load toward that value. In general, the lower the target
+load, the more often the governor will raise CPU speeds to bring load
+below the target. The format is a single target load, optionally
+followed by pairs of CPU speeds and CPU loads to target at or above
+those speeds. Colons can be used between the speeds and associated
+target loads for readability. For example:
+
+ 85 1000000:90 1700000:99
+
+targets CPU load 85% below speed 1GHz, 90% at or above 1GHz, until
+1.7GHz and above, at which load 99% is targeted. If speeds are
+specified these must appear in ascending order. Higher target load
+values are typically specified for higher speeds, that is, target load
+values also usually appear in an ascending order. The default is
+target load 90% for all speeds.
+
+min_sample_time: The minimum amount of time to spend at the current
+frequency before ramping down. Default is 80000 uS.
+
+hispeed_freq: An intermediate "hi speed" at which to initially ramp
+when CPU load hits the value specified in go_hispeed_load. If load
+stays high for the amount of time specified in above_hispeed_delay,
+then speed may be bumped higher. Default is the maximum speed
+allowed by the policy at governor initialization time.
+
+go_hispeed_load: The CPU load at which to ramp to hispeed_freq.
+Default is 99%.
+
+above_hispeed_delay: When speed is at or above hispeed_freq, wait for
+this long before raising speed in response to continued high load.
+The format is a single delay value, optionally followed by pairs of
+CPU speeds and the delay to use at or above those speeds. Colons can
+be used between the speeds and associated delays for readability. For
+example:
+
+ 80000 1300000:200000 1500000:40000
+
+uses delay 80000 uS until CPU speed 1.3 GHz, at which speed delay
+200000 uS is used until speed 1.5 GHz, at which speed (and above)
+delay 40000 uS is used. If speeds are specified these must appear in
+ascending order. Default is 20000 uS.
+
+timer_rate: Sample rate for reevaluating CPU load when the CPU is not
+idle. A deferrable timer is used, such that the CPU will not be woken
+from idle to service this timer until something else needs to run.
+(The maximum time to allow deferring this timer when not running at
+minimum speed is configurable via timer_slack.) Default is 20000 uS.
+
+timer_slack: Maximum additional time to defer handling the governor
+sampling timer beyond timer_rate when running at speeds above the
+minimum. For platforms that consume additional power at idle when
+CPUs are running at speeds greater than minimum, this places an upper
+bound on how long the timer will be deferred prior to re-evaluating
+load and dropping speed. For example, if timer_rate is 20000uS and
+timer_slack is 10000uS then timers will be deferred for up to 30msec
+when not at lowest speed. A value of -1 means defer timers
+indefinitely at all speeds. Default is 80000 uS.
+
+boost: If non-zero, immediately boost speed of all CPUs to at least
+hispeed_freq until zero is written to this attribute. If zero, allow
+CPU speeds to drop below hispeed_freq according to load as usual.
+Default is zero.
+
+boostpulse: On each write, immediately boost speed of all CPUs to
+hispeed_freq for at least the period of time specified by
+boostpulse_duration, after which speeds are allowed to drop below
+hispeed_freq according to load as usual.
+
+boostpulse_duration: Length of time to hold CPU speed at hispeed_freq
+on a write to boostpulse, before allowing speed to drop according to
+load as usual. Default is 80000 uS.
+
+
3. The Governor Interface in the CPUfreq Core
=============================================
diff --git a/Documentation/device-mapper/boot.txt b/Documentation/device-mapper/boot.txt
new file mode 100644
index 000000000000..adcaad5e5e32
--- /dev/null
+++ b/Documentation/device-mapper/boot.txt
@@ -0,0 +1,42 @@
+Boot time creation of mapped devices
+===================================
+
+It is possible to configure a device mapper device to act as the root
+device for your system in two ways.
+
+The first is to build an initial ramdisk which boots to a minimal
+userspace which configures the device, then pivot_root(8) in to it.
+
+For simple device mapper configurations, it is possible to boot directly
+using the following kernel command line:
+
+dm="<name> <uuid> <ro>,table line 1,...,table line n"
+
+name = the name to associate with the device
+ after boot, udev, if used, will use that name to label
+ the device node.
+uuid = may be 'none' or the UUID desired for the device.
+ro = may be "ro" or "rw". If "ro", the device and device table will be
+ marked read-only.
+
+Each table line may be as normal when using the dmsetup tool except for
+two variations:
+1. Any use of commas will be interpreted as a newline
+2. Quotation marks cannot be escaped and cannot be used without
+ terminating the dm= argument.
+
+Unless renamed by udev, the device node created will be dm-0 as the
+first minor number for the device-mapper is used during early creation.
+
+Example
+=======
+
+- Booting to a linear array made up of user-mode linux block devices:
+
+ dm="lroot none 0, 0 4096 linear 98:16 0, 4096 4096 linear 98:32 0" \
+ root=/dev/dm-0
+
+Will boot to a rw dm-linear target of 8192 sectors split across two
+block devices identified by their major:minor numbers. After boot, udev
+will rename this target to /dev/mapper/lroot (depending on the rules).
+No uuid was assigned.
diff --git a/Documentation/device-mapper/verity.txt b/Documentation/device-mapper/verity.txt
index e15bc1a0fb98..b3d2e4a42255 100644
--- a/Documentation/device-mapper/verity.txt
+++ b/Documentation/device-mapper/verity.txt
@@ -18,11 +18,11 @@ Construction Parameters
0 is the original format used in the Chromium OS.
The salt is appended when hashing, digests are stored continuously and
- the rest of the block is padded with zeros.
+ the rest of the block is padded with zeroes.
1 is the current format that should be used for new devices.
The salt is prepended when hashing and each digest is
- padded with zeros to the power of two.
+ padded with zeroes to the power of two.
<dev>
This is the device containing data, the integrity of which needs to be
@@ -79,6 +79,48 @@ restart_on_corruption
not compatible with ignore_corruption and requires user space support to
avoid restart loops.
+ignore_zero_blocks
+ Do not verify blocks that are expected to contain zeroes and always return
+ zeroes instead. This may be useful if the partition contains unused blocks
+ that are not guaranteed to contain zeroes.
+
+use_fec_from_device <fec_dev>
+ Use forward error correction (FEC) to recover from corruption if hash
+ verification fails. Use encoding data from the specified device. This
+ may be the same device where data and hash blocks reside, in which case
+ fec_start must be outside data and hash areas.
+
+ If the encoding data covers additional metadata, it must be accessible
+ on the hash device after the hash blocks.
+
+ Note: block sizes for data and hash devices must match. Also, if the
+ verity <dev> is encrypted the <fec_dev> should be too.
+
+fec_roots <num>
+ Number of generator roots. This equals to the number of parity bytes in
+ the encoding data. For example, in RS(M, N) encoding, the number of roots
+ is M-N.
+
+fec_blocks <num>
+ The number of encoding data blocks on the FEC device. The block size for
+ the FEC device is <data_block_size>.
+
+fec_start <offset>
+ This is the offset, in <data_block_size> blocks, from the start of the
+ FEC device to the beginning of the encoding data.
+
+check_at_most_once
+ Verify data blocks only the first time they are read from the data device,
+ rather than every time. This reduces the overhead of dm-verity so that it
+ can be used on systems that are memory and/or CPU constrained. However, it
+ provides a reduced level of security because only offline tampering of the
+ data device's content will be detected, not online tampering.
+
+ Hash blocks are still verified each time they are read from the hash device,
+ since verification of hash blocks is less performance critical than data
+ blocks, and a hash block will not be verified any more after all the data
+ blocks it covers have been verified anyway.
+
Theory of operation
===================
@@ -98,6 +140,11 @@ per-block basis. This allows for a lightweight hash computation on first read
into the page cache. Block hashes are stored linearly, aligned to the nearest
block size.
+If forward error correction (FEC) support is enabled any recovery of
+corrupted data will be verified using the cryptographic hash of the
+corresponding data. This is why combining error correction with
+integrity checking is essential.
+
Hash Tree
---------
diff --git a/Documentation/devicetree/bindings/arm/firmware/linaro,optee-tz.txt b/Documentation/devicetree/bindings/arm/firmware/linaro,optee-tz.txt
new file mode 100644
index 000000000000..d38834c67dff
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/firmware/linaro,optee-tz.txt
@@ -0,0 +1,31 @@
+OP-TEE Device Tree Bindings
+
+OP-TEE is a piece of software using hardware features to provide a Trusted
+Execution Environment. The security can be provided with ARM TrustZone, but
+also by virtualization or a separate chip.
+
+We're using "linaro" as the first part of the compatible property for
+the reference implementation maintained by Linaro.
+
+* OP-TEE based on ARM TrustZone required properties:
+
+- compatible : should contain "linaro,optee-tz"
+
+- method : The method of calling the OP-TEE Trusted OS. Permitted
+ values are:
+
+ "smc" : SMC #0, with the register assignments specified
+ in drivers/tee/optee/optee_smc.h
+
+ "hvc" : HVC #0, with the register assignments specified
+ in drivers/tee/optee/optee_smc.h
+
+
+
+Example:
+ firmware {
+ optee {
+ compatible = "linaro,optee-tz";
+ method = "smc";
+ };
+ };
diff --git a/Documentation/devicetree/bindings/display/google,goldfish-fb.txt b/Documentation/devicetree/bindings/display/google,goldfish-fb.txt
new file mode 100644
index 000000000000..751fa9f51e5d
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/google,goldfish-fb.txt
@@ -0,0 +1,17 @@
+Android Goldfish framebuffer
+
+Android Goldfish framebuffer device used by Android emulator.
+
+Required properties:
+
+- compatible : should contain "google,goldfish-fb"
+- reg : <registers mapping>
+- interrupts : <interrupt mapping>
+
+Example:
+
+ display-controller@1f008000 {
+ compatible = "google,goldfish-fb";
+ interrupts = <0x10>;
+ reg = <0x1f008000 0x100>;
+ };
diff --git a/Documentation/devicetree/bindings/goldfish/audio.txt b/Documentation/devicetree/bindings/goldfish/audio.txt
new file mode 100644
index 000000000000..d043fda433ba
--- /dev/null
+++ b/Documentation/devicetree/bindings/goldfish/audio.txt
@@ -0,0 +1,17 @@
+Android Goldfish Audio
+
+Android goldfish audio device generated by android emulator.
+
+Required properties:
+
+- compatible : should contain "google,goldfish-audio" to match emulator
+- reg : <registers mapping>
+- interrupts : <interrupt mapping>
+
+Example:
+
+ goldfish_audio@9030000 {
+ compatible = "google,goldfish-audio";
+ reg = <0x9030000 0x100>;
+ interrupts = <0x4>;
+ };
diff --git a/Documentation/devicetree/bindings/goldfish/battery.txt b/Documentation/devicetree/bindings/goldfish/battery.txt
new file mode 100644
index 000000000000..4fb613933214
--- /dev/null
+++ b/Documentation/devicetree/bindings/goldfish/battery.txt
@@ -0,0 +1,17 @@
+Android Goldfish Battery
+
+Android goldfish battery device generated by android emulator.
+
+Required properties:
+
+- compatible : should contain "google,goldfish-battery" to match emulator
+- reg : <registers mapping>
+- interrupts : <interrupt mapping>
+
+Example:
+
+ goldfish_battery@9020000 {
+ compatible = "google,goldfish-battery";
+ reg = <0x9020000 0x1000>;
+ interrupts = <0x3>;
+ };
diff --git a/Documentation/devicetree/bindings/goldfish/events.txt b/Documentation/devicetree/bindings/goldfish/events.txt
new file mode 100644
index 000000000000..5babf46317a4
--- /dev/null
+++ b/Documentation/devicetree/bindings/goldfish/events.txt
@@ -0,0 +1,17 @@
+Android Goldfish Events Keypad
+
+Android goldfish events keypad device generated by android emulator.
+
+Required properties:
+
+- compatible : should contain "google,goldfish-events-keypad" to match emulator
+- reg : <registers mapping>
+- interrupts : <interrupt mapping>
+
+Example:
+
+ goldfish-events@9040000 {
+ compatible = "google,goldfish-events-keypad";
+ reg = <0x9040000 0x1000>;
+ interrupts = <0x5>;
+ };
diff --git a/Documentation/devicetree/bindings/goldfish/tty.txt b/Documentation/devicetree/bindings/goldfish/tty.txt
new file mode 100644
index 000000000000..82648278da77
--- /dev/null
+++ b/Documentation/devicetree/bindings/goldfish/tty.txt
@@ -0,0 +1,17 @@
+Android Goldfish TTY
+
+Android goldfish tty device generated by android emulator.
+
+Required properties:
+
+- compatible : should contain "google,goldfish-tty" to match emulator
+- reg : <registers mapping>
+- interrupts : <interrupt mapping>
+
+Example:
+
+ goldfish_tty@1f004000 {
+ compatible = "google,goldfish-tty";
+ reg = <0x1f004000 0x1000>;
+ interrupts = <0xc>;
+ };
diff --git a/Documentation/devicetree/bindings/interrupt-controller/google,goldfish-pic.txt b/Documentation/devicetree/bindings/interrupt-controller/google,goldfish-pic.txt
new file mode 100644
index 000000000000..35f752706e7d
--- /dev/null
+++ b/Documentation/devicetree/bindings/interrupt-controller/google,goldfish-pic.txt
@@ -0,0 +1,30 @@
+Android Goldfish PIC
+
+Android Goldfish programmable interrupt device used by Android
+emulator.
+
+Required properties:
+
+- compatible : should contain "google,goldfish-pic"
+- reg : <registers mapping>
+- interrupts : <interrupt mapping>
+
+Example for mips when used in cascade mode:
+
+ cpuintc {
+ #interrupt-cells = <0x1>;
+ #address-cells = <0>;
+ interrupt-controller;
+ compatible = "mti,cpu-interrupt-controller";
+ };
+
+ interrupt-controller@1f000000 {
+ compatible = "google,goldfish-pic";
+ reg = <0x1f000000 0x1000>;
+
+ interrupt-controller;
+ #interrupt-cells = <0x1>;
+
+ interrupt-parent = <&cpuintc>;
+ interrupts = <0x2>;
+ };
diff --git a/Documentation/devicetree/bindings/misc/memory-state-time.txt b/Documentation/devicetree/bindings/misc/memory-state-time.txt
new file mode 100644
index 000000000000..c99a506c030d
--- /dev/null
+++ b/Documentation/devicetree/bindings/misc/memory-state-time.txt
@@ -0,0 +1,8 @@
+Memory bandwidth and frequency state tracking
+
+Required properties:
+- compatible : should be:
+ "memory-state-time"
+- freq-tbl: Should contain entries with each frequency in Hz.
+- bw-buckets: Should contain upper-bound limits for each bandwidth bucket in Mbps.
+ Must match the framework power_profile.xml for the device.
diff --git a/Documentation/devicetree/bindings/misc/ramoops.txt b/Documentation/devicetree/bindings/misc/ramoops.txt
new file mode 100644
index 000000000000..5a475fae4aab
--- /dev/null
+++ b/Documentation/devicetree/bindings/misc/ramoops.txt
@@ -0,0 +1,43 @@
+Ramoops oops/panic logger
+=========================
+
+ramoops provides persistent RAM storage for oops and panics, so they can be
+recovered after a reboot.
+
+Parts of this storage may be set aside for other persistent log buffers, such
+as kernel log messages, or for optional ECC error-correction data. The total
+size of these optional buffers must fit in the reserved region.
+
+Any remaining space will be used for a circular buffer of oops and panic
+records. These records have a configurable size, with a size of 0 indicating
+that they should be disabled.
+
+
+Required properties:
+
+- compatible: must be "ramoops"
+
+- memory-region: phandle to a region of memory that is preserved between reboots
+
+
+Optional properties:
+
+- ecc-size: enables ECC support and specifies ECC buffer size in bytes
+ (defaults to no ECC)
+
+- record-size: maximum size in bytes of each dump done on oops/panic
+ (defaults to 0)
+
+- console-size: size in bytes of log buffer reserved for kernel messages
+ (defaults to 0)
+
+- ftrace-size: size in bytes of log buffer reserved for function tracing and
+ profiling (defaults to 0)
+
+- pmsg-size: size in bytes of log buffer reserved for userspace messages
+ (defaults to 0)
+
+- unbuffered: if present, use unbuffered mappings to map the reserved region
+ (defaults to buffered mappings)
+
+- no-dump-oops: if present, only dump panics (defaults to panics and oops)
diff --git a/Documentation/devicetree/bindings/power/mti,mips-cpc.txt b/Documentation/devicetree/bindings/power/mti,mips-cpc.txt
new file mode 100644
index 000000000000..c6b82511ae8a
--- /dev/null
+++ b/Documentation/devicetree/bindings/power/mti,mips-cpc.txt
@@ -0,0 +1,8 @@
+Binding for MIPS Cluster Power Controller (CPC).
+
+This binding allows a system to specify where the CPC registers are
+located.
+
+Required properties:
+compatible : Should be "mti,mips-cpc".
+regs: Should describe the address & size of the CPC register region.
diff --git a/Documentation/devicetree/bindings/rtc/google,goldfish-rtc.txt b/Documentation/devicetree/bindings/rtc/google,goldfish-rtc.txt
new file mode 100644
index 000000000000..634312dd95ca
--- /dev/null
+++ b/Documentation/devicetree/bindings/rtc/google,goldfish-rtc.txt
@@ -0,0 +1,17 @@
+Android Goldfish RTC
+
+Android Goldfish RTC device used by Android emulator.
+
+Required properties:
+
+- compatible : should contain "google,goldfish-rtc"
+- reg : <registers mapping>
+- interrupts : <interrupt mapping>
+
+Example:
+
+ goldfish_timer@9020000 {
+ compatible = "google,goldfish-rtc";
+ reg = <0x9020000 0x1000>;
+ interrupts = <0x3>;
+ };
diff --git a/Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt b/Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt
new file mode 100644
index 000000000000..11216f09e596
--- /dev/null
+++ b/Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt
@@ -0,0 +1,360 @@
+===========================================================
+Energy cost bindings for Energy Aware Scheduling
+===========================================================
+
+===========================================================
+1 - Introduction
+===========================================================
+
+This note specifies bindings required for energy-aware scheduling
+(EAS)[1]. Historically, the scheduler's primary objective has been
+performance. EAS aims to provide an alternative objective - energy
+efficiency. EAS relies on a simple platform energy cost model to
+guide scheduling decisions. The model only considers the CPU
+subsystem.
+
+This note is aligned with the definition of the layout of physical
+CPUs in the system as described in the ARM topology binding
+description [2]. The concept is applicable to any system so long as
+the cost model data is provided for those processing elements in
+that system's topology that EAS is required to service.
+
+Processing elements refer to hardware threads, CPUs and clusters of
+related CPUs in increasing order of hierarchy.
+
+EAS requires two key cost metrics - busy costs and idle costs. Busy
+costs comprise of a list of compute capacities for the processing
+element in question and the corresponding power consumption at that
+capacity. Idle costs comprise of a list of power consumption values
+for each idle state [C-state] that the processing element supports.
+For a detailed description of these metrics, their derivation and
+their use see [3].
+
+These cost metrics are required for processing elements in all
+scheduling domain levels that EAS is required to service.
+
+===========================================================
+2 - energy-costs node
+===========================================================
+
+Energy costs for the processing elements in scheduling domains that
+EAS is required to service are defined in the energy-costs node
+which acts as a container for the actual per processing element cost
+nodes. A single energy-costs node is required for a given system.
+
+- energy-costs node
+
+ Usage: Required
+
+ Description: The energy-costs node is a container node and
+ it's sub-nodes describe costs for each processing element at
+ all scheduling domain levels that EAS is required to
+ service.
+
+ Node name must be "energy-costs".
+
+ The energy-costs node's parent node must be the cpus node.
+
+ The energy-costs node's child nodes can be:
+
+ - one or more cost nodes.
+
+ Any other configuration is considered invalid.
+
+The energy-costs node can only contain a single type of child node
+whose bindings are described in paragraph 4.
+
+===========================================================
+3 - energy-costs node child nodes naming convention
+===========================================================
+
+energy-costs child nodes must follow a naming convention where the
+node name must be "thread-costN", "core-costN", "cluster-costN"
+depending on whether the costs in the node are for a thread, core or
+cluster. N (where N = {0, 1, ...}) is the node number and has no
+bearing to the OS' logical thread, core or cluster index.
+
+===========================================================
+4 - cost node bindings
+===========================================================
+
+Bindings for cost nodes are defined as follows:
+
+- cluster-cost node
+
+ Description: must be declared within an energy-costs node. A
+ system can contain multiple clusters and each cluster
+ serviced by EAS must have a corresponding cluster-costs
+ node.
+
+ The cluster-cost node name must be "cluster-costN" as
+ described in 3 above.
+
+ A cluster-cost node must be a leaf node with no children.
+
+ Properties for cluster-cost nodes are described in paragraph
+ 5 below.
+
+ Any other configuration is considered invalid.
+
+- core-cost node
+
+ Description: must be declared within an energy-costs node. A
+ system can contain multiple cores and each core serviced by
+ EAS must have a corresponding core-cost node.
+
+ The core-cost node name must be "core-costN" as described in
+ 3 above.
+
+ A core-cost node must be a leaf node with no children.
+
+ Properties for core-cost nodes are described in paragraph
+ 5 below.
+
+ Any other configuration is considered invalid.
+
+- thread-cost node
+
+ Description: must be declared within an energy-costs node. A
+ system can contain cores with multiple hardware threads and
+ each thread serviced by EAS must have a corresponding
+ thread-cost node.
+
+ The core-cost node name must be "core-costN" as described in
+ 3 above.
+
+ A core-cost node must be a leaf node with no children.
+
+ Properties for thread-cost nodes are described in paragraph
+ 5 below.
+
+ Any other configuration is considered invalid.
+
+===========================================================
+5 - Cost node properties
+==========================================================
+
+All cost node types must have only the following properties:
+
+- busy-cost-data
+
+ Usage: required
+ Value type: An array of 2-item tuples. Each item is of type
+ u32.
+ Definition: The first item in the tuple is the capacity
+ value as described in [3]. The second item in the tuple is
+ the energy cost value as described in [3].
+
+- idle-cost-data
+
+ Usage: required
+ Value type: An array of 1-item tuples. The item is of type
+ u32.
+ Definition: The item in the tuple is the energy cost value
+ as described in [3].
+
+===========================================================
+4 - Extensions to the cpu node
+===========================================================
+
+The cpu node is extended with a property that establishes the
+connection between the processing element represented by the cpu
+node and the cost-nodes associated with this processing element.
+
+The connection is expressed in line with the topological hierarchy
+that this processing element belongs to starting with the level in
+the hierarchy that this processing element itself belongs to through
+to the highest level that EAS is required to service. The
+connection cannot be sparse and must be contiguous from the
+processing element's level through to the highest desired level. The
+highest desired level must be the same for all processing elements.
+
+Example: Given that a cpu node may represent a thread that is a part
+of a core, this property may contain multiple elements which
+associate the thread with cost nodes describing the costs for the
+thread itself, the core the thread belongs to, the cluster the core
+belongs to and so on. The elements must be ordered from the lowest
+level nodes to the highest desired level that EAS must service. The
+highest desired level must be the same for all cpu nodes. The
+elements must not be sparse: there must be elements for the current
+thread, the next level of hierarchy (core) and so on without any
+'holes'.
+
+Example: Given that a cpu node may represent a core that is a part
+of a cluster of related cpus this property may contain multiple
+elements which associate the core with cost nodes describing the
+costs for the core itself, the cluster the core belongs to and so
+on. The elements must be ordered from the lowest level nodes to the
+highest desired level that EAS must service. The highest desired
+level must be the same for all cpu nodes. The elements must not be
+sparse: there must be elements for the current thread, the next
+level of hierarchy (core) and so on without any 'holes'.
+
+If the system comprises of hierarchical clusters of clusters, this
+property will contain multiple associations with the relevant number
+of cluster elements in hierarchical order.
+
+Property added to the cpu node:
+
+- sched-energy-costs
+
+ Usage: required
+ Value type: List of phandles
+ Definition: a list of phandles to specific cost nodes in the
+ energy-costs parent node that correspond to the processing
+ element represented by this cpu node in hierarchical order
+ of topology.
+
+ The order of phandles in the list is significant. The first
+ phandle is to the current processing element's own cost
+ node. Subsequent phandles are to higher hierarchical level
+ cost nodes up until the maximum level that EAS is to
+ service.
+
+ All cpu nodes must have the same highest level cost node.
+
+ The phandle list must not be sparsely populated with handles
+ to non-contiguous hierarchical levels. See commentary above
+ for clarity.
+
+ Any other configuration is invalid.
+
+===========================================================
+5 - Example dts
+===========================================================
+
+Example 1 (ARM 64-bit, 6-cpu system, two clusters of cpus, one
+cluster of 2 Cortex-A57 cpus, one cluster of 4 Cortex-A53 cpus):
+
+cpus {
+ #address-cells = <2>;
+ #size-cells = <0>;
+ .
+ .
+ .
+ A57_0: cpu@0 {
+ compatible = "arm,cortex-a57","arm,armv8";
+ reg = <0x0 0x0>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A57_L2>;
+ clocks = <&scpi_dvfs 0>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_0 &CLUSTER_COST_0>;
+ };
+
+ A57_1: cpu@1 {
+ compatible = "arm,cortex-a57","arm,armv8";
+ reg = <0x0 0x1>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A57_L2>;
+ clocks = <&scpi_dvfs 0>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_0 &CLUSTER_COST_0>;
+ };
+
+ A53_0: cpu@100 {
+ compatible = "arm,cortex-a53","arm,armv8";
+ reg = <0x0 0x100>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A53_L2>;
+ clocks = <&scpi_dvfs 1>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+ };
+
+ A53_1: cpu@101 {
+ compatible = "arm,cortex-a53","arm,armv8";
+ reg = <0x0 0x101>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A53_L2>;
+ clocks = <&scpi_dvfs 1>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+ };
+
+ A53_2: cpu@102 {
+ compatible = "arm,cortex-a53","arm,armv8";
+ reg = <0x0 0x102>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A53_L2>;
+ clocks = <&scpi_dvfs 1>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+ };
+
+ A53_3: cpu@103 {
+ compatible = "arm,cortex-a53","arm,armv8";
+ reg = <0x0 0x103>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A53_L2>;
+ clocks = <&scpi_dvfs 1>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+ };
+
+ energy-costs {
+ CPU_COST_0: core-cost0 {
+ busy-cost-data = <
+ 417 168
+ 579 251
+ 744 359
+ 883 479
+ 1024 616
+ >;
+ idle-cost-data = <
+ 15
+ 0
+ >;
+ };
+ CPU_COST_1: core-cost1 {
+ busy-cost-data = <
+ 235 33
+ 302 46
+ 368 61
+ 406 76
+ 447 93
+ >;
+ idle-cost-data = <
+ 6
+ 0
+ >;
+ };
+ CLUSTER_COST_0: cluster-cost0 {
+ busy-cost-data = <
+ 417 24
+ 579 32
+ 744 43
+ 883 49
+ 1024 64
+ >;
+ idle-cost-data = <
+ 65
+ 24
+ >;
+ };
+ CLUSTER_COST_1: cluster-cost1 {
+ busy-cost-data = <
+ 235 26
+ 303 30
+ 368 39
+ 406 47
+ 447 57
+ >;
+ idle-cost-data = <
+ 56
+ 17
+ >;
+ };
+ };
+};
+
+===============================================================================
+[1] https://lkml.org/lkml/2015/5/12/728
+[2] Documentation/devicetree/bindings/topology.txt
+[3] Documentation/scheduler/sched-energy.txt
diff --git a/Documentation/devicetree/bindings/vendor-prefixes.txt b/Documentation/devicetree/bindings/vendor-prefixes.txt
index 98dc17507a84..7004fa94c368 100644
--- a/Documentation/devicetree/bindings/vendor-prefixes.txt
+++ b/Documentation/devicetree/bindings/vendor-prefixes.txt
@@ -128,6 +128,7 @@ lacie LaCie
lantiq Lantiq Semiconductor
lenovo Lenovo Group Ltd.
lg LG Corporation
+linaro Linaro Limited
linux Linux-specific binding
lsi LSI Corp. (LSI Logic)
lltc Linear Technology Corporation
diff --git a/Documentation/features/time/irq-time-acct/arch-support.txt b/Documentation/features/time/irq-time-acct/arch-support.txt
index e63316239938..4199ffecc0ff 100644
--- a/Documentation/features/time/irq-time-acct/arch-support.txt
+++ b/Documentation/features/time/irq-time-acct/arch-support.txt
@@ -9,7 +9,7 @@
| alpha: | .. |
| arc: | TODO |
| arm: | ok |
- | arm64: | .. |
+ | arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
diff --git a/Documentation/features/vm/huge-vmap/arch-support.txt b/Documentation/features/vm/huge-vmap/arch-support.txt
index af6816bccb43..df1d1f3c9af2 100644
--- a/Documentation/features/vm/huge-vmap/arch-support.txt
+++ b/Documentation/features/vm/huge-vmap/arch-support.txt
@@ -9,7 +9,7 @@
| alpha: | TODO |
| arc: | TODO |
| arm: | TODO |
- | arm64: | TODO |
+ | arm64: | ok |
| avr32: | TODO |
| blackfin: | TODO |
| c6x: | TODO |
diff --git a/Documentation/filesystems/f2fs.txt b/Documentation/filesystems/f2fs.txt
index b102b436563e..ecccb51c7279 100644
--- a/Documentation/filesystems/f2fs.txt
+++ b/Documentation/filesystems/f2fs.txt
@@ -102,14 +102,16 @@ background_gc=%s Turn on/off cleaning operations, namely garbage
collection, triggered in background when I/O subsystem is
idle. If background_gc=on, it will turn on the garbage
collection and if background_gc=off, garbage collection
- will be truned off. If background_gc=sync, it will turn
+ will be turned off. If background_gc=sync, it will turn
on synchronous garbage collection running in background.
Default value for this option is on. So garbage
collection is on by default.
disable_roll_forward Disable the roll-forward recovery routine
norecovery Disable the roll-forward recovery routine, mounted read-
only (i.e., -o ro,disable_roll_forward)
-discard Issue discard/TRIM commands when a segment is cleaned.
+discard/nodiscard Enable/disable real-time discard in f2fs, if discard is
+ enabled, f2fs will issue discard/TRIM commands when a
+ segment is cleaned.
no_heap Disable heap-style segment allocation which finds free
segments for data from the beginning of main area, while
for node from the end of main area.
@@ -123,12 +125,14 @@ active_logs=%u Support configuring the number of active logs. In the
disable_ext_identify Disable the extension list configured by mkfs, so f2fs
does not aware of cold files such as media files.
inline_xattr Enable the inline xattrs feature.
+noinline_xattr Disable the inline xattrs feature.
inline_data Enable the inline data feature: New created small(<~3.4k)
files can be written into inode block.
inline_dentry Enable the inline dir feature: data in new created
directory entries can be written into inode block. The
space of inode block which is used to store inline
dentries is limited to ~3.4k.
+noinline_dentry Diable the inline dentry feature.
flush_merge Merge concurrent cache_flush commands as much as possible
to eliminate redundant command issues. If the underlying
device handles the cache_flush command relatively slowly,
@@ -145,10 +149,48 @@ extent_cache Enable an extent cache based on rb-tree, it can cache
as many as extent which map between contiguous logical
address and physical address per inode, resulting in
increasing the cache hit ratio. Set by default.
-noextent_cache Diable an extent cache based on rb-tree explicitly, see
+noextent_cache Disable an extent cache based on rb-tree explicitly, see
the above extent_cache mount option.
noinline_data Disable the inline data feature, inline data feature is
enabled by default.
+data_flush Enable data flushing before checkpoint in order to
+ persist data of regular and symlink.
+mode=%s Control block allocation mode which supports "adaptive"
+ and "lfs". In "lfs" mode, there should be no random
+ writes towards main area.
+io_bits=%u Set the bit size of write IO requests. It should be set
+ with "mode=lfs".
+usrquota Enable plain user disk quota accounting.
+grpquota Enable plain group disk quota accounting.
+prjquota Enable plain project quota accounting.
+usrjquota=<file> Appoint specified file and type during mount, so that quota
+grpjquota=<file> information can be properly updated during recovery flow,
+prjjquota=<file> <quota file>: must be in root directory;
+jqfmt=<quota type> <quota type>: [vfsold,vfsv0,vfsv1].
+offusrjquota Turn off user journelled quota.
+offgrpjquota Turn off group journelled quota.
+offprjjquota Turn off project journelled quota.
+quota Enable plain user disk quota accounting.
+noquota Disable all plain disk quota option.
+whint_mode=%s Control which write hints are passed down to block
+ layer. This supports "off", "user-based", and
+ "fs-based". In "off" mode (default), f2fs does not pass
+ down hints. In "user-based" mode, f2fs tries to pass
+ down hints given by users. And in "fs-based" mode, f2fs
+ passes down hints with its policy.
+alloc_mode=%s Adjust block allocation policy, which supports "reuse"
+ and "default".
+fsync_mode=%s Control the policy of fsync. Currently supports "posix",
+ "strict", and "nobarrier". In "posix" mode, which is
+ default, fsync will follow POSIX semantics and does a
+ light operation to improve the filesystem performance.
+ In "strict" mode, fsync will be heavy and behaves in line
+ with xfs, ext4 and btrfs, where xfstest generic/342 will
+ pass, but the performance will regress. "nobarrier" is
+ based on "posix", but doesn't issue flush command for
+ non-atomic files likewise "nobarrier" mount option.
+test_dummy_encryption Enable dummy encryption, which provides a fake fscrypt
+ context. The fake fscrypt context is used by xfstests.
================================================================================
DEBUGFS ENTRIES
@@ -192,7 +234,16 @@ Files in /sys/fs/f2fs/<devname>
policy for garbage collection. Setting gc_idle = 0
(default) will disable this option. Setting
gc_idle = 1 will select the Cost Benefit approach
- & setting gc_idle = 2 will select the greedy aproach.
+ & setting gc_idle = 2 will select the greedy approach.
+
+ gc_urgent This parameter controls triggering background GCs
+ urgently or not. Setting gc_urgent = 0 [default]
+ makes back to default behavior, while if it is set
+ to 1, background thread starts to do GC by given
+ gc_urgent_sleep_time interval.
+
+ gc_urgent_sleep_time This parameter controls sleep time for gc_urgent.
+ 500 ms is set by default. See above gc_urgent.
reclaim_segments This parameter controls the number of prefree
segments to be reclaimed. If the number of prefree
@@ -298,7 +349,7 @@ The dump.f2fs shows the information of specific inode and dumps SSA and SIT to
file. Each file is dump_ssa and dump_sit.
The dump.f2fs is used to debug on-disk data structures of the f2fs filesystem.
-It shows on-disk inode information reconized by a given inode number, and is
+It shows on-disk inode information recognized by a given inode number, and is
able to dump all the SSA and SIT entries into predefined files, ./dump_ssa and
./dump_sit respectively.
diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt
index 5b87946a53a3..9b8aad3eb3b8 100644
--- a/Documentation/filesystems/proc.txt
+++ b/Documentation/filesystems/proc.txt
@@ -43,6 +43,7 @@ Table of Contents
3.7 /proc/<pid>/task/<tid>/children - Information about task children
3.8 /proc/<pid>/fdinfo/<fd> - Information about opened file
3.9 /proc/<pid>/map_files - Information about memory mapped files
+ 3.10 /proc/<pid>/timerslack_ns - Task timerslack value
4 Configuring procfs
4.1 Mount options
@@ -380,6 +381,8 @@ is not associated with a file:
[stack] = the stack of the main process
[vdso] = the "virtual dynamic shared object",
the kernel system call handler
+ [anon:<name>] = an anonymous mapping that has been
+ named by userspace
or if empty, the mapping is anonymous.
@@ -406,6 +409,7 @@ KernelPageSize: 4 kB
MMUPageSize: 4 kB
Locked: 0 kB
VmFlags: rd ex mr mw me dw
+Name: name from userspace
the first of these lines shows the same information as is displayed for the
mapping in /proc/PID/maps. The remaining lines show the size of the mapping
@@ -470,6 +474,9 @@ be vanished or the reverse -- new added. Interpretation of their meaning
might change in future as well. So each consumer of these flags has to
follow each specific kernel version for the exact semantic.
+The "Name" field will only be present on a mapping that has been named by
+userspace, and will show the name passed in by userspace.
+
This file is only present if the CONFIG_MMU kernel configuration option is
enabled.
@@ -1823,6 +1830,23 @@ time one can open(2) mappings from the listings of two processes and
comparing their inode numbers to figure out which anonymous memory areas
are actually shared.
+3.10 /proc/<pid>/timerslack_ns - Task timerslack value
+---------------------------------------------------------
+This file provides the value of the task's timerslack value in nanoseconds.
+This value specifies a amount of time that normal timers may be deferred
+in order to coalesce timers and avoid unnecessary wakeups.
+
+This allows a task's interactivity vs power consumption trade off to be
+adjusted.
+
+Writing 0 to the file will set the tasks timerslack to the default value.
+
+Valid values are from 0 - ULLONG_MAX
+
+An application setting the value must have PTRACE_MODE_ATTACH_FSCREDS level
+permissions on the task specified to change its timerslack_ns value.
+
+
------------------------------------------------------------------------------
Configuring procfs
------------------------------------------------------------------------------
diff --git a/Documentation/input/event-codes.txt b/Documentation/input/event-codes.txt
index 3f0f5ce3338b..a65b3bf50389 100644
--- a/Documentation/input/event-codes.txt
+++ b/Documentation/input/event-codes.txt
@@ -297,7 +297,10 @@ them as any other INPUT_PROP_BUTTONPAD device.
INPUT_PROP_ACCELEROMETER
-------------------------
Directional axes on this device (absolute and/or relative x, y, z) represent
-accelerometer data. All other axes retain their meaning. A device must not mix
+accelerometer data. Some devices also report gyroscope data, which devices
+can report through the rotational axes (absolute and/or relative rx, ry, rz).
+
+All other axes retain their meaning. A device must not mix
regular directional axes and accelerometer axes on the same event node.
Guidelines:
diff --git a/Documentation/ioctl/ioctl-number.txt b/Documentation/ioctl/ioctl-number.txt
index 91261a32a573..b5ce7b6c3576 100644
--- a/Documentation/ioctl/ioctl-number.txt
+++ b/Documentation/ioctl/ioctl-number.txt
@@ -307,6 +307,7 @@ Code Seq#(hex) Include File Comments
0xA3 80-8F Port ACL in development:
<mailto:tlewis@mindspring.com>
0xA3 90-9F linux/dtlk.h
+0xA4 00-1F uapi/linux/tee.h Generic TEE subsystem
0xAA 00-3F linux/uapi/linux/userfaultfd.h
0xAB 00-1F linux/nbd.h
0xAC 00-1F linux/raw.h
diff --git a/Documentation/kasan.txt b/Documentation/kasan.txt
index aa1e0c91e368..7dd95b35cd7c 100644
--- a/Documentation/kasan.txt
+++ b/Documentation/kasan.txt
@@ -12,8 +12,7 @@ KASAN uses compile-time instrumentation for checking every memory access,
therefore you will need a GCC version 4.9.2 or later. GCC 5.0 or later is
required for detection of out-of-bounds accesses to stack or global variables.
-Currently KASAN is supported only for x86_64 architecture and requires the
-kernel to be built with the SLUB allocator.
+Currently KASAN is supported only for x86_64 architecture.
1. Usage
========
@@ -27,7 +26,7 @@ inline are compiler instrumentation types. The former produces smaller binary
the latter is 1.1 - 2 times faster. Inline instrumentation requires a GCC
version 5.0 or later.
-Currently KASAN works only with the SLUB memory allocator.
+KASAN works with both SLUB and SLAB memory allocators.
For better bug detection and nicer reporting, enable CONFIG_STACKTRACE.
To disable instrumentation for specific files or directories, add a line
diff --git a/Documentation/kcov.txt b/Documentation/kcov.txt
new file mode 100644
index 000000000000..779ff4ab1c1d
--- /dev/null
+++ b/Documentation/kcov.txt
@@ -0,0 +1,111 @@
+kcov: code coverage for fuzzing
+===============================
+
+kcov exposes kernel code coverage information in a form suitable for coverage-
+guided fuzzing (randomized testing). Coverage data of a running kernel is
+exported via the "kcov" debugfs file. Coverage collection is enabled on a task
+basis, and thus it can capture precise coverage of a single system call.
+
+Note that kcov does not aim to collect as much coverage as possible. It aims
+to collect more or less stable coverage that is function of syscall inputs.
+To achieve this goal it does not collect coverage in soft/hard interrupts
+and instrumentation of some inherently non-deterministic parts of kernel is
+disbled (e.g. scheduler, locking).
+
+Usage:
+======
+
+Configure kernel with:
+
+ CONFIG_KCOV=y
+
+CONFIG_KCOV requires gcc built on revision 231296 or later.
+Profiling data will only become accessible once debugfs has been mounted:
+
+ mount -t debugfs none /sys/kernel/debug
+
+The following program demonstrates kcov usage from within a test program:
+
+#include <stdio.h>
+#include <stddef.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <sys/ioctl.h>
+#include <sys/mman.h>
+#include <unistd.h>
+#include <fcntl.h>
+
+#define KCOV_INIT_TRACE _IOR('c', 1, unsigned long)
+#define KCOV_ENABLE _IO('c', 100)
+#define KCOV_DISABLE _IO('c', 101)
+#define COVER_SIZE (64<<10)
+
+int main(int argc, char **argv)
+{
+ int fd;
+ unsigned long *cover, n, i;
+
+ /* A single fd descriptor allows coverage collection on a single
+ * thread.
+ */
+ fd = open("/sys/kernel/debug/kcov", O_RDWR);
+ if (fd == -1)
+ perror("open"), exit(1);
+ /* Setup trace mode and trace size. */
+ if (ioctl(fd, KCOV_INIT_TRACE, COVER_SIZE))
+ perror("ioctl"), exit(1);
+ /* Mmap buffer shared between kernel- and user-space. */
+ cover = (unsigned long*)mmap(NULL, COVER_SIZE * sizeof(unsigned long),
+ PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
+ if ((void*)cover == MAP_FAILED)
+ perror("mmap"), exit(1);
+ /* Enable coverage collection on the current thread. */
+ if (ioctl(fd, KCOV_ENABLE, 0))
+ perror("ioctl"), exit(1);
+ /* Reset coverage from the tail of the ioctl() call. */
+ __atomic_store_n(&cover[0], 0, __ATOMIC_RELAXED);
+ /* That's the target syscal call. */
+ read(-1, NULL, 0);
+ /* Read number of PCs collected. */
+ n = __atomic_load_n(&cover[0], __ATOMIC_RELAXED);
+ for (i = 0; i < n; i++)
+ printf("0x%lx\n", cover[i + 1]);
+ /* Disable coverage collection for the current thread. After this call
+ * coverage can be enabled for a different thread.
+ */
+ if (ioctl(fd, KCOV_DISABLE, 0))
+ perror("ioctl"), exit(1);
+ /* Free resources. */
+ if (munmap(cover, COVER_SIZE * sizeof(unsigned long)))
+ perror("munmap"), exit(1);
+ if (close(fd))
+ perror("close"), exit(1);
+ return 0;
+}
+
+After piping through addr2line output of the program looks as follows:
+
+SyS_read
+fs/read_write.c:562
+__fdget_pos
+fs/file.c:774
+__fget_light
+fs/file.c:746
+__fget_light
+fs/file.c:750
+__fget_light
+fs/file.c:760
+__fdget_pos
+fs/file.c:784
+SyS_read
+fs/read_write.c:562
+
+If a program needs to collect coverage from several threads (independently),
+it needs to open /sys/kernel/debug/kcov in each thread separately.
+
+The interface is fine-grained to allow efficient forking of test processes.
+That is, a parent process opens /sys/kernel/debug/kcov, enables trace mode,
+mmaps coverage buffer and then forks child processes in a loop. Child processes
+only need to enable coverage (disable happens automatically on thread end).
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index a8ceef14e781..772a4882e477 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -56,6 +56,7 @@ parameter is applicable:
BLACKFIN Blackfin architecture is enabled.
CLK Common clock infrastructure is enabled.
CMA Contiguous Memory Area support is enabled.
+ DM Device mapper support is enabled.
DRM Direct Rendering Management support is enabled.
DYNAMIC_DEBUG Build in debug messages and enable them at runtime
EDD BIOS Enhanced Disk Drive Services (EDD) is enabled
@@ -915,6 +916,11 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
dis_ucode_ldr [X86] Disable the microcode loader.
+ dm= [DM] Allows early creation of a device-mapper device.
+ See Documentation/device-mapper/boot.txt.
+
+ dmasound= [HW,OSS] Sound subsystem buff
+
dma_debug=off If the kernel is compiled with DMA_API_DEBUG support,
this option disables the debugging code at boot.
@@ -1442,6 +1448,41 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
In such case C2/C3 won't be used again.
idle=nomwait: Disable mwait for CPU C-states
+ ieee754= [MIPS] Select IEEE Std 754 conformance mode
+ Format: { strict | legacy | 2008 | relaxed }
+ Default: strict
+
+ Choose which programs will be accepted for execution
+ based on the IEEE 754 NaN encoding(s) supported by
+ the FPU and the NaN encoding requested with the value
+ of an ELF file header flag individually set by each
+ binary. Hardware implementations are permitted to
+ support either or both of the legacy and the 2008 NaN
+ encoding mode.
+
+ Available settings are as follows:
+ strict accept binaries that request a NaN encoding
+ supported by the FPU
+ legacy only accept legacy-NaN binaries, if supported
+ by the FPU
+ 2008 only accept 2008-NaN binaries, if supported
+ by the FPU
+ relaxed accept any binaries regardless of whether
+ supported by the FPU
+
+ The FPU emulator is always able to support both NaN
+ encodings, so if no FPU hardware is present or it has
+ been disabled with 'nofpu', then the settings of
+ 'legacy' and '2008' strap the emulator accordingly,
+ 'relaxed' straps the emulator for both legacy-NaN and
+ 2008-NaN, whereas 'strict' enables legacy-NaN only on
+ legacy processors and both NaN encodings on MIPS32 or
+ MIPS64 CPUs.
+
+ The setting for ABS.fmt/NEG.fmt instruction execution
+ mode generally follows that for the NaN encoding,
+ except where unsupported by hardware.
+
ignore_loglevel [KNL]
Ignore loglevel setting - this will print /all/
kernel messages to the console. Useful for debugging.
@@ -2487,6 +2528,25 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
noexec=on: enable non-executable mappings (default)
noexec=off: disable non-executable mappings
+ noexec [MIPS]
+ Force indicating stack and heap as non-executable or
+ executable regardless of PT_GNU_STACK entry or CPU XI
+ (execute inhibit) support. Valid valuess are: on, off.
+ noexec=on: force indicating non-executable
+ stack and heap
+ noexec=off: force indicating executable
+ stack and heap
+ If this parameter is omitted, stack and heap will be
+ indicated non-executable or executable as they are
+ actually set up, which depends on PT_GNU_STACK entry
+ and possibly other factors (for instance, CPU XI
+ support).
+ NOTE: Using noexec=on on a system without CPU XI
+ support is not recommended since there is no actual
+ HW support that provide non-executable stack/heap.
+ Use only for debugging purposes and not in a
+ production environment.
+
nosmap [X86]
Disable SMAP (Supervisor Mode Access Prevention)
even if it is supported by processor.
@@ -3517,6 +3577,10 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
ro [KNL] Mount root device read-only on boot
+ rodata= [KNL]
+ on Mark read-only kernel memory as read-only (default).
+ off Leave read-only kernel memory writable for debugging.
+
root= [KNL] Root filesystem
See name_to_dev_t comment in init/do_mounts.c.
diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt
index eac939abe6c4..c66e5fe21178 100644
--- a/Documentation/networking/ip-sysctl.txt
+++ b/Documentation/networking/ip-sysctl.txt
@@ -590,6 +590,16 @@ tcp_fastopen - INTEGER
See include/net/tcp.h and the code for more details.
+tcp_fwmark_accept - BOOLEAN
+ If set, incoming connections to listening sockets that do not have a
+ socket mark will set the mark of the accepting socket to the fwmark of
+ the incoming SYN packet. This will cause all packets on that connection
+ (starting from the first SYNACK) to be sent with that fwmark. The
+ listening socket's mark is unchanged. Listening sockets that already
+ have a fwmark set via setsockopt(SOL_SOCKET, SO_MARK, ...) are
+ unaffected.
+ Default: 0
+
tcp_syn_retries - INTEGER
Number of times initial SYNs for an active TCP connection attempt
will be retransmitted. Should not be higher than 255. Default value
@@ -1411,11 +1421,20 @@ accept_ra_pinfo - BOOLEAN
Functional default: enabled if accept_ra is enabled.
disabled if accept_ra is disabled.
+accept_ra_rt_info_min_plen - INTEGER
+ Minimum prefix length of Route Information in RA.
+
+ Route Information w/ prefix smaller than this variable shall
+ be ignored.
+
+ Functional default: 0 if accept_ra_rtr_pref is enabled.
+ -1 if accept_ra_rtr_pref is disabled.
+
accept_ra_rt_info_max_plen - INTEGER
Maximum prefix length of Route Information in RA.
- Route Information w/ prefix larger than or equal to this
- variable shall be ignored.
+ Route Information w/ prefix larger than this variable shall
+ be ignored.
Functional default: 0 if accept_ra_rtr_pref is enabled.
-1 if accept_ra_rtr_pref is disabled.
diff --git a/Documentation/ramoops.txt b/Documentation/ramoops.txt
index 5d8675615e59..9264bcab4099 100644
--- a/Documentation/ramoops.txt
+++ b/Documentation/ramoops.txt
@@ -45,7 +45,7 @@ corrupt, but usually it is restorable.
2. Setting the parameters
-Setting the ramoops parameters can be done in 2 different manners:
+Setting the ramoops parameters can be done in 3 different manners:
1. Use the module parameters (which have the names of the variables described
as before).
For quick debugging, you can also reserve parts of memory during boot
@@ -54,7 +54,9 @@ Setting the ramoops parameters can be done in 2 different manners:
kernel to use only the first 128 MB of memory, and place ECC-protected ramoops
region at 128 MB boundary:
"mem=128M ramoops.mem_address=0x8000000 ramoops.ecc=1"
- 2. Use a platform device and set the platform data. The parameters can then
+ 2. Use Device Tree bindings, as described in
+ Documentation/device-tree/bindings/misc/ramoops.txt.
+ 3. Use a platform device and set the platform data. The parameters can then
be set through that platform data. An example of doing that is:
#include <linux/pstore_ram.h>
diff --git a/Documentation/scheduler/sched-energy.txt b/Documentation/scheduler/sched-energy.txt
new file mode 100644
index 000000000000..dab2f9088b33
--- /dev/null
+++ b/Documentation/scheduler/sched-energy.txt
@@ -0,0 +1,362 @@
+Energy cost model for energy-aware scheduling (EXPERIMENTAL)
+
+Introduction
+=============
+
+The basic energy model uses platform energy data stored in sched_group_energy
+data structures attached to the sched_groups in the sched_domain hierarchy. The
+energy cost model offers two functions that can be used to guide scheduling
+decisions:
+
+1. static unsigned int sched_group_energy(struct energy_env *eenv)
+2. static int energy_diff(struct energy_env *eenv)
+
+sched_group_energy() estimates the energy consumed by all cpus in a specific
+sched_group including any shared resources owned exclusively by this group of
+cpus. Resources shared with other cpus are excluded (e.g. later level caches).
+
+energy_diff() estimates the total energy impact of a utilization change. That
+is, adding, removing, or migrating utilization (tasks).
+
+Both functions use a struct energy_env to specify the scenario to be evaluated:
+
+ struct energy_env {
+ struct sched_group *sg_top;
+ struct sched_group *sg_cap;
+ int cap_idx;
+ int util_delta;
+ int src_cpu;
+ int dst_cpu;
+ int energy;
+ };
+
+sg_top: sched_group to be evaluated. Not used by energy_diff().
+
+sg_cap: sched_group covering the cpus in the same frequency domain. Set by
+sched_group_energy().
+
+cap_idx: Capacity state to be used for energy calculations. Set by
+find_new_capacity().
+
+util_delta: Amount of utilization to be added, removed, or migrated.
+
+src_cpu: Source cpu from where 'util_delta' utilization is removed. Should be
+-1 if no source (e.g. task wake-up).
+
+dst_cpu: Destination cpu where 'util_delta' utilization is added. Should be -1
+if utilization is removed (e.g. terminating tasks).
+
+energy: Result of sched_group_energy().
+
+The metric used to represent utilization is the actual per-entity running time
+averaged over time using a geometric series. Very similar to the existing
+per-entity load-tracking, but _not_ scaled by task priority and capped by the
+capacity of the cpu. The latter property does mean that utilization may
+underestimate the compute requirements for task on fully/over utilized cpus.
+The greatest potential for energy savings without affecting performance too much
+is scenarios where the system isn't fully utilized. If the system is deemed
+fully utilized load-balancing should be done with task load (includes task
+priority) instead in the interest of fairness and performance.
+
+
+Background and Terminology
+===========================
+
+To make it clear from the start:
+
+energy = [joule] (resource like a battery on powered devices)
+power = energy/time = [joule/second] = [watt]
+
+The goal of energy-aware scheduling is to minimize energy, while still getting
+the job done. That is, we want to maximize:
+
+ performance [inst/s]
+ --------------------
+ power [W]
+
+which is equivalent to minimizing:
+
+ energy [J]
+ -----------
+ instruction
+
+while still getting 'good' performance. It is essentially an alternative
+optimization objective to the current performance-only objective for the
+scheduler. This alternative considers two objectives: energy-efficiency and
+performance. Hence, there needs to be a user controllable knob to switch the
+objective. Since it is early days, this is currently a sched_feature
+(ENERGY_AWARE).
+
+The idea behind introducing an energy cost model is to allow the scheduler to
+evaluate the implications of its decisions rather than applying energy-saving
+techniques blindly that may only have positive effects on some platforms. At
+the same time, the energy cost model must be as simple as possible to minimize
+the scheduler latency impact.
+
+Platform topology
+------------------
+
+The system topology (cpus, caches, and NUMA information, not peripherals) is
+represented in the scheduler by the sched_domain hierarchy which has
+sched_groups attached at each level that covers one or more cpus (see
+sched-domains.txt for more details). To add energy awareness to the scheduler
+we need to consider power and frequency domains.
+
+Power domain:
+
+A power domain is a part of the system that can be powered on/off
+independently. Power domains are typically organized in a hierarchy where you
+may be able to power down just a cpu or a group of cpus along with any
+associated resources (e.g. shared caches). Powering up a cpu means that all
+power domains it is a part of in the hierarchy must be powered up. Hence, it is
+more expensive to power up the first cpu that belongs to a higher level power
+domain than powering up additional cpus in the same high level domain. Two
+level power domain hierarchy example:
+
+ Power source
+ +-------------------------------+----...
+per group PD G G
+ | +----------+ |
+ +--------+-------| Shared | (other groups)
+per-cpu PD G G | resource |
+ | | +----------+
+ +-------+ +-------+
+ | CPU 0 | | CPU 1 |
+ +-------+ +-------+
+
+Frequency domain:
+
+Frequency domains (P-states) typically cover the same group of cpus as one of
+the power domain levels. That is, there might be several smaller power domains
+sharing the same frequency (P-state) or there might be a power domain spanning
+multiple frequency domains.
+
+From a scheduling point of view there is no need to know the actual frequencies
+[Hz]. All the scheduler cares about is the compute capacity available at the
+current state (P-state) the cpu is in and any other available states. For that
+reason, and to also factor in any cpu micro-architecture differences, compute
+capacity scaling states are called 'capacity states' in this document. For SMP
+systems this is equivalent to P-states. For mixed micro-architecture systems
+(like ARM big.LITTLE) it is P-states scaled according to the micro-architecture
+performance relative to the other cpus in the system.
+
+Energy modelling:
+------------------
+
+Due to the hierarchical nature of the power domains, the most obvious way to
+model energy costs is therefore to associate power and energy costs with
+domains (groups of cpus). Energy costs of shared resources are associated with
+the group of cpus that share the resources, only the cost of powering the
+cpu itself and any private resources (e.g. private L1 caches) is associated
+with the per-cpu groups (lowest level).
+
+For example, for an SMP system with per-cpu power domains and a cluster level
+(group of cpus) power domain we get the overall energy costs to be:
+
+ energy = energy_cluster + n * energy_cpu
+
+where 'n' is the number of cpus powered up and energy_cluster is the cost paid
+as soon as any cpu in the cluster is powered up.
+
+The power and frequency domains can naturally be mapped onto the existing
+sched_domain hierarchy and sched_groups by adding the necessary data to the
+existing data structures.
+
+The energy model considers energy consumption from two contributors (shown in
+the illustration below):
+
+1. Busy energy: Energy consumed while a cpu and the higher level groups that it
+belongs to are busy running tasks. Busy energy is associated with the state of
+the cpu, not an event. The time the cpu spends in this state varies. Thus, the
+most obvious platform parameter for this contribution is busy power
+(energy/time).
+
+2. Idle energy: Energy consumed while a cpu and higher level groups that it
+belongs to are idle (in a C-state). Like busy energy, idle energy is associated
+with the state of the cpu. Thus, the platform parameter for this contribution
+is idle power (energy/time).
+
+Energy consumed during transitions from an idle-state (C-state) to a busy state
+(P-state) or going the other way is ignored by the model to simplify the energy
+model calculations.
+
+
+ Power
+ ^
+ | busy->idle idle->busy
+ | transition transition
+ |
+ | _ __
+ | / \ / \__________________
+ |______________/ \ /
+ | \ /
+ | Busy \ Idle / Busy
+ | low P-state \____________/ high P-state
+ |
+ +------------------------------------------------------------> time
+
+Busy |--------------| |-----------------|
+
+Wakeup |------| |------|
+
+Idle |------------|
+
+
+The basic algorithm
+====================
+
+The basic idea is to determine the total energy impact when utilization is
+added or removed by estimating the impact at each level in the sched_domain
+hierarchy starting from the bottom (sched_group contains just a single cpu).
+The energy cost comes from busy time (sched_group is awake because one or more
+cpus are busy) and idle time (in an idle-state). Energy model numbers account
+for energy costs associated with all cpus in the sched_group as a group.
+
+ for_each_domain(cpu, sd) {
+ sg = sched_group_of(cpu)
+ energy_before = curr_util(sg) * busy_power(sg)
+ + (1-curr_util(sg)) * idle_power(sg)
+ energy_after = new_util(sg) * busy_power(sg)
+ + (1-new_util(sg)) * idle_power(sg)
+ energy_diff += energy_before - energy_after
+
+ }
+
+ return energy_diff
+
+{curr, new}_util: The cpu utilization at the lowest level and the overall
+non-idle time for the entire group for higher levels. Utilization is in the
+range 0.0 to 1.0 in the pseudo-code.
+
+busy_power: The power consumption of the sched_group.
+
+idle_power: The power consumption of the sched_group when idle.
+
+Note: It is a fundamental assumption that the utilization is (roughly) scale
+invariant. Task utilization tracking factors in any frequency scaling and
+performance scaling differences due to difference cpu microarchitectures such
+that task utilization can be used across the entire system.
+
+
+Platform energy data
+=====================
+
+struct sched_group_energy can be attached to sched_groups in the sched_domain
+hierarchy and has the following members:
+
+cap_states:
+ List of struct capacity_state representing the supported capacity states
+ (P-states). struct capacity_state has two members: cap and power, which
+ represents the compute capacity and the busy_power of the state. The
+ list must be ordered by capacity low->high.
+
+nr_cap_states:
+ Number of capacity states in cap_states list.
+
+idle_states:
+ List of struct idle_state containing idle_state power cost for each
+ idle-state supported by the system orderd by shallowest state first.
+ All states must be included at all level in the hierarchy, i.e. a
+ sched_group spanning just a single cpu must also include coupled
+ idle-states (cluster states). In addition to the cpuidle idle-states,
+ the list must also contain an entry for the idling using the arch
+ default idle (arch_idle_cpu()). Despite this state may not be a true
+ hardware idle-state it is considered the shallowest idle-state in the
+ energy model and must be the first entry. cpus may enter this state
+ (possibly 'active idling') if cpuidle decides not enter a cpuidle
+ idle-state. Default idle may not be used when cpuidle is enabled.
+ In this case, it should just be a copy of the first cpuidle idle-state.
+
+nr_idle_states:
+ Number of idle states in idle_states list.
+
+There are no unit requirements for the energy cost data. Data can be normalized
+with any reference, however, the normalization must be consistent across all
+energy cost data. That is, one bogo-joule/watt must be the same quantity for
+data, but we don't care what it is.
+
+A recipe for platform characterization
+=======================================
+
+Obtaining the actual model data for a particular platform requires some way of
+measuring power/energy. There isn't a tool to help with this (yet). This
+section provides a recipe for use as reference. It covers the steps used to
+characterize the ARM TC2 development platform. This sort of measurements is
+expected to be done anyway when tuning cpuidle and cpufreq for a given
+platform.
+
+The energy model needs two types of data (struct sched_group_energy holds
+these) for each sched_group where energy costs should be taken into account:
+
+1. Capacity state information
+
+A list containing the compute capacity and power consumption when fully
+utilized attributed to the group as a whole for each available capacity state.
+At the lowest level (group contains just a single cpu) this is the power of the
+cpu alone without including power consumed by resources shared with other cpus.
+It basically needs to fit the basic modelling approach described in "Background
+and Terminology" section:
+
+ energy_system = energy_shared + n * energy_cpu
+
+for a system containing 'n' busy cpus. Only 'energy_cpu' should be included at
+the lowest level. 'energy_shared' is included at the next level which
+represents the group of cpus among which the resources are shared.
+
+This model is, of course, a simplification of reality. Thus, power/energy
+attributions might not always exactly represent how the hardware is designed.
+Also, busy power is likely to depend on the workload. It is therefore
+recommended to use a representative mix of workloads when characterizing the
+capacity states.
+
+If the group has no capacity scaling support, the list will contain a single
+state where power is the busy power attributed to the group. The capacity
+should be set to a default value (1024).
+
+When frequency domains include multiple power domains, the group representing
+the frequency domain and all child groups share capacity states. This must be
+indicated by setting the SD_SHARE_CAP_STATES sched_domain flag. All groups at
+all levels that share the capacity state must have the list of capacity states
+with the power set to the contribution of the individual group.
+
+2. Idle power information
+
+Stored in the idle_states list. The power number is the group idle power
+consumption in each idle state as well when the group is idle but has not
+entered an idle-state ('active idle' as mentioned earlier). Due to the way the
+energy model is defined, the idle power of the deepest group idle state can
+alternatively be accounted for in the parent group busy power. In that case the
+group idle state power values are offset such that the idle power of the
+deepest state is zero. It is less intuitive, but it is easier to measure as
+idle power consumed by the group and the busy/idle power of the parent group
+cannot be distinguished without per group measurement points.
+
+Measuring capacity states and idle power:
+
+The capacity states' capacity and power can be estimated by running a benchmark
+workload at each available capacity state. By restricting the benchmark to run
+on subsets of cpus it is possible to extrapolate the power consumption of
+shared resources.
+
+ARM TC2 has two clusters of two and three cpus respectively. Each cluster has a
+shared L2 cache. TC2 has on-chip energy counters per cluster. Running a
+benchmark workload on just one cpu in a cluster means that power is consumed in
+the cluster (higher level group) and a single cpu (lowest level group). Adding
+another benchmark task to another cpu increases the power consumption by the
+amount consumed by the additional cpu. Hence, it is possible to extrapolate the
+cluster busy power.
+
+For platforms that don't have energy counters or equivalent instrumentation
+built-in, it may be possible to use an external DAQ to acquire similar data.
+
+If the benchmark includes some performance score (for example sysbench cpu
+benchmark), this can be used to record the compute capacity.
+
+Measuring idle power requires insight into the idle state implementation on the
+particular platform. Specifically, if the platform has coupled idle-states (or
+package states). To measure non-coupled per-cpu idle-states it is necessary to
+keep one cpu busy to keep any shared resources alive to isolate the idle power
+of the cpu from idle/busy power of the shared resources. The cpu can be tricked
+into different per-cpu idle states by disabling the other states. Based on
+various combinations of measurements with specific cpus busy and disabling
+idle-states it is possible to extrapolate the idle-state power.
diff --git a/Documentation/scheduler/sched-tune.txt b/Documentation/scheduler/sched-tune.txt
new file mode 100644
index 000000000000..9bd2231c01b1
--- /dev/null
+++ b/Documentation/scheduler/sched-tune.txt
@@ -0,0 +1,366 @@
+ Central, scheduler-driven, power-performance control
+ (EXPERIMENTAL)
+
+Abstract
+========
+
+The topic of a single simple power-performance tunable, that is wholly
+scheduler centric, and has well defined and predictable properties has come up
+on several occasions in the past [1,2]. With techniques such as a scheduler
+driven DVFS [3], we now have a good framework for implementing such a tunable.
+This document describes the overall ideas behind its design and implementation.
+
+
+Table of Contents
+=================
+
+1. Motivation
+2. Introduction
+3. Signal Boosting Strategy
+4. OPP selection using boosted CPU utilization
+5. Per task group boosting
+6. Question and Answers
+ - What about "auto" mode?
+ - What about boosting on a congested system?
+ - How CPUs are boosted when we have tasks with multiple boost values?
+7. References
+
+
+1. Motivation
+=============
+
+Sched-DVFS [3] is a new event-driven cpufreq governor which allows the
+scheduler to select the optimal DVFS operating point (OPP) for running a task
+allocated to a CPU. The introduction of sched-DVFS enables running workloads at
+the most energy efficient OPPs.
+
+However, sometimes it may be desired to intentionally boost the performance of
+a workload even if that could imply a reasonable increase in energy
+consumption. For example, in order to reduce the response time of a task, we
+may want to run the task at a higher OPP than the one that is actually required
+by it's CPU bandwidth demand.
+
+This last requirement is especially important if we consider that one of the
+main goals of the sched-DVFS component is to replace all currently available
+CPUFreq policies. Since sched-DVFS is event based, as opposed to the sampling
+driven governors we currently have, it is already more responsive at selecting
+the optimal OPP to run tasks allocated to a CPU. However, just tracking the
+actual task load demand may not be enough from a performance standpoint. For
+example, it is not possible to get behaviors similar to those provided by the
+"performance" and "interactive" CPUFreq governors.
+
+This document describes an implementation of a tunable, stacked on top of the
+sched-DVFS which extends its functionality to support task performance
+boosting.
+
+By "performance boosting" we mean the reduction of the time required to
+complete a task activation, i.e. the time elapsed from a task wakeup to its
+next deactivation (e.g. because it goes back to sleep or it terminates). For
+example, if we consider a simple periodic task which executes the same workload
+for 5[s] every 20[s] while running at a certain OPP, a boosted execution of
+that task must complete each of its activations in less than 5[s].
+
+A previous attempt [5] to introduce such a boosting feature has not been
+successful mainly because of the complexity of the proposed solution. The
+approach described in this document exposes a single simple interface to
+user-space. This single tunable knob allows the tuning of system wide
+scheduler behaviours ranging from energy efficiency at one end through to
+incremental performance boosting at the other end. This first tunable affects
+all tasks. However, a more advanced extension of the concept is also provided
+which uses CGroups to boost the performance of only selected tasks while using
+the energy efficient default for all others.
+
+The rest of this document introduces in more details the proposed solution
+which has been named SchedTune.
+
+
+2. Introduction
+===============
+
+SchedTune exposes a simple user-space interface with a single power-performance
+tunable:
+
+ /proc/sys/kernel/sched_cfs_boost
+
+This permits expressing a boost value as an integer in the range [0..100].
+
+A value of 0 (default) configures the CFS scheduler for maximum energy
+efficiency. This means that sched-DVFS runs the tasks at the minimum OPP
+required to satisfy their workload demand.
+A value of 100 configures scheduler for maximum performance, which translates
+to the selection of the maximum OPP on that CPU.
+
+The range between 0 and 100 can be set to satisfy other scenarios suitably. For
+example to satisfy interactive response or depending on other system events
+(battery level etc).
+
+A CGroup based extension is also provided, which permits further user-space
+defined task classification to tune the scheduler for different goals depending
+on the specific nature of the task, e.g. background vs interactive vs
+low-priority.
+
+The overall design of the SchedTune module is built on top of "Per-Entity Load
+Tracking" (PELT) signals and sched-DVFS by introducing a bias on the Operating
+Performance Point (OPP) selection.
+Each time a task is allocated on a CPU, sched-DVFS has the opportunity to tune
+the operating frequency of that CPU to better match the workload demand. The
+selection of the actual OPP being activated is influenced by the global boost
+value, or the boost value for the task CGroup when in use.
+
+This simple biasing approach leverages existing frameworks, which means minimal
+modifications to the scheduler, and yet it allows to achieve a range of
+different behaviours all from a single simple tunable knob.
+The only new concept introduced is that of signal boosting.
+
+
+3. Signal Boosting Strategy
+===========================
+
+The whole PELT machinery works based on the value of a few load tracking signals
+which basically track the CPU bandwidth requirements for tasks and the capacity
+of CPUs. The basic idea behind the SchedTune knob is to artificially inflate
+some of these load tracking signals to make a task or RQ appears more demanding
+that it actually is.
+
+Which signals have to be inflated depends on the specific "consumer". However,
+independently from the specific (signal, consumer) pair, it is important to
+define a simple and possibly consistent strategy for the concept of boosting a
+signal.
+
+A boosting strategy defines how the "abstract" user-space defined
+sched_cfs_boost value is translated into an internal "margin" value to be added
+to a signal to get its inflated value:
+
+ margin := boosting_strategy(sched_cfs_boost, signal)
+ boosted_signal := signal + margin
+
+Different boosting strategies were identified and analyzed before selecting the
+one found to be most effective.
+
+Signal Proportional Compensation (SPC)
+--------------------------------------
+
+In this boosting strategy the sched_cfs_boost value is used to compute a
+margin which is proportional to the complement of the original signal.
+When a signal has a maximum possible value, its complement is defined as
+the delta from the actual value and its possible maximum.
+
+Since the tunable implementation uses signals which have SCHED_LOAD_SCALE as
+the maximum possible value, the margin becomes:
+
+ margin := sched_cfs_boost * (SCHED_LOAD_SCALE - signal)
+
+Using this boosting strategy:
+- a 100% sched_cfs_boost means that the signal is scaled to the maximum value
+- each value in the range of sched_cfs_boost effectively inflates the signal in
+ question by a quantity which is proportional to the maximum value.
+
+For example, by applying the SPC boosting strategy to the selection of the OPP
+to run a task it is possible to achieve these behaviors:
+
+- 0% boosting: run the task at the minimum OPP required by its workload
+- 100% boosting: run the task at the maximum OPP available for the CPU
+- 50% boosting: run at the half-way OPP between minimum and maximum
+
+Which means that, at 50% boosting, a task will be scheduled to run at half of
+the maximum theoretically achievable performance on the specific target
+platform.
+
+A graphical representation of an SPC boosted signal is represented in the
+following figure where:
+ a) "-" represents the original signal
+ b) "b" represents a 50% boosted signal
+ c) "p" represents a 100% boosted signal
+
+
+ ^
+ | SCHED_LOAD_SCALE
+ +-----------------------------------------------------------------+
+ |pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
+ |
+ | boosted_signal
+ | bbbbbbbbbbbbbbbbbbbbbbbb
+ |
+ | original signal
+ | bbbbbbbbbbbbbbbbbbbbbbbb+----------------------+
+ | |
+ |bbbbbbbbbbbbbbbbbb |
+ | |
+ | |
+ | |
+ | +-----------------------+
+ | |
+ | |
+ | |
+ |------------------+
+ |
+ |
+ +----------------------------------------------------------------------->
+
+The plot above shows a ramped load signal (titled 'original_signal') and it's
+boosted equivalent. For each step of the original signal the boosted signal
+corresponding to a 50% boost is midway from the original signal and the upper
+bound. Boosting by 100% generates a boosted signal which is always saturated to
+the upper bound.
+
+
+4. OPP selection using boosted CPU utilization
+==============================================
+
+It is worth calling out that the implementation does not introduce any new load
+signals. Instead, it provides an API to tune existing signals. This tuning is
+done on demand and only in scheduler code paths where it is sensible to do so.
+The new API calls are defined to return either the default signal or a boosted
+one, depending on the value of sched_cfs_boost. This is a clean an non invasive
+modification of the existing existing code paths.
+
+The signal representing a CPU's utilization is boosted according to the
+previously described SPC boosting strategy. To sched-DVFS, this allows a CPU
+(ie CFS run-queue) to appear more used then it actually is.
+
+Thus, with the sched_cfs_boost enabled we have the following main functions to
+get the current utilization of a CPU:
+
+ cpu_util()
+ boosted_cpu_util()
+
+The new boosted_cpu_util() is similar to the first but returns a boosted
+utilization signal which is a function of the sched_cfs_boost value.
+
+This function is used in the CFS scheduler code paths where sched-DVFS needs to
+decide the OPP to run a CPU at.
+For example, this allows selecting the highest OPP for a CPU which has
+the boost value set to 100%.
+
+
+5. Per task group boosting
+==========================
+
+The availability of a single knob which is used to boost all tasks in the
+system is certainly a simple solution but it quite likely doesn't fit many
+utilization scenarios, especially in the mobile device space.
+
+For example, on battery powered devices there usually are many background
+services which are long running and need energy efficient scheduling. On the
+other hand, some applications are more performance sensitive and require an
+interactive response and/or maximum performance, regardless of the energy cost.
+To better service such scenarios, the SchedTune implementation has an extension
+that provides a more fine grained boosting interface.
+
+A new CGroup controller, namely "schedtune", could be enabled which allows to
+defined and configure task groups with different boosting values.
+Tasks that require special performance can be put into separate CGroups.
+The value of the boost associated with the tasks in this group can be specified
+using a single knob exposed by the CGroup controller:
+
+ schedtune.boost
+
+This knob allows the definition of a boost value that is to be used for
+SPC boosting of all tasks attached to this group.
+
+The current schedtune controller implementation is really simple and has these
+main characteristics:
+
+ 1) It is only possible to create 1 level depth hierarchies
+
+ The root control groups define the system-wide boost value to be applied
+ by default to all tasks. Its direct subgroups are named "boost groups" and
+ they define the boost value for specific set of tasks.
+ Further nested subgroups are not allowed since they do not have a sensible
+ meaning from a user-space standpoint.
+
+ 2) It is possible to define only a limited number of "boost groups"
+
+ This number is defined at compile time and by default configured to 16.
+ This is a design decision motivated by two main reasons:
+ a) In a real system we do not expect utilization scenarios with more then few
+ boost groups. For example, a reasonable collection of groups could be
+ just "background", "interactive" and "performance".
+ b) It simplifies the implementation considerably, especially for the code
+ which has to compute the per CPU boosting once there are multiple
+ RUNNABLE tasks with different boost values.
+
+Such a simple design should allow servicing the main utilization scenarios identified
+so far. It provides a simple interface which can be used to manage the
+power-performance of all tasks or only selected tasks.
+Moreover, this interface can be easily integrated by user-space run-times (e.g.
+Android, ChromeOS) to implement a QoS solution for task boosting based on tasks
+classification, which has been a long standing requirement.
+
+Setup and usage
+---------------
+
+0. Use a kernel with CGROUP_SCHEDTUNE support enabled
+
+1. Check that the "schedtune" CGroup controller is available:
+
+ root@linaro-nano:~# cat /proc/cgroups
+ #subsys_name hierarchy num_cgroups enabled
+ cpuset 0 1 1
+ cpu 0 1 1
+ schedtune 0 1 1
+
+2. Mount a tmpfs to create the CGroups mount point (Optional)
+
+ root@linaro-nano:~# sudo mount -t tmpfs cgroups /sys/fs/cgroup
+
+3. Mount the "schedtune" controller
+
+ root@linaro-nano:~# mkdir /sys/fs/cgroup/stune
+ root@linaro-nano:~# sudo mount -t cgroup -o schedtune stune /sys/fs/cgroup/stune
+
+4. Setup the system-wide boost value (Optional)
+
+ If not configured the root control group has a 0% boost value, which
+ basically disables boosting for all tasks in the system thus running in
+ an energy-efficient mode.
+
+ root@linaro-nano:~# echo $SYSBOOST > /sys/fs/cgroup/stune/schedtune.boost
+
+5. Create task groups and configure their specific boost value (Optional)
+
+ For example here we create a "performance" boost group configure to boost
+ all its tasks to 100%
+
+ root@linaro-nano:~# mkdir /sys/fs/cgroup/stune/performance
+ root@linaro-nano:~# echo 100 > /sys/fs/cgroup/stune/performance/schedtune.boost
+
+6. Move tasks into the boost group
+
+ For example, the following moves the tasks with PID $TASKPID (and all its
+ threads) into the "performance" boost group.
+
+ root@linaro-nano:~# echo "TASKPID > /sys/fs/cgroup/stune/performance/cgroup.procs
+
+This simple configuration allows only the threads of the $TASKPID task to run,
+when needed, at the highest OPP in the most capable CPU of the system.
+
+
+6. Question and Answers
+=======================
+
+What about "auto" mode?
+-----------------------
+
+The 'auto' mode as described in [5] can be implemented by interfacing SchedTune
+with some suitable user-space element. This element could use the exposed
+system-wide or cgroup based interface.
+
+How are multiple groups of tasks with different boost values managed?
+---------------------------------------------------------------------
+
+The current SchedTune implementation keeps track of the boosted RUNNABLE tasks
+on a CPU. Once sched-DVFS selects the OPP to run a CPU at, the CPU utilization
+is boosted with a value which is the maximum of the boost values of the
+currently RUNNABLE tasks in its RQ.
+
+This allows sched-DVFS to boost a CPU only while there are boosted tasks ready
+to run and switch back to the energy efficient mode as soon as the last boosted
+task is dequeued.
+
+
+7. References
+=============
+[1] http://lwn.net/Articles/552889
+[2] http://lkml.org/lkml/2012/5/18/91
+[3] http://lkml.org/lkml/2015/6/26/620
diff --git a/Documentation/sync.txt b/Documentation/sync.txt
new file mode 100644
index 000000000000..a2d05e7fa193
--- /dev/null
+++ b/Documentation/sync.txt
@@ -0,0 +1,75 @@
+Motivation:
+
+In complicated DMA pipelines such as graphics (multimedia, camera, gpu, display)
+a consumer of a buffer needs to know when the producer has finished producing
+it. Likewise the producer needs to know when the consumer is finished with the
+buffer so it can reuse it. A particular buffer may be consumed by multiple
+consumers which will retain the buffer for different amounts of time. In
+addition, a consumer may consume multiple buffers atomically.
+The sync framework adds an API which allows synchronization between the
+producers and consumers in a generic way while also allowing platforms which
+have shared hardware synchronization primitives to exploit them.
+
+Goals:
+ * provide a generic API for expressing synchronization dependencies
+ * allow drivers to exploit hardware synchronization between hardware
+ blocks
+ * provide a userspace API that allows a compositor to manage
+ dependencies.
+ * provide rich telemetry data to allow debugging slowdowns and stalls of
+ the graphics pipeline.
+
+Objects:
+ * sync_timeline
+ * sync_pt
+ * sync_fence
+
+sync_timeline:
+
+A sync_timeline is an abstract monotonically increasing counter. In general,
+each driver/hardware block context will have one of these. They can be backed
+by the appropriate hardware or rely on the generic sw_sync implementation.
+Timelines are only ever created through their specific implementations
+(i.e. sw_sync.)
+
+sync_pt:
+
+A sync_pt is an abstract value which marks a point on a sync_timeline. Sync_pts
+have a single timeline parent. They have 3 states: active, signaled, and error.
+They start in active state and transition, once, to either signaled (when the
+timeline counter advances beyond the sync_pt’s value) or error state.
+
+sync_fence:
+
+Sync_fences are the primary primitives used by drivers to coordinate
+synchronization of their buffers. They are a collection of sync_pts which may
+or may not have the same timeline parent. A sync_pt can only exist in one fence
+and the fence's list of sync_pts is immutable once created. Fences can be
+waited on synchronously or asynchronously. Two fences can also be merged to
+create a third fence containing a copy of the two fences’ sync_pts. Fences are
+backed by file descriptors to allow userspace to coordinate the display pipeline
+dependencies.
+
+Use:
+
+A driver implementing sync support should have a work submission function which:
+ * takes a fence argument specifying when to begin work
+ * asynchronously queues that work to kick off when the fence is signaled
+ * returns a fence to indicate when its work will be done.
+ * signals the returned fence once the work is completed.
+
+Consider an imaginary display driver that has the following API:
+/*
+ * assumes buf is ready to be displayed.
+ * blocks until the buffer is on screen.
+ */
+ void display_buffer(struct dma_buf *buf);
+
+The new API will become:
+/*
+ * will display buf when fence is signaled.
+ * returns immediately with a fence that will signal when buf
+ * is no longer displayed.
+ */
+struct sync_fence* display_buffer(struct dma_buf *buf,
+ struct sync_fence *fence);
diff --git a/Documentation/sysctl/kernel.txt b/Documentation/sysctl/kernel.txt
index be61d53e997f..e7018fc62ffa 100644
--- a/Documentation/sysctl/kernel.txt
+++ b/Documentation/sysctl/kernel.txt
@@ -58,6 +58,8 @@ show up in /proc/sys/kernel:
- panic_on_stackoverflow
- panic_on_unrecovered_nmi
- panic_on_warn
+- perf_cpu_time_max_percent
+- perf_event_paranoid
- pid_max
- powersave-nap [ PPC only ]
- printk
@@ -624,6 +626,19 @@ allowed to execute.
==============================================================
+perf_event_paranoid:
+
+Controls use of the performance events system by unprivileged
+users (without CAP_SYS_ADMIN). The default value is 3 if
+CONFIG_SECURITY_PERF_EVENTS_RESTRICT is set, or 1 otherwise.
+
+ -1: Allow use of (almost) all events by all users
+>=0: Disallow raw tracepoint access by users without CAP_IOC_LOCK
+>=1: Disallow CPU event access by users without CAP_SYS_ADMIN
+>=2: Disallow kernel profiling by users without CAP_SYS_ADMIN
+>=3: Disallow all event access by users without CAP_SYS_ADMIN
+
+==============================================================
pid_max:
diff --git a/Documentation/sysctl/vm.txt b/Documentation/sysctl/vm.txt
index f72370b440b1..c0397afe6a1d 100644
--- a/Documentation/sysctl/vm.txt
+++ b/Documentation/sysctl/vm.txt
@@ -30,6 +30,7 @@ Currently, these files are in /proc/sys/vm:
- dirty_writeback_centisecs
- drop_caches
- extfrag_threshold
+- extra_free_kbytes
- hugepages_treat_as_movable
- hugetlb_shm_group
- laptop_mode
@@ -42,6 +43,8 @@ Currently, these files are in /proc/sys/vm:
- min_slab_ratio
- min_unmapped_ratio
- mmap_min_addr
+- mmap_rnd_bits
+- mmap_rnd_compat_bits
- nr_hugepages
- nr_overcommit_hugepages
- nr_trim_pages (only if CONFIG_MMU=n)
@@ -236,6 +239,21 @@ fragmentation index is <= extfrag_threshold. The default value is 500.
==============================================================
+extra_free_kbytes
+
+This parameter tells the VM to keep extra free memory between the threshold
+where background reclaim (kswapd) kicks in, and the threshold where direct
+reclaim (by allocating processes) kicks in.
+
+This is useful for workloads that require low latency memory allocations
+and have a bounded burstiness in memory allocations, for example a
+realtime application that receives and transmits network traffic
+(causing in-kernel memory allocations) with a maximum total message burst
+size of 200MB may need 200MB of extra free memory to avoid direct reclaim
+related latencies.
+
+==============================================================
+
hugepages_treat_as_movable
This parameter controls whether we can allocate hugepages from ZONE_MOVABLE
@@ -485,6 +503,33 @@ against future potential kernel bugs.
==============================================================
+mmap_rnd_bits:
+
+This value can be used to select the number of bits to use to
+determine the random offset to the base address of vma regions
+resulting from mmap allocations on architectures which support
+tuning address space randomization. This value will be bounded
+by the architecture's minimum and maximum supported values.
+
+This value can be changed after boot using the
+/proc/sys/vm/mmap_rnd_bits tunable
+
+==============================================================
+
+mmap_rnd_compat_bits:
+
+This value can be used to select the number of bits to use to
+determine the random offset to the base address of vma regions
+resulting from mmap allocations for applications run in
+compatibility mode on architectures which support tuning address
+space randomization. This value will be bounded by the
+architecture's minimum and maximum supported values.
+
+This value can be changed after boot using the
+/proc/sys/vm/mmap_rnd_compat_bits tunable
+
+==============================================================
+
nr_hugepages
Change the minimum size of the hugepage pool.
diff --git a/Documentation/tee.txt b/Documentation/tee.txt
new file mode 100644
index 000000000000..56ea85ffebf2
--- /dev/null
+++ b/Documentation/tee.txt
@@ -0,0 +1,127 @@
+=============
+TEE subsystem
+=============
+
+This document describes the TEE subsystem in Linux.
+
+A TEE (Trusted Execution Environment) is a trusted OS running in some
+secure environment, for example, TrustZone on ARM CPUs, or a separate
+secure co-processor etc. A TEE driver handles the details needed to
+communicate with the TEE.
+
+This subsystem deals with:
+
+- Registration of TEE drivers
+
+- Managing shared memory between Linux and the TEE
+
+- Providing a generic API to the TEE
+
+The TEE interface
+=================
+
+include/uapi/linux/tee.h defines the generic interface to a TEE.
+
+User space (the client) connects to the driver by opening /dev/tee[0-9]* or
+/dev/teepriv[0-9]*.
+
+- TEE_IOC_SHM_ALLOC allocates shared memory and returns a file descriptor
+ which user space can mmap. When user space doesn't need the file
+ descriptor any more, it should be closed. When shared memory isn't needed
+ any longer it should be unmapped with munmap() to allow the reuse of
+ memory.
+
+- TEE_IOC_VERSION lets user space know which TEE this driver handles and
+ the its capabilities.
+
+- TEE_IOC_OPEN_SESSION opens a new session to a Trusted Application.
+
+- TEE_IOC_INVOKE invokes a function in a Trusted Application.
+
+- TEE_IOC_CANCEL may cancel an ongoing TEE_IOC_OPEN_SESSION or TEE_IOC_INVOKE.
+
+- TEE_IOC_CLOSE_SESSION closes a session to a Trusted Application.
+
+There are two classes of clients, normal clients and supplicants. The latter is
+a helper process for the TEE to access resources in Linux, for example file
+system access. A normal client opens /dev/tee[0-9]* and a supplicant opens
+/dev/teepriv[0-9].
+
+Much of the communication between clients and the TEE is opaque to the
+driver. The main job for the driver is to receive requests from the
+clients, forward them to the TEE and send back the results. In the case of
+supplicants the communication goes in the other direction, the TEE sends
+requests to the supplicant which then sends back the result.
+
+OP-TEE driver
+=============
+
+The OP-TEE driver handles OP-TEE [1] based TEEs. Currently it is only the ARM
+TrustZone based OP-TEE solution that is supported.
+
+Lowest level of communication with OP-TEE builds on ARM SMC Calling
+Convention (SMCCC) [2], which is the foundation for OP-TEE's SMC interface
+[3] used internally by the driver. Stacked on top of that is OP-TEE Message
+Protocol [4].
+
+OP-TEE SMC interface provides the basic functions required by SMCCC and some
+additional functions specific for OP-TEE. The most interesting functions are:
+
+- OPTEE_SMC_FUNCID_CALLS_UID (part of SMCCC) returns the version information
+ which is then returned by TEE_IOC_VERSION
+
+- OPTEE_SMC_CALL_GET_OS_UUID returns the particular OP-TEE implementation, used
+ to tell, for instance, a TrustZone OP-TEE apart from an OP-TEE running on a
+ separate secure co-processor.
+
+- OPTEE_SMC_CALL_WITH_ARG drives the OP-TEE message protocol
+
+- OPTEE_SMC_GET_SHM_CONFIG lets the driver and OP-TEE agree on which memory
+ range to used for shared memory between Linux and OP-TEE.
+
+The GlobalPlatform TEE Client API [5] is implemented on top of the generic
+TEE API.
+
+Picture of the relationship between the different components in the
+OP-TEE architecture::
+
+ User space Kernel Secure world
+ ~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~
+ +--------+ +-------------+
+ | Client | | Trusted |
+ +--------+ | Application |
+ /\ +-------------+
+ || +----------+ /\
+ || |tee- | ||
+ || |supplicant| \/
+ || +----------+ +-------------+
+ \/ /\ | TEE Internal|
+ +-------+ || | API |
+ + TEE | || +--------+--------+ +-------------+
+ | Client| || | TEE | OP-TEE | | OP-TEE |
+ | API | \/ | subsys | driver | | Trusted OS |
+ +-------+----------------+----+-------+----+-----------+-------------+
+ | Generic TEE API | | OP-TEE MSG |
+ | IOCTL (TEE_IOC_*) | | SMCCC (OPTEE_SMC_CALL_*) |
+ +-----------------------------+ +------------------------------+
+
+RPC (Remote Procedure Call) are requests from secure world to kernel driver
+or tee-supplicant. An RPC is identified by a special range of SMCCC return
+values from OPTEE_SMC_CALL_WITH_ARG. RPC messages which are intended for the
+kernel are handled by the kernel driver. Other RPC messages will be forwarded to
+tee-supplicant without further involvement of the driver, except switching
+shared memory buffer representation.
+
+References
+==========
+
+[1] https://github.com/OP-TEE/optee_os
+
+[2] http://infocenter.arm.com/help/topic/com.arm.doc.den0028a/index.html
+
+[3] drivers/tee/optee/optee_smc.h
+
+[4] drivers/tee/optee/optee_msg.h
+
+[5] http://www.globalplatform.org/specificationsdevice.asp look for
+ "TEE Client API Specification v1.0" and click download.
diff --git a/Documentation/trace/events-power.txt b/Documentation/trace/events-power.txt
index 21d514ced212..4d817d5acc40 100644
--- a/Documentation/trace/events-power.txt
+++ b/Documentation/trace/events-power.txt
@@ -25,6 +25,7 @@ cpufreq.
cpu_idle "state=%lu cpu_id=%lu"
cpu_frequency "state=%lu cpu_id=%lu"
+cpu_frequency_limits "min=%lu max=%lu cpu_id=%lu"
A suspend event is used to indicate the system going in and out of the
suspend mode:
diff --git a/Documentation/trace/ftrace.txt b/Documentation/trace/ftrace.txt
index f52f297cb406..fa16fb2302a5 100644
--- a/Documentation/trace/ftrace.txt
+++ b/Documentation/trace/ftrace.txt
@@ -357,6 +357,26 @@ of ftrace. Here is a list of some of the key files:
to correlate events across hypervisor/guest if
tb_offset is known.
+ mono: This uses the fast monotonic clock (CLOCK_MONOTONIC)
+ which is monotonic and is subject to NTP rate adjustments.
+
+ mono_raw:
+ This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
+ which is montonic but is not subject to any rate adjustments
+ and ticks at the same rate as the hardware clocksource.
+
+ boot: This is the boot clock (CLOCK_BOOTTIME) and is based on the
+ fast monotonic clock, but also accounts for time spent in
+ suspend. Since the clock access is designed for use in
+ tracing in the suspend path, some side effects are possible
+ if clock is accessed after the suspend time is accounted before
+ the fast mono clock is updated. In this case, the clock update
+ appears to happen slightly sooner than it normally would have.
+ Also on 32-bit systems, its possible that the 64-bit boot offset
+ sees a partial update. These effects are rare and post
+ processing should be able to handle them. See comments on
+ ktime_get_boot_fast_ns function for more information.
+
To set a clock, simply echo the clock name into this file.
echo global > trace_clock
@@ -2088,6 +2108,35 @@ will produce:
1) 1.449 us | }
+You can disable the hierarchical function call formatting and instead print a
+flat list of function entry and return events. This uses the format described
+in the Output Formatting section and respects all the trace options that
+control that formatting. Hierarchical formatting is the default.
+
+ hierachical: echo nofuncgraph-flat > trace_options
+ flat: echo funcgraph-flat > trace_options
+
+ ie:
+
+ # tracer: function_graph
+ #
+ # entries-in-buffer/entries-written: 68355/68355 #P:2
+ #
+ # _-----=> irqs-off
+ # / _----=> need-resched
+ # | / _---=> hardirq/softirq
+ # || / _--=> preempt-depth
+ # ||| / delay
+ # TASK-PID CPU# |||| TIMESTAMP FUNCTION
+ # | | | |||| | |
+ sh-1806 [001] d... 198.843443: graph_ent: func=_raw_spin_lock
+ sh-1806 [001] d... 198.843445: graph_ent: func=__raw_spin_lock
+ sh-1806 [001] d..1 198.843447: graph_ret: func=__raw_spin_lock
+ sh-1806 [001] d..1 198.843449: graph_ret: func=_raw_spin_lock
+ sh-1806 [001] d..1 198.843451: graph_ent: func=_raw_spin_unlock_irqrestore
+ sh-1806 [001] d... 198.843453: graph_ret: func=_raw_spin_unlock_irqrestore
+
+
You might find other useful features for this tracer in the
following "dynamic ftrace" section such as tracing only specific
functions or tasks.