diff options
Diffstat (limited to 'Documentation')
24 files changed, 1417 insertions, 1270 deletions
diff --git a/Documentation/block/data-integrity.txt b/Documentation/block/data-integrity.txt index e8ca040ba2cf..2d735b0ae383 100644 --- a/Documentation/block/data-integrity.txt +++ b/Documentation/block/data-integrity.txt @@ -50,7 +50,7 @@ encouraged them to allow separation of the data and integrity metadata scatter-gather lists. The controller will interleave the buffers on write and split them on -read. This means that the Linux can DMA the data buffers to and from +read. This means that Linux can DMA the data buffers to and from host memory without changes to the page cache. Also, the 16-bit CRC checksum mandated by both the SCSI and SATA specs @@ -66,7 +66,7 @@ software RAID5). The IP checksum is weaker than the CRC in terms of detecting bit errors. However, the strength is really in the separation of the data -buffers and the integrity metadata. These two distinct buffers much +buffers and the integrity metadata. These two distinct buffers must match up for an I/O to complete. The separation of the data and integrity metadata buffers as well as diff --git a/Documentation/cgroups/cpusets.txt b/Documentation/cgroups/cpusets.txt index f9ca389dddf4..1d7e9784439a 100644 --- a/Documentation/cgroups/cpusets.txt +++ b/Documentation/cgroups/cpusets.txt @@ -777,6 +777,18 @@ in cpuset directories: # /bin/echo 1-4 > cpus -> set cpus list to cpus 1,2,3,4 # /bin/echo 1,2,3,4 > cpus -> set cpus list to cpus 1,2,3,4 +To add a CPU to a cpuset, write the new list of CPUs including the +CPU to be added. To add 6 to the above cpuset: + +# /bin/echo 1-4,6 > cpus -> set cpus list to cpus 1,2,3,4,6 + +Similarly to remove a CPU from a cpuset, write the new list of CPUs +without the CPU to be removed. + +To remove all the CPUs: + +# /bin/echo "" > cpus -> clear cpus list + 2.3 Setting flags ----------------- diff --git a/Documentation/connector/Makefile b/Documentation/connector/Makefile index 8df1a7285a06..d98e4df98e24 100644 --- a/Documentation/connector/Makefile +++ b/Documentation/connector/Makefile @@ -9,3 +9,8 @@ hostprogs-y := ucon always := $(hostprogs-y) HOSTCFLAGS_ucon.o += -I$(objtree)/usr/include + +all: modules + +modules clean: + $(MAKE) -C ../.. SUBDIRS=$(PWD) $@ diff --git a/Documentation/connector/cn_test.c b/Documentation/connector/cn_test.c index 6a5be5d5c8e4..1711adc33373 100644 --- a/Documentation/connector/cn_test.c +++ b/Documentation/connector/cn_test.c @@ -19,6 +19,8 @@ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ +#define pr_fmt(fmt) "cn_test: " fmt + #include <linux/kernel.h> #include <linux/module.h> #include <linux/moduleparam.h> @@ -27,18 +29,17 @@ #include <linux/connector.h> -static struct cb_id cn_test_id = { 0x123, 0x456 }; +static struct cb_id cn_test_id = { CN_NETLINK_USERS + 3, 0x456 }; static char cn_test_name[] = "cn_test"; static struct sock *nls; static struct timer_list cn_test_timer; -void cn_test_callback(void *data) +static void cn_test_callback(struct cn_msg *msg) { - struct cn_msg *msg = (struct cn_msg *)data; - - printk("%s: %lu: idx=%x, val=%x, seq=%u, ack=%u, len=%d: %s.\n", - __func__, jiffies, msg->id.idx, msg->id.val, - msg->seq, msg->ack, msg->len, (char *)msg->data); + pr_info("%s: %lu: idx=%x, val=%x, seq=%u, ack=%u, len=%d: %s.\n", + __func__, jiffies, msg->id.idx, msg->id.val, + msg->seq, msg->ack, msg->len, + msg->len ? (char *)msg->data : ""); } /* @@ -63,9 +64,7 @@ static int cn_test_want_notify(void) skb = alloc_skb(size, GFP_ATOMIC); if (!skb) { - printk(KERN_ERR "Failed to allocate new skb with size=%u.\n", - size); - + pr_err("failed to allocate new skb with size=%u\n", size); return -ENOMEM; } @@ -114,12 +113,12 @@ static int cn_test_want_notify(void) //netlink_broadcast(nls, skb, 0, ctl->group, GFP_ATOMIC); netlink_unicast(nls, skb, 0, 0); - printk(KERN_INFO "Request was sent. Group=0x%x.\n", ctl->group); + pr_info("request was sent: group=0x%x\n", ctl->group); return 0; nlmsg_failure: - printk(KERN_ERR "Failed to send %u.%u\n", msg->seq, msg->ack); + pr_err("failed to send %u.%u\n", msg->seq, msg->ack); kfree_skb(skb); return -EINVAL; } @@ -131,6 +130,8 @@ static void cn_test_timer_func(unsigned long __data) struct cn_msg *m; char data[32]; + pr_debug("%s: timer fired with data %lu\n", __func__, __data); + m = kzalloc(sizeof(*m) + sizeof(data), GFP_ATOMIC); if (m) { @@ -150,7 +151,7 @@ static void cn_test_timer_func(unsigned long __data) cn_test_timer_counter++; - mod_timer(&cn_test_timer, jiffies + HZ); + mod_timer(&cn_test_timer, jiffies + msecs_to_jiffies(1000)); } static int cn_test_init(void) @@ -168,8 +169,10 @@ static int cn_test_init(void) } setup_timer(&cn_test_timer, cn_test_timer_func, 0); - cn_test_timer.expires = jiffies + HZ; - add_timer(&cn_test_timer); + mod_timer(&cn_test_timer, jiffies + msecs_to_jiffies(1000)); + + pr_info("initialized with id={%u.%u}\n", + cn_test_id.idx, cn_test_id.val); return 0; diff --git a/Documentation/connector/connector.txt b/Documentation/connector/connector.txt index ad6e0ba7b38c..81e6bf6ead57 100644 --- a/Documentation/connector/connector.txt +++ b/Documentation/connector/connector.txt @@ -5,10 +5,10 @@ Kernel Connector. Kernel connector - new netlink based userspace <-> kernel space easy to use communication module. -Connector driver adds possibility to connect various agents using -netlink based network. One must register callback and -identifier. When driver receives special netlink message with -appropriate identifier, appropriate callback will be called. +The Connector driver makes it easy to connect various agents using a +netlink based network. One must register a callback and an identifier. +When the driver receives a special netlink message with the appropriate +identifier, the appropriate callback will be called. From the userspace point of view it's quite straightforward: @@ -17,10 +17,10 @@ From the userspace point of view it's quite straightforward: send(); recv(); -But if kernelspace want to use full power of such connections, driver -writer must create special sockets, must know about struct sk_buff -handling... Connector allows any kernelspace agents to use netlink -based networking for inter-process communication in a significantly +But if kernelspace wants to use the full power of such connections, the +driver writer must create special sockets, must know about struct sk_buff +handling, etc... The Connector driver allows any kernelspace agents to use +netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); @@ -32,15 +32,15 @@ struct cb_id __u32 val; }; -idx and val are unique identifiers which must be registered in -connector.h for in-kernel usage. void (*callback) (void *) - is a -callback function which will be called when message with above idx.val -will be received by connector core. Argument for that function must +idx and val are unique identifiers which must be registered in the +connector.h header for in-kernel usage. void (*callback) (void *) is a +callback function which will be called when a message with above idx.val +is received by the connector core. The argument for that function must be dereferenced to struct cn_msg *. struct cn_msg { - struct cb_id id; + struct cb_id id; __u32 seq; __u32 ack; @@ -55,92 +55,95 @@ Connector interfaces. int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); -Registers new callback with connector core. + Registers new callback with connector core. -struct cb_id *id - unique connector's user identifier. - It must be registered in connector.h for legal in-kernel users. -char *name - connector's callback symbolic name. -void (*callback) (void *) - connector's callback. + struct cb_id *id - unique connector's user identifier. + It must be registered in connector.h for legal in-kernel users. + char *name - connector's callback symbolic name. + void (*callback) (void *) - connector's callback. Argument must be dereferenced to struct cn_msg *. + void cn_del_callback(struct cb_id *id); -Unregisters new callback with connector core. + Unregisters new callback with connector core. + + struct cb_id *id - unique connector's user identifier. -struct cb_id *id - unique connector's user identifier. int cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); -Sends message to the specified groups. It can be safely called from -softirq context, but may silently fail under strong memory pressure. -If there are no listeners for given group -ESRCH can be returned. + Sends message to the specified groups. It can be safely called from + softirq context, but may silently fail under strong memory pressure. + If there are no listeners for given group -ESRCH can be returned. -struct cn_msg * - message header(with attached data). -u32 __group - destination group. + struct cn_msg * - message header(with attached data). + u32 __group - destination group. If __group is zero, then appropriate group will be searched through all registered connector users, and message will be delivered to the group which was created for user with the same ID as in msg. If __group is not zero, then message will be delivered to the specified group. -int gfp_mask - GFP mask. + int gfp_mask - GFP mask. -Note: When registering new callback user, connector core assigns -netlink group to the user which is equal to it's id.idx. + Note: When registering new callback user, connector core assigns + netlink group to the user which is equal to it's id.idx. /*****************************************/ Protocol description. /*****************************************/ -Current offers transport layer with fixed header. Recommended -protocol which uses such header is following: +The current framework offers a transport layer with fixed headers. The +recommended protocol which uses such a header is as following: msg->seq and msg->ack are used to determine message genealogy. When -someone sends message it puts there locally unique sequence and random -acknowledge numbers. Sequence number may be copied into +someone sends a message, they use a locally unique sequence and random +acknowledge number. The sequence number may be copied into nlmsghdr->nlmsg_seq too. -Sequence number is incremented with each message to be sent. +The sequence number is incremented with each message sent. -If we expect reply to our message, then sequence number in received -message MUST be the same as in original message, and acknowledge -number MUST be the same + 1. +If you expect a reply to the message, then the sequence number in the +received message MUST be the same as in the original message, and the +acknowledge number MUST be the same + 1. -If we receive message and it's sequence number is not equal to one we -are expecting, then it is new message. If we receive message and it's -sequence number is the same as one we are expecting, but it's -acknowledge is not equal acknowledge number in original message + 1, -then it is new message. +If we receive a message and its sequence number is not equal to one we +are expecting, then it is a new message. If we receive a message and +its sequence number is the same as one we are expecting, but its +acknowledge is not equal to the acknowledge number in the original +message + 1, then it is a new message. -Obviously, protocol header contains above id. +Obviously, the protocol header contains the above id. -connector allows event notification in the following form: kernel +The connector allows event notification in the following form: kernel driver or userspace process can ask connector to notify it when -selected id's will be turned on or off(registered or unregistered it's -callback). It is done by sending special command to connector -driver(it also registers itself with id={-1, -1}). +selected ids will be turned on or off (registered or unregistered its +callback). It is done by sending a special command to the connector +driver (it also registers itself with id={-1, -1}). -As example of usage Documentation/connector now contains cn_test.c - -testing module which uses connector to request notification and to -send messages. +As example of this usage can be found in the cn_test.c module which +uses the connector to request notification and to send messages. /*****************************************/ Reliability. /*****************************************/ -Netlink itself is not reliable protocol, that means that messages can +Netlink itself is not a reliable protocol. That means that messages can be lost due to memory pressure or process' receiving queue overflowed, -so caller is warned must be prepared. That is why struct cn_msg [main -connector's message header] contains u32 seq and u32 ack fields. +so caller is warned that it must be prepared. That is why the struct +cn_msg [main connector's message header] contains u32 seq and u32 ack +fields. /*****************************************/ Userspace usage. /*****************************************/ + 2.6.14 has a new netlink socket implementation, which by default does not -allow to send data to netlink groups other than 1. -So, if to use netlink socket (for example using connector) -with different group number userspace application must subscribe to -that group. It can be achieved by following pseudocode: +allow people to send data to netlink groups other than 1. +So, if you wish to use a netlink socket (for example using connector) +with a different group number, the userspace application must subscribe to +that group first. It can be achieved by the following pseudocode: s = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_CONNECTOR); @@ -160,8 +163,8 @@ if (bind(s, (struct sockaddr *)&l_local, sizeof(struct sockaddr_nl)) == -1) { } Where 270 above is SOL_NETLINK, and 1 is a NETLINK_ADD_MEMBERSHIP socket -option. To drop multicast subscription one should call above socket option -with NETLINK_DROP_MEMBERSHIP parameter which is defined as 0. +option. To drop a multicast subscription, one should call the above socket +option with the NETLINK_DROP_MEMBERSHIP parameter which is defined as 0. 2.6.14 netlink code only allows to select a group which is less or equal to the maximum group number, which is used at netlink_kernel_create() time. diff --git a/Documentation/connector/ucon.c b/Documentation/connector/ucon.c index c5092ad0ce4b..4848db8c71ff 100644 --- a/Documentation/connector/ucon.c +++ b/Documentation/connector/ucon.c @@ -30,18 +30,24 @@ #include <arpa/inet.h> +#include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <errno.h> #include <time.h> +#include <getopt.h> #include <linux/connector.h> #define DEBUG #define NETLINK_CONNECTOR 11 +/* Hopefully your userspace connector.h matches this kernel */ +#define CN_TEST_IDX CN_NETLINK_USERS + 3 +#define CN_TEST_VAL 0x456 + #ifdef DEBUG #define ulog(f, a...) fprintf(stdout, f, ##a) #else @@ -83,6 +89,25 @@ static int netlink_send(int s, struct cn_msg *msg) return err; } +static void usage(void) +{ + printf( + "Usage: ucon [options] [output file]\n" + "\n" + "\t-h\tthis help screen\n" + "\t-s\tsend buffers to the test module\n" + "\n" + "The default behavior of ucon is to subscribe to the test module\n" + "and wait for state messages. Any ones received are dumped to the\n" + "specified output file (or stdout). The test module is assumed to\n" + "have an id of {%u.%u}\n" + "\n" + "If you get no output, then verify the cn_test module id matches\n" + "the expected id above.\n" + , CN_TEST_IDX, CN_TEST_VAL + ); +} + int main(int argc, char *argv[]) { int s; @@ -94,17 +119,34 @@ int main(int argc, char *argv[]) FILE *out; time_t tm; struct pollfd pfd; + bool send_msgs = false; - if (argc < 2) - out = stdout; - else { - out = fopen(argv[1], "a+"); + while ((s = getopt(argc, argv, "hs")) != -1) { + switch (s) { + case 's': + send_msgs = true; + break; + + case 'h': + usage(); + return 0; + + default: + /* getopt() outputs an error for us */ + usage(); + return 1; + } + } + + if (argc != optind) { + out = fopen(argv[optind], "a+"); if (!out) { ulog("Unable to open %s for writing: %s\n", argv[1], strerror(errno)); out = stdout; } - } + } else + out = stdout; memset(buf, 0, sizeof(buf)); @@ -115,9 +157,11 @@ int main(int argc, char *argv[]) } l_local.nl_family = AF_NETLINK; - l_local.nl_groups = 0x123; /* bitmask of requested groups */ + l_local.nl_groups = -1; /* bitmask of requested groups */ l_local.nl_pid = 0; + ulog("subscribing to %u.%u\n", CN_TEST_IDX, CN_TEST_VAL); + if (bind(s, (struct sockaddr *)&l_local, sizeof(struct sockaddr_nl)) == -1) { perror("bind"); close(s); @@ -130,15 +174,15 @@ int main(int argc, char *argv[]) setsockopt(s, SOL_NETLINK, NETLINK_ADD_MEMBERSHIP, &on, sizeof(on)); } #endif - if (0) { + if (send_msgs) { int i, j; memset(buf, 0, sizeof(buf)); data = (struct cn_msg *)buf; - data->id.idx = 0x123; - data->id.val = 0x456; + data->id.idx = CN_TEST_IDX; + data->id.val = CN_TEST_VAL; data->seq = seq++; data->ack = 0; data->len = 0; diff --git a/Documentation/gcov.txt b/Documentation/gcov.txt index e716aadb3a33..40ec63352760 100644 --- a/Documentation/gcov.txt +++ b/Documentation/gcov.txt @@ -188,13 +188,18 @@ Solution: Exclude affected source files from profiling by specifying GCOV_PROFILE := n or GCOV_PROFILE_basename.o := n in the corresponding Makefile. +Problem: Files copied from sysfs appear empty or incomplete. +Cause: Due to the way seq_file works, some tools such as cp or tar + may not correctly copy files from sysfs. +Solution: Use 'cat' to read .gcda files and 'cp -d' to copy links. + Alternatively use the mechanism shown in Appendix B. + Appendix A: gather_on_build.sh ============================== Sample script to gather coverage meta files on the build machine (see 6a): - #!/bin/bash KSRC=$1 @@ -226,7 +231,7 @@ Appendix B: gather_on_test.sh Sample script to gather coverage data files on the test machine (see 6b): -#!/bin/bash +#!/bin/bash -e DEST=$1 GCDA=/sys/kernel/debug/gcov @@ -236,11 +241,13 @@ if [ -z "$DEST" ] ; then exit 1 fi -find $GCDA -name '*.gcno' -o -name '*.gcda' | tar cfz $DEST -T - +TEMPDIR=$(mktemp -d) +echo Collecting data.. +find $GCDA -type d -exec mkdir -p $TEMPDIR/\{\} \; +find $GCDA -name '*.gcda' -exec sh -c 'cat < $0 > '$TEMPDIR'/$0' {} \; +find $GCDA -name '*.gcno' -exec sh -c 'cp -d $0 '$TEMPDIR'/$0' {} \; +tar czf $DEST -C $TEMPDIR sys +rm -rf $TEMPDIR -if [ $? -eq 0 ] ; then - echo "$DEST successfully created, copy to build system and unpack with:" - echo " tar xfz $DEST" -else - echo "Could not create file $DEST" -fi +echo "$DEST successfully created, copy to build system and unpack with:" +echo " tar xfz $DEST" diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index d08759aa0903..9347f4ad4342 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -1531,6 +1531,11 @@ and is between 256 and 4096 characters. It is defined in the file symbolic names: lapic and ioapic Example: nmi_watchdog=2 or nmi_watchdog=panic,lapic + netpoll.carrier_timeout= + [NET] Specifies amount of time (in seconds) that + netpoll should wait for a carrier. By default netpoll + waits 4 seconds. + no387 [BUGS=X86-32] Tells the kernel to use the 387 maths emulation library even if a 387 maths coprocessor is present. @@ -1915,6 +1920,12 @@ and is between 256 and 4096 characters. It is defined in the file Format: { 0 | 1 } See arch/parisc/kernel/pdc_chassis.c + percpu_alloc= [X86] Select which percpu first chunk allocator to use. + Allowed values are one of "lpage", "embed" and "4k". + See comments in arch/x86/kernel/setup_percpu.c for + details on each allocator. This parameter is primarily + for debugging and performance comparison. + pf. [PARIDE] See Documentation/blockdev/paride.txt. @@ -2467,7 +2478,8 @@ and is between 256 and 4096 characters. It is defined in the file tp720= [HW,PS2] - trace_buf_size=nn[KMG] [ftrace] will set tracing buffer size. + trace_buf_size=nn[KMG] + [FTRACE] will set tracing buffer size. trix= [HW,OSS] MediaTrix AudioTrix Pro Format: diff --git a/Documentation/kmemleak.txt b/Documentation/kmemleak.txt index 0112da3b9ab8..89068030b01b 100644 --- a/Documentation/kmemleak.txt +++ b/Documentation/kmemleak.txt @@ -16,13 +16,17 @@ Usage ----- CONFIG_DEBUG_KMEMLEAK in "Kernel hacking" has to be enabled. A kernel -thread scans the memory every 10 minutes (by default) and prints any new -unreferenced objects found. To trigger an intermediate scan and display -all the possible memory leaks: +thread scans the memory every 10 minutes (by default) and prints the +number of new unreferenced objects found. To display the details of all +the possible memory leaks: # mount -t debugfs nodev /sys/kernel/debug/ # cat /sys/kernel/debug/kmemleak +To trigger an intermediate memory scan: + + # echo scan > /sys/kernel/debug/kmemleak + Note that the orphan objects are listed in the order they were allocated and one object at the beginning of the list may cause other subsequent objects to be reported as orphan. @@ -31,16 +35,21 @@ Memory scanning parameters can be modified at run-time by writing to the /sys/kernel/debug/kmemleak file. The following parameters are supported: off - disable kmemleak (irreversible) - stack=on - enable the task stacks scanning + stack=on - enable the task stacks scanning (default) stack=off - disable the tasks stacks scanning - scan=on - start the automatic memory scanning thread + scan=on - start the automatic memory scanning thread (default) scan=off - stop the automatic memory scanning thread - scan=<secs> - set the automatic memory scanning period in seconds (0 - to disable it) + scan=<secs> - set the automatic memory scanning period in seconds + (default 600, 0 to stop the automatic scanning) + scan - trigger a memory scan Kmemleak can also be disabled at boot-time by passing "kmemleak=off" on the kernel command line. +Memory may be allocated or freed before kmemleak is initialised and +these actions are stored in an early log buffer. The size of this buffer +is configured via the CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE option. + Basic Algorithm --------------- diff --git a/Documentation/leds-lp3944.txt b/Documentation/leds-lp3944.txt new file mode 100644 index 000000000000..c6eda18b15ef --- /dev/null +++ b/Documentation/leds-lp3944.txt @@ -0,0 +1,50 @@ +Kernel driver lp3944 +==================== + + * National Semiconductor LP3944 Fun-light Chip + Prefix: 'lp3944' + Addresses scanned: None (see the Notes section below) + Datasheet: Publicly available at the National Semiconductor website + http://www.national.com/pf/LP/LP3944.html + +Authors: + Antonio Ospite <ospite@studenti.unina.it> + + +Description +----------- +The LP3944 is a helper chip that can drive up to 8 leds, with two programmable +DIM modes; it could even be used as a gpio expander but this driver assumes it +is used as a led controller. + +The DIM modes are used to set _blink_ patterns for leds, the pattern is +specified supplying two parameters: + - period: from 0s to 1.6s + - duty cycle: percentage of the period the led is on, from 0 to 100 + +Setting a led in DIM0 or DIM1 mode makes it blink according to the pattern. +See the datasheet for details. + +LP3944 can be found on Motorola A910 smartphone, where it drives the rgb +leds, the camera flash light and the lcds power. + + +Notes +----- +The chip is used mainly in embedded contexts, so this driver expects it is +registered using the i2c_board_info mechanism. + +To register the chip at address 0x60 on adapter 0, set the platform data +according to include/linux/leds-lp3944.h, set the i2c board info: + + static struct i2c_board_info __initdata a910_i2c_board_info[] = { + { + I2C_BOARD_INFO("lp3944", 0x60), + .platform_data = &a910_lp3944_leds, + }, + }; + +and register it in the platform init function + + i2c_register_board_info(0, a910_i2c_board_info, + ARRAY_SIZE(a910_i2c_board_info)); diff --git a/Documentation/networking/00-INDEX b/Documentation/networking/00-INDEX index 1634c6dcecae..50189bf07d53 100644 --- a/Documentation/networking/00-INDEX +++ b/Documentation/networking/00-INDEX @@ -60,6 +60,8 @@ framerelay.txt - info on using Frame Relay/Data Link Connection Identifier (DLCI). generic_netlink.txt - info on Generic Netlink +ieee802154.txt + - Linux IEEE 802.15.4 implementation, API and drivers ip-sysctl.txt - /proc/sys/net/ipv4/* variables ip_dynaddr.txt diff --git a/Documentation/networking/ieee802154.txt b/Documentation/networking/ieee802154.txt index a0280ad2edc9..1d4ed66b1b1c 100644 --- a/Documentation/networking/ieee802154.txt +++ b/Documentation/networking/ieee802154.txt @@ -69,7 +69,7 @@ We provide an example of simple HardMAC driver at drivers/ieee802154/fakehard.c SoftMAC ======= -We are going to provide intermediate layer impelementing IEEE 802.15.4 MAC +We are going to provide intermediate layer implementing IEEE 802.15.4 MAC in software. This is currently WIP. See header include/net/ieee802154/mac802154.h and several drivers in diff --git a/Documentation/powerpc/booting-without-of.txt b/Documentation/powerpc/booting-without-of.txt index 8d999d862d0e..79f533f38c61 100644 --- a/Documentation/powerpc/booting-without-of.txt +++ b/Documentation/powerpc/booting-without-of.txt @@ -1238,1122 +1238,7 @@ descriptions for the SOC devices for which new nodes have been defined; this list will expand as more and more SOC-containing platforms are moved over to use the flattened-device-tree model. - a) PHY nodes - - Required properties: - - - device_type : Should be "ethernet-phy" - - interrupts : <a b> where a is the interrupt number and b is a - field that represents an encoding of the sense and level - information for the interrupt. This should be encoded based on - the information in section 2) depending on the type of interrupt - controller you have. - - interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - - reg : The ID number for the phy, usually a small integer - - linux,phandle : phandle for this node; likely referenced by an - ethernet controller node. - - - Example: - - ethernet-phy@0 { - linux,phandle = <2452000> - interrupt-parent = <40000>; - interrupts = <35 1>; - reg = <0>; - device_type = "ethernet-phy"; - }; - - - b) Interrupt controllers - - Some SOC devices contain interrupt controllers that are different - from the standard Open PIC specification. The SOC device nodes for - these types of controllers should be specified just like a standard - OpenPIC controller. Sense and level information should be encoded - as specified in section 2) of this chapter for each device that - specifies an interrupt. - - Example : - - pic@40000 { - linux,phandle = <40000>; - interrupt-controller; - #address-cells = <0>; - reg = <40000 40000>; - compatible = "chrp,open-pic"; - device_type = "open-pic"; - }; - - c) 4xx/Axon EMAC ethernet nodes - - The EMAC ethernet controller in IBM and AMCC 4xx chips, and also - the Axon bridge. To operate this needs to interact with a ths - special McMAL DMA controller, and sometimes an RGMII or ZMII - interface. In addition to the nodes and properties described - below, the node for the OPB bus on which the EMAC sits must have a - correct clock-frequency property. - - i) The EMAC node itself - - Required properties: - - device_type : "network" - - - compatible : compatible list, contains 2 entries, first is - "ibm,emac-CHIP" where CHIP is the host ASIC (440gx, - 405gp, Axon) and second is either "ibm,emac" or - "ibm,emac4". For Axon, thus, we have: "ibm,emac-axon", - "ibm,emac4" - - interrupts : <interrupt mapping for EMAC IRQ and WOL IRQ> - - interrupt-parent : optional, if needed for interrupt mapping - - reg : <registers mapping> - - local-mac-address : 6 bytes, MAC address - - mal-device : phandle of the associated McMAL node - - mal-tx-channel : 1 cell, index of the tx channel on McMAL associated - with this EMAC - - mal-rx-channel : 1 cell, index of the rx channel on McMAL associated - with this EMAC - - cell-index : 1 cell, hardware index of the EMAC cell on a given - ASIC (typically 0x0 and 0x1 for EMAC0 and EMAC1 on - each Axon chip) - - max-frame-size : 1 cell, maximum frame size supported in bytes - - rx-fifo-size : 1 cell, Rx fifo size in bytes for 10 and 100 Mb/sec - operations. - For Axon, 2048 - - tx-fifo-size : 1 cell, Tx fifo size in bytes for 10 and 100 Mb/sec - operations. - For Axon, 2048. - - fifo-entry-size : 1 cell, size of a fifo entry (used to calculate - thresholds). - For Axon, 0x00000010 - - mal-burst-size : 1 cell, MAL burst size (used to calculate thresholds) - in bytes. - For Axon, 0x00000100 (I think ...) - - phy-mode : string, mode of operations of the PHY interface. - Supported values are: "mii", "rmii", "smii", "rgmii", - "tbi", "gmii", rtbi", "sgmii". - For Axon on CAB, it is "rgmii" - - mdio-device : 1 cell, required iff using shared MDIO registers - (440EP). phandle of the EMAC to use to drive the - MDIO lines for the PHY used by this EMAC. - - zmii-device : 1 cell, required iff connected to a ZMII. phandle of - the ZMII device node - - zmii-channel : 1 cell, required iff connected to a ZMII. Which ZMII - channel or 0xffffffff if ZMII is only used for MDIO. - - rgmii-device : 1 cell, required iff connected to an RGMII. phandle - of the RGMII device node. - For Axon: phandle of plb5/plb4/opb/rgmii - - rgmii-channel : 1 cell, required iff connected to an RGMII. Which - RGMII channel is used by this EMAC. - Fox Axon: present, whatever value is appropriate for each - EMAC, that is the content of the current (bogus) "phy-port" - property. - - Optional properties: - - phy-address : 1 cell, optional, MDIO address of the PHY. If absent, - a search is performed. - - phy-map : 1 cell, optional, bitmap of addresses to probe the PHY - for, used if phy-address is absent. bit 0x00000001 is - MDIO address 0. - For Axon it can be absent, though my current driver - doesn't handle phy-address yet so for now, keep - 0x00ffffff in it. - - rx-fifo-size-gige : 1 cell, Rx fifo size in bytes for 1000 Mb/sec - operations (if absent the value is the same as - rx-fifo-size). For Axon, either absent or 2048. - - tx-fifo-size-gige : 1 cell, Tx fifo size in bytes for 1000 Mb/sec - operations (if absent the value is the same as - tx-fifo-size). For Axon, either absent or 2048. - - tah-device : 1 cell, optional. If connected to a TAH engine for - offload, phandle of the TAH device node. - - tah-channel : 1 cell, optional. If appropriate, channel used on the - TAH engine. - - Example: - - EMAC0: ethernet@40000800 { - device_type = "network"; - compatible = "ibm,emac-440gp", "ibm,emac"; - interrupt-parent = <&UIC1>; - interrupts = <1c 4 1d 4>; - reg = <40000800 70>; - local-mac-address = [00 04 AC E3 1B 1E]; - mal-device = <&MAL0>; - mal-tx-channel = <0 1>; - mal-rx-channel = <0>; - cell-index = <0>; - max-frame-size = <5dc>; - rx-fifo-size = <1000>; - tx-fifo-size = <800>; - phy-mode = "rmii"; - phy-map = <00000001>; - zmii-device = <&ZMII0>; - zmii-channel = <0>; - }; - - ii) McMAL node - - Required properties: - - device_type : "dma-controller" - - compatible : compatible list, containing 2 entries, first is - "ibm,mcmal-CHIP" where CHIP is the host ASIC (like - emac) and the second is either "ibm,mcmal" or - "ibm,mcmal2". - For Axon, "ibm,mcmal-axon","ibm,mcmal2" - - interrupts : <interrupt mapping for the MAL interrupts sources: - 5 sources: tx_eob, rx_eob, serr, txde, rxde>. - For Axon: This is _different_ from the current - firmware. We use the "delayed" interrupts for txeob - and rxeob. Thus we end up with mapping those 5 MPIC - interrupts, all level positive sensitive: 10, 11, 32, - 33, 34 (in decimal) - - dcr-reg : < DCR registers range > - - dcr-parent : if needed for dcr-reg - - num-tx-chans : 1 cell, number of Tx channels - - num-rx-chans : 1 cell, number of Rx channels - - iii) ZMII node - - Required properties: - - compatible : compatible list, containing 2 entries, first is - "ibm,zmii-CHIP" where CHIP is the host ASIC (like - EMAC) and the second is "ibm,zmii". - For Axon, there is no ZMII node. - - reg : <registers mapping> - - iv) RGMII node - - Required properties: - - compatible : compatible list, containing 2 entries, first is - "ibm,rgmii-CHIP" where CHIP is the host ASIC (like - EMAC) and the second is "ibm,rgmii". - For Axon, "ibm,rgmii-axon","ibm,rgmii" - - reg : <registers mapping> - - revision : as provided by the RGMII new version register if - available. - For Axon: 0x0000012a - - d) Xilinx IP cores - - The Xilinx EDK toolchain ships with a set of IP cores (devices) for use - in Xilinx Spartan and Virtex FPGAs. The devices cover the whole range - of standard device types (network, serial, etc.) and miscellaneous - devices (gpio, LCD, spi, etc). Also, since these devices are - implemented within the fpga fabric every instance of the device can be - synthesised with different options that change the behaviour. - - Each IP-core has a set of parameters which the FPGA designer can use to - control how the core is synthesized. Historically, the EDK tool would - extract the device parameters relevant to device drivers and copy them - into an 'xparameters.h' in the form of #define symbols. This tells the - device drivers how the IP cores are configured, but it requres the kernel - to be recompiled every time the FPGA bitstream is resynthesized. - - The new approach is to export the parameters into the device tree and - generate a new device tree each time the FPGA bitstream changes. The - parameters which used to be exported as #defines will now become - properties of the device node. In general, device nodes for IP-cores - will take the following form: - - (name): (generic-name)@(base-address) { - compatible = "xlnx,(ip-core-name)-(HW_VER)" - [, (list of compatible devices), ...]; - reg = <(baseaddr) (size)>; - interrupt-parent = <&interrupt-controller-phandle>; - interrupts = < ... >; - xlnx,(parameter1) = "(string-value)"; - xlnx,(parameter2) = <(int-value)>; - }; - - (generic-name): an open firmware-style name that describes the - generic class of device. Preferably, this is one word, such - as 'serial' or 'ethernet'. - (ip-core-name): the name of the ip block (given after the BEGIN - directive in system.mhs). Should be in lowercase - and all underscores '_' converted to dashes '-'. - (name): is derived from the "PARAMETER INSTANCE" value. - (parameter#): C_* parameters from system.mhs. The C_ prefix is - dropped from the parameter name, the name is converted - to lowercase and all underscore '_' characters are - converted to dashes '-'. - (baseaddr): the baseaddr parameter value (often named C_BASEADDR). - (HW_VER): from the HW_VER parameter. - (size): the address range size (often C_HIGHADDR - C_BASEADDR + 1). - - Typically, the compatible list will include the exact IP core version - followed by an older IP core version which implements the same - interface or any other device with the same interface. - - 'reg', 'interrupt-parent' and 'interrupts' are all optional properties. - - For example, the following block from system.mhs: - - BEGIN opb_uartlite - PARAMETER INSTANCE = opb_uartlite_0 - PARAMETER HW_VER = 1.00.b - PARAMETER C_BAUDRATE = 115200 - PARAMETER C_DATA_BITS = 8 - PARAMETER C_ODD_PARITY = 0 - PARAMETER C_USE_PARITY = 0 - PARAMETER C_CLK_FREQ = 50000000 - PARAMETER C_BASEADDR = 0xEC100000 - PARAMETER C_HIGHADDR = 0xEC10FFFF - BUS_INTERFACE SOPB = opb_7 - PORT OPB_Clk = CLK_50MHz - PORT Interrupt = opb_uartlite_0_Interrupt - PORT RX = opb_uartlite_0_RX - PORT TX = opb_uartlite_0_TX - PORT OPB_Rst = sys_bus_reset_0 - END - - becomes the following device tree node: - - opb_uartlite_0: serial@ec100000 { - device_type = "serial"; - compatible = "xlnx,opb-uartlite-1.00.b"; - reg = <ec100000 10000>; - interrupt-parent = <&opb_intc_0>; - interrupts = <1 0>; // got this from the opb_intc parameters - current-speed = <d#115200>; // standard serial device prop - clock-frequency = <d#50000000>; // standard serial device prop - xlnx,data-bits = <8>; - xlnx,odd-parity = <0>; - xlnx,use-parity = <0>; - }; - - Some IP cores actually implement 2 or more logical devices. In - this case, the device should still describe the whole IP core with - a single node and add a child node for each logical device. The - ranges property can be used to translate from parent IP-core to the - registers of each device. In addition, the parent node should be - compatible with the bus type 'xlnx,compound', and should contain - #address-cells and #size-cells, as with any other bus. (Note: this - makes the assumption that both logical devices have the same bus - binding. If this is not true, then separate nodes should be used - for each logical device). The 'cell-index' property can be used to - enumerate logical devices within an IP core. For example, the - following is the system.mhs entry for the dual ps2 controller found - on the ml403 reference design. - - BEGIN opb_ps2_dual_ref - PARAMETER INSTANCE = opb_ps2_dual_ref_0 - PARAMETER HW_VER = 1.00.a - PARAMETER C_BASEADDR = 0xA9000000 - PARAMETER C_HIGHADDR = 0xA9001FFF - BUS_INTERFACE SOPB = opb_v20_0 - PORT Sys_Intr1 = ps2_1_intr - PORT Sys_Intr2 = ps2_2_intr - PORT Clkin1 = ps2_clk_rx_1 - PORT Clkin2 = ps2_clk_rx_2 - PORT Clkpd1 = ps2_clk_tx_1 - PORT Clkpd2 = ps2_clk_tx_2 - PORT Rx1 = ps2_d_rx_1 - PORT Rx2 = ps2_d_rx_2 - PORT Txpd1 = ps2_d_tx_1 - PORT Txpd2 = ps2_d_tx_2 - END - - It would result in the following device tree nodes: - - opb_ps2_dual_ref_0: opb-ps2-dual-ref@a9000000 { - #address-cells = <1>; - #size-cells = <1>; - compatible = "xlnx,compound"; - ranges = <0 a9000000 2000>; - // If this device had extra parameters, then they would - // go here. - ps2@0 { - compatible = "xlnx,opb-ps2-dual-ref-1.00.a"; - reg = <0 40>; - interrupt-parent = <&opb_intc_0>; - interrupts = <3 0>; - cell-index = <0>; - }; - ps2@1000 { - compatible = "xlnx,opb-ps2-dual-ref-1.00.a"; - reg = <1000 40>; - interrupt-parent = <&opb_intc_0>; - interrupts = <3 0>; - cell-index = <0>; - }; - }; - - Also, the system.mhs file defines bus attachments from the processor - to the devices. The device tree structure should reflect the bus - attachments. Again an example; this system.mhs fragment: - - BEGIN ppc405_virtex4 - PARAMETER INSTANCE = ppc405_0 - PARAMETER HW_VER = 1.01.a - BUS_INTERFACE DPLB = plb_v34_0 - BUS_INTERFACE IPLB = plb_v34_0 - END - - BEGIN opb_intc - PARAMETER INSTANCE = opb_intc_0 - PARAMETER HW_VER = 1.00.c - PARAMETER C_BASEADDR = 0xD1000FC0 - PARAMETER C_HIGHADDR = 0xD1000FDF - BUS_INTERFACE SOPB = opb_v20_0 - END - - BEGIN opb_uart16550 - PARAMETER INSTANCE = opb_uart16550_0 - PARAMETER HW_VER = 1.00.d - PARAMETER C_BASEADDR = 0xa0000000 - PARAMETER C_HIGHADDR = 0xa0001FFF - BUS_INTERFACE SOPB = opb_v20_0 - END - - BEGIN plb_v34 - PARAMETER INSTANCE = plb_v34_0 - PARAMETER HW_VER = 1.02.a - END - - BEGIN plb_bram_if_cntlr - PARAMETER INSTANCE = plb_bram_if_cntlr_0 - PARAMETER HW_VER = 1.00.b - PARAMETER C_BASEADDR = 0xFFFF0000 - PARAMETER C_HIGHADDR = 0xFFFFFFFF - BUS_INTERFACE SPLB = plb_v34_0 - END - - BEGIN plb2opb_bridge - PARAMETER INSTANCE = plb2opb_bridge_0 - PARAMETER HW_VER = 1.01.a - PARAMETER C_RNG0_BASEADDR = 0x20000000 - PARAMETER C_RNG0_HIGHADDR = 0x3FFFFFFF - PARAMETER C_RNG1_BASEADDR = 0x60000000 - PARAMETER C_RNG1_HIGHADDR = 0x7FFFFFFF - PARAMETER C_RNG2_BASEADDR = 0x80000000 - PARAMETER C_RNG2_HIGHADDR = 0xBFFFFFFF - PARAMETER C_RNG3_BASEADDR = 0xC0000000 - PARAMETER C_RNG3_HIGHADDR = 0xDFFFFFFF - BUS_INTERFACE SPLB = plb_v34_0 - BUS_INTERFACE MOPB = opb_v20_0 - END - - Gives this device tree (some properties removed for clarity): - - plb@0 { - #address-cells = <1>; - #size-cells = <1>; - compatible = "xlnx,plb-v34-1.02.a"; - device_type = "ibm,plb"; - ranges; // 1:1 translation - - plb_bram_if_cntrl_0: bram@ffff0000 { - reg = <ffff0000 10000>; - } - - opb@20000000 { - #address-cells = <1>; - #size-cells = <1>; - ranges = <20000000 20000000 20000000 - 60000000 60000000 20000000 - 80000000 80000000 40000000 - c0000000 c0000000 20000000>; - - opb_uart16550_0: serial@a0000000 { - reg = <a00000000 2000>; - }; - - opb_intc_0: interrupt-controller@d1000fc0 { - reg = <d1000fc0 20>; - }; - }; - }; - - That covers the general approach to binding xilinx IP cores into the - device tree. The following are bindings for specific devices: - - i) Xilinx ML300 Framebuffer - - Simple framebuffer device from the ML300 reference design (also on the - ML403 reference design as well as others). - - Optional properties: - - resolution = <xres yres> : pixel resolution of framebuffer. Some - implementations use a different resolution. - Default is <d#640 d#480> - - virt-resolution = <xvirt yvirt> : Size of framebuffer in memory. - Default is <d#1024 d#480>. - - rotate-display (empty) : rotate display 180 degrees. - - ii) Xilinx SystemACE - - The Xilinx SystemACE device is used to program FPGAs from an FPGA - bitstream stored on a CF card. It can also be used as a generic CF - interface device. - - Optional properties: - - 8-bit (empty) : Set this property for SystemACE in 8 bit mode - - iii) Xilinx EMAC and Xilinx TEMAC - - Xilinx Ethernet devices. In addition to general xilinx properties - listed above, nodes for these devices should include a phy-handle - property, and may include other common network device properties - like local-mac-address. - - iv) Xilinx Uartlite - - Xilinx uartlite devices are simple fixed speed serial ports. - - Required properties: - - current-speed : Baud rate of uartlite - - v) Xilinx hwicap - - Xilinx hwicap devices provide access to the configuration logic - of the FPGA through the Internal Configuration Access Port - (ICAP). The ICAP enables partial reconfiguration of the FPGA, - readback of the configuration information, and some control over - 'warm boots' of the FPGA fabric. - - Required properties: - - xlnx,family : The family of the FPGA, necessary since the - capabilities of the underlying ICAP hardware - differ between different families. May be - 'virtex2p', 'virtex4', or 'virtex5'. - - vi) Xilinx Uart 16550 - - Xilinx UART 16550 devices are very similar to the NS16550 but with - different register spacing and an offset from the base address. - - Required properties: - - clock-frequency : Frequency of the clock input - - reg-offset : A value of 3 is required - - reg-shift : A value of 2 is required - - e) USB EHCI controllers - - Required properties: - - compatible : should be "usb-ehci". - - reg : should contain at least address and length of the standard EHCI - register set for the device. Optional platform-dependent registers - (debug-port or other) can be also specified here, but only after - definition of standard EHCI registers. - - interrupts : one EHCI interrupt should be described here. - If device registers are implemented in big endian mode, the device - node should have "big-endian-regs" property. - If controller implementation operates with big endian descriptors, - "big-endian-desc" property should be specified. - If both big endian registers and descriptors are used by the controller - implementation, "big-endian" property can be specified instead of having - both "big-endian-regs" and "big-endian-desc". - - Example (Sequoia 440EPx): - ehci@e0000300 { - compatible = "ibm,usb-ehci-440epx", "usb-ehci"; - interrupt-parent = <&UIC0>; - interrupts = <1a 4>; - reg = <0 e0000300 90 0 e0000390 70>; - big-endian; - }; - - f) MDIO on GPIOs - - Currently defined compatibles: - - virtual,gpio-mdio - - MDC and MDIO lines connected to GPIO controllers are listed in the - gpios property as described in section VIII.1 in the following order: - - MDC, MDIO. - - Example: - - mdio { - compatible = "virtual,mdio-gpio"; - #address-cells = <1>; - #size-cells = <0>; - gpios = <&qe_pio_a 11 - &qe_pio_c 6>; - }; - - g) SPI (Serial Peripheral Interface) busses - - SPI busses can be described with a node for the SPI master device - and a set of child nodes for each SPI slave on the bus. For this - discussion, it is assumed that the system's SPI controller is in - SPI master mode. This binding does not describe SPI controllers - in slave mode. - - The SPI master node requires the following properties: - - #address-cells - number of cells required to define a chip select - address on the SPI bus. - - #size-cells - should be zero. - - compatible - name of SPI bus controller following generic names - recommended practice. - No other properties are required in the SPI bus node. It is assumed - that a driver for an SPI bus device will understand that it is an SPI bus. - However, the binding does not attempt to define the specific method for - assigning chip select numbers. Since SPI chip select configuration is - flexible and non-standardized, it is left out of this binding with the - assumption that board specific platform code will be used to manage - chip selects. Individual drivers can define additional properties to - support describing the chip select layout. - - SPI slave nodes must be children of the SPI master node and can - contain the following properties. - - reg - (required) chip select address of device. - - compatible - (required) name of SPI device following generic names - recommended practice - - spi-max-frequency - (required) Maximum SPI clocking speed of device in Hz - - spi-cpol - (optional) Empty property indicating device requires - inverse clock polarity (CPOL) mode - - spi-cpha - (optional) Empty property indicating device requires - shifted clock phase (CPHA) mode - - spi-cs-high - (optional) Empty property indicating device requires - chip select active high - - SPI example for an MPC5200 SPI bus: - spi@f00 { - #address-cells = <1>; - #size-cells = <0>; - compatible = "fsl,mpc5200b-spi","fsl,mpc5200-spi"; - reg = <0xf00 0x20>; - interrupts = <2 13 0 2 14 0>; - interrupt-parent = <&mpc5200_pic>; - - ethernet-switch@0 { - compatible = "micrel,ks8995m"; - spi-max-frequency = <1000000>; - reg = <0>; - }; - - codec@1 { - compatible = "ti,tlv320aic26"; - spi-max-frequency = <100000>; - reg = <1>; - }; - }; - -VII - Marvell Discovery mv64[345]6x System Controller chips -=========================================================== - -The Marvell mv64[345]60 series of system controller chips contain -many of the peripherals needed to implement a complete computer -system. In this section, we define device tree nodes to describe -the system controller chip itself and each of the peripherals -which it contains. Compatible string values for each node are -prefixed with the string "marvell,", for Marvell Technology Group Ltd. - -1) The /system-controller node - - This node is used to represent the system-controller and must be - present when the system uses a system controller chip. The top-level - system-controller node contains information that is global to all - devices within the system controller chip. The node name begins - with "system-controller" followed by the unit address, which is - the base address of the memory-mapped register set for the system - controller chip. - - Required properties: - - - ranges : Describes the translation of system controller addresses - for memory mapped registers. - - clock-frequency: Contains the main clock frequency for the system - controller chip. - - reg : This property defines the address and size of the - memory-mapped registers contained within the system controller - chip. The address specified in the "reg" property should match - the unit address of the system-controller node. - - #address-cells : Address representation for system controller - devices. This field represents the number of cells needed to - represent the address of the memory-mapped registers of devices - within the system controller chip. - - #size-cells : Size representation for for the memory-mapped - registers within the system controller chip. - - #interrupt-cells : Defines the width of cells used to represent - interrupts. - - Optional properties: - - - model : The specific model of the system controller chip. Such - as, "mv64360", "mv64460", or "mv64560". - - compatible : A string identifying the compatibility identifiers - of the system controller chip. - - The system-controller node contains child nodes for each system - controller device that the platform uses. Nodes should not be created - for devices which exist on the system controller chip but are not used - - Example Marvell Discovery mv64360 system-controller node: - - system-controller@f1000000 { /* Marvell Discovery mv64360 */ - #address-cells = <1>; - #size-cells = <1>; - model = "mv64360"; /* Default */ - compatible = "marvell,mv64360"; - clock-frequency = <133333333>; - reg = <0xf1000000 0x10000>; - virtual-reg = <0xf1000000>; - ranges = <0x88000000 0x88000000 0x1000000 /* PCI 0 I/O Space */ - 0x80000000 0x80000000 0x8000000 /* PCI 0 MEM Space */ - 0xa0000000 0xa0000000 0x4000000 /* User FLASH */ - 0x00000000 0xf1000000 0x0010000 /* Bridge's regs */ - 0xf2000000 0xf2000000 0x0040000>;/* Integrated SRAM */ - - [ child node definitions... ] - } - -2) Child nodes of /system-controller - - a) Marvell Discovery MDIO bus - - The MDIO is a bus to which the PHY devices are connected. For each - device that exists on this bus, a child node should be created. See - the definition of the PHY node below for an example of how to define - a PHY. - - Required properties: - - #address-cells : Should be <1> - - #size-cells : Should be <0> - - device_type : Should be "mdio" - - compatible : Should be "marvell,mv64360-mdio" - - Example: - - mdio { - #address-cells = <1>; - #size-cells = <0>; - device_type = "mdio"; - compatible = "marvell,mv64360-mdio"; - - ethernet-phy@0 { - ...... - }; - }; - - - b) Marvell Discovery ethernet controller - - The Discover ethernet controller is described with two levels - of nodes. The first level describes an ethernet silicon block - and the second level describes up to 3 ethernet nodes within - that block. The reason for the multiple levels is that the - registers for the node are interleaved within a single set - of registers. The "ethernet-block" level describes the - shared register set, and the "ethernet" nodes describe ethernet - port-specific properties. - - Ethernet block node - - Required properties: - - #address-cells : <1> - - #size-cells : <0> - - compatible : "marvell,mv64360-eth-block" - - reg : Offset and length of the register set for this block - - Example Discovery Ethernet block node: - ethernet-block@2000 { - #address-cells = <1>; - #size-cells = <0>; - compatible = "marvell,mv64360-eth-block"; - reg = <0x2000 0x2000>; - ethernet@0 { - ....... - }; - }; - - Ethernet port node - - Required properties: - - device_type : Should be "network". - - compatible : Should be "marvell,mv64360-eth". - - reg : Should be <0>, <1>, or <2>, according to which registers - within the silicon block the device uses. - - interrupts : <a> where a is the interrupt number for the port. - - interrupt-parent : the phandle for the interrupt controller - that services interrupts for this device. - - phy : the phandle for the PHY connected to this ethernet - controller. - - local-mac-address : 6 bytes, MAC address - - Example Discovery Ethernet port node: - ethernet@0 { - device_type = "network"; - compatible = "marvell,mv64360-eth"; - reg = <0>; - interrupts = <32>; - interrupt-parent = <&PIC>; - phy = <&PHY0>; - local-mac-address = [ 00 00 00 00 00 00 ]; - }; - - - - c) Marvell Discovery PHY nodes - - Required properties: - - device_type : Should be "ethernet-phy" - - interrupts : <a> where a is the interrupt number for this phy. - - interrupt-parent : the phandle for the interrupt controller that - services interrupts for this device. - - reg : The ID number for the phy, usually a small integer - - Example Discovery PHY node: - ethernet-phy@1 { - device_type = "ethernet-phy"; - compatible = "broadcom,bcm5421"; - interrupts = <76>; /* GPP 12 */ - interrupt-parent = <&PIC>; - reg = <1>; - }; - - - d) Marvell Discovery SDMA nodes - - Represent DMA hardware associated with the MPSC (multiprotocol - serial controllers). - - Required properties: - - compatible : "marvell,mv64360-sdma" - - reg : Offset and length of the register set for this device - - interrupts : <a> where a is the interrupt number for the DMA - device. - - interrupt-parent : the phandle for the interrupt controller - that services interrupts for this device. - - Example Discovery SDMA node: - sdma@4000 { - compatible = "marvell,mv64360-sdma"; - reg = <0x4000 0xc18>; - virtual-reg = <0xf1004000>; - interrupts = <36>; - interrupt-parent = <&PIC>; - }; - - - e) Marvell Discovery BRG nodes - - Represent baud rate generator hardware associated with the MPSC - (multiprotocol serial controllers). - - Required properties: - - compatible : "marvell,mv64360-brg" - - reg : Offset and length of the register set for this device - - clock-src : A value from 0 to 15 which selects the clock - source for the baud rate generator. This value corresponds - to the CLKS value in the BRGx configuration register. See - the mv64x60 User's Manual. - - clock-frequence : The frequency (in Hz) of the baud rate - generator's input clock. - - current-speed : The current speed setting (presumably by - firmware) of the baud rate generator. - - Example Discovery BRG node: - brg@b200 { - compatible = "marvell,mv64360-brg"; - reg = <0xb200 0x8>; - clock-src = <8>; - clock-frequency = <133333333>; - current-speed = <9600>; - }; - - - f) Marvell Discovery CUNIT nodes - - Represent the Serial Communications Unit device hardware. - - Required properties: - - reg : Offset and length of the register set for this device - - Example Discovery CUNIT node: - cunit@f200 { - reg = <0xf200 0x200>; - }; - - - g) Marvell Discovery MPSCROUTING nodes - - Represent the Discovery's MPSC routing hardware - - Required properties: - - reg : Offset and length of the register set for this device - - Example Discovery CUNIT node: - mpscrouting@b500 { - reg = <0xb400 0xc>; - }; - - - h) Marvell Discovery MPSCINTR nodes - - Represent the Discovery's MPSC DMA interrupt hardware registers - (SDMA cause and mask registers). - - Required properties: - - reg : Offset and length of the register set for this device - - Example Discovery MPSCINTR node: - mpsintr@b800 { - reg = <0xb800 0x100>; - }; - - - i) Marvell Discovery MPSC nodes - - Represent the Discovery's MPSC (Multiprotocol Serial Controller) - serial port. - - Required properties: - - device_type : "serial" - - compatible : "marvell,mv64360-mpsc" - - reg : Offset and length of the register set for this device - - sdma : the phandle for the SDMA node used by this port - - brg : the phandle for the BRG node used by this port - - cunit : the phandle for the CUNIT node used by this port - - mpscrouting : the phandle for the MPSCROUTING node used by this port - - mpscintr : the phandle for the MPSCINTR node used by this port - - cell-index : the hardware index of this cell in the MPSC core - - max_idle : value needed for MPSC CHR3 (Maximum Frame Length) - register - - interrupts : <a> where a is the interrupt number for the MPSC. - - interrupt-parent : the phandle for the interrupt controller - that services interrupts for this device. - - Example Discovery MPSCINTR node: - mpsc@8000 { - device_type = "serial"; - compatible = "marvell,mv64360-mpsc"; - reg = <0x8000 0x38>; - virtual-reg = <0xf1008000>; - sdma = <&SDMA0>; - brg = <&BRG0>; - cunit = <&CUNIT>; - mpscrouting = <&MPSCROUTING>; - mpscintr = <&MPSCINTR>; - cell-index = <0>; - max_idle = <40>; - interrupts = <40>; - interrupt-parent = <&PIC>; - }; - - - j) Marvell Discovery Watch Dog Timer nodes - - Represent the Discovery's watchdog timer hardware - - Required properties: - - compatible : "marvell,mv64360-wdt" - - reg : Offset and length of the register set for this device - - Example Discovery Watch Dog Timer node: - wdt@b410 { - compatible = "marvell,mv64360-wdt"; - reg = <0xb410 0x8>; - }; - - - k) Marvell Discovery I2C nodes - - Represent the Discovery's I2C hardware - - Required properties: - - device_type : "i2c" - - compatible : "marvell,mv64360-i2c" - - reg : Offset and length of the register set for this device - - interrupts : <a> where a is the interrupt number for the I2C. - - interrupt-parent : the phandle for the interrupt controller - that services interrupts for this device. - - Example Discovery I2C node: - compatible = "marvell,mv64360-i2c"; - reg = <0xc000 0x20>; - virtual-reg = <0xf100c000>; - interrupts = <37>; - interrupt-parent = <&PIC>; - }; - - - l) Marvell Discovery PIC (Programmable Interrupt Controller) nodes - - Represent the Discovery's PIC hardware - - Required properties: - - #interrupt-cells : <1> - - #address-cells : <0> - - compatible : "marvell,mv64360-pic" - - reg : Offset and length of the register set for this device - - interrupt-controller - - Example Discovery PIC node: - pic { - #interrupt-cells = <1>; - #address-cells = <0>; - compatible = "marvell,mv64360-pic"; - reg = <0x0 0x88>; - interrupt-controller; - }; - - - m) Marvell Discovery MPP (Multipurpose Pins) multiplexing nodes - - Represent the Discovery's MPP hardware - - Required properties: - - compatible : "marvell,mv64360-mpp" - - reg : Offset and length of the register set for this device - - Example Discovery MPP node: - mpp@f000 { - compatible = "marvell,mv64360-mpp"; - reg = <0xf000 0x10>; - }; - - - n) Marvell Discovery GPP (General Purpose Pins) nodes - - Represent the Discovery's GPP hardware - - Required properties: - - compatible : "marvell,mv64360-gpp" - - reg : Offset and length of the register set for this device - - Example Discovery GPP node: - gpp@f000 { - compatible = "marvell,mv64360-gpp"; - reg = <0xf100 0x20>; - }; - - - o) Marvell Discovery PCI host bridge node - - Represents the Discovery's PCI host bridge device. The properties - for this node conform to Rev 2.1 of the PCI Bus Binding to IEEE - 1275-1994. A typical value for the compatible property is - "marvell,mv64360-pci". - - Example Discovery PCI host bridge node - pci@80000000 { - #address-cells = <3>; - #size-cells = <2>; - #interrupt-cells = <1>; - device_type = "pci"; - compatible = "marvell,mv64360-pci"; - reg = <0xcf8 0x8>; - ranges = <0x01000000 0x0 0x0 - 0x88000000 0x0 0x01000000 - 0x02000000 0x0 0x80000000 - 0x80000000 0x0 0x08000000>; - bus-range = <0 255>; - clock-frequency = <66000000>; - interrupt-parent = <&PIC>; - interrupt-map-mask = <0xf800 0x0 0x0 0x7>; - interrupt-map = < - /* IDSEL 0x0a */ - 0x5000 0 0 1 &PIC 80 - 0x5000 0 0 2 &PIC 81 - 0x5000 0 0 3 &PIC 91 - 0x5000 0 0 4 &PIC 93 - - /* IDSEL 0x0b */ - 0x5800 0 0 1 &PIC 91 - 0x5800 0 0 2 &PIC 93 - 0x5800 0 0 3 &PIC 80 - 0x5800 0 0 4 &PIC 81 - - /* IDSEL 0x0c */ - 0x6000 0 0 1 &PIC 91 - 0x6000 0 0 2 &PIC 93 - 0x6000 0 0 3 &PIC 80 - 0x6000 0 0 4 &PIC 81 - - /* IDSEL 0x0d */ - 0x6800 0 0 1 &PIC 93 - 0x6800 0 0 2 &PIC 80 - 0x6800 0 0 3 &PIC 81 - 0x6800 0 0 4 &PIC 91 - >; - }; - - - p) Marvell Discovery CPU Error nodes - - Represent the Discovery's CPU error handler device. - - Required properties: - - compatible : "marvell,mv64360-cpu-error" - - reg : Offset and length of the register set for this device - - interrupts : the interrupt number for this device - - interrupt-parent : the phandle for the interrupt controller - that services interrupts for this device. - - Example Discovery CPU Error node: - cpu-error@0070 { - compatible = "marvell,mv64360-cpu-error"; - reg = <0x70 0x10 0x128 0x28>; - interrupts = <3>; - interrupt-parent = <&PIC>; - }; - - - q) Marvell Discovery SRAM Controller nodes - - Represent the Discovery's SRAM controller device. - - Required properties: - - compatible : "marvell,mv64360-sram-ctrl" - - reg : Offset and length of the register set for this device - - interrupts : the interrupt number for this device - - interrupt-parent : the phandle for the interrupt controller - that services interrupts for this device. - - Example Discovery SRAM Controller node: - sram-ctrl@0380 { - compatible = "marvell,mv64360-sram-ctrl"; - reg = <0x380 0x80>; - interrupts = <13>; - interrupt-parent = <&PIC>; - }; - - - r) Marvell Discovery PCI Error Handler nodes - - Represent the Discovery's PCI error handler device. - - Required properties: - - compatible : "marvell,mv64360-pci-error" - - reg : Offset and length of the register set for this device - - interrupts : the interrupt number for this device - - interrupt-parent : the phandle for the interrupt controller - that services interrupts for this device. - - Example Discovery PCI Error Handler node: - pci-error@1d40 { - compatible = "marvell,mv64360-pci-error"; - reg = <0x1d40 0x40 0xc28 0x4>; - interrupts = <12>; - interrupt-parent = <&PIC>; - }; - - - s) Marvell Discovery Memory Controller nodes - - Represent the Discovery's memory controller device. - - Required properties: - - compatible : "marvell,mv64360-mem-ctrl" - - reg : Offset and length of the register set for this device - - interrupts : the interrupt number for this device - - interrupt-parent : the phandle for the interrupt controller - that services interrupts for this device. - - Example Discovery Memory Controller node: - mem-ctrl@1400 { - compatible = "marvell,mv64360-mem-ctrl"; - reg = <0x1400 0x60>; - interrupts = <17>; - interrupt-parent = <&PIC>; - }; - - -VIII - Specifying interrupt information for devices +VII - Specifying interrupt information for devices =================================================== The device tree represents the busses and devices of a hardware @@ -2439,56 +1324,7 @@ encodings listed below: 2 = high to low edge sensitive type enabled 3 = low to high edge sensitive type enabled -IX - Specifying GPIO information for devices -============================================ - -1) gpios property ------------------ - -Nodes that makes use of GPIOs should define them using `gpios' property, -format of which is: <&gpio-controller1-phandle gpio1-specifier - &gpio-controller2-phandle gpio2-specifier - 0 /* holes are permitted, means no GPIO 3 */ - &gpio-controller4-phandle gpio4-specifier - ...>; - -Note that gpio-specifier length is controller dependent. - -gpio-specifier may encode: bank, pin position inside the bank, -whether pin is open-drain and whether pin is logically inverted. - -Example of the node using GPIOs: - - node { - gpios = <&qe_pio_e 18 0>; - }; - -In this example gpio-specifier is "18 0" and encodes GPIO pin number, -and empty GPIO flags as accepted by the "qe_pio_e" gpio-controller. - -2) gpio-controller nodes ------------------------- - -Every GPIO controller node must have #gpio-cells property defined, -this information will be used to translate gpio-specifiers. - -Example of two SOC GPIO banks defined as gpio-controller nodes: - - qe_pio_a: gpio-controller@1400 { - #gpio-cells = <2>; - compatible = "fsl,qe-pario-bank-a", "fsl,qe-pario-bank"; - reg = <0x1400 0x18>; - gpio-controller; - }; - - qe_pio_e: gpio-controller@1460 { - #gpio-cells = <2>; - compatible = "fsl,qe-pario-bank-e", "fsl,qe-pario-bank"; - reg = <0x1460 0x18>; - gpio-controller; - }; - -X - Specifying Device Power Management Information (sleep property) +VIII - Specifying Device Power Management Information (sleep property) =================================================================== Devices on SOCs often have mechanisms for placing devices into low-power diff --git a/Documentation/powerpc/dts-bindings/4xx/emac.txt b/Documentation/powerpc/dts-bindings/4xx/emac.txt new file mode 100644 index 000000000000..2161334a7ca5 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/4xx/emac.txt @@ -0,0 +1,148 @@ + 4xx/Axon EMAC ethernet nodes + + The EMAC ethernet controller in IBM and AMCC 4xx chips, and also + the Axon bridge. To operate this needs to interact with a ths + special McMAL DMA controller, and sometimes an RGMII or ZMII + interface. In addition to the nodes and properties described + below, the node for the OPB bus on which the EMAC sits must have a + correct clock-frequency property. + + i) The EMAC node itself + + Required properties: + - device_type : "network" + + - compatible : compatible list, contains 2 entries, first is + "ibm,emac-CHIP" where CHIP is the host ASIC (440gx, + 405gp, Axon) and second is either "ibm,emac" or + "ibm,emac4". For Axon, thus, we have: "ibm,emac-axon", + "ibm,emac4" + - interrupts : <interrupt mapping for EMAC IRQ and WOL IRQ> + - interrupt-parent : optional, if needed for interrupt mapping + - reg : <registers mapping> + - local-mac-address : 6 bytes, MAC address + - mal-device : phandle of the associated McMAL node + - mal-tx-channel : 1 cell, index of the tx channel on McMAL associated + with this EMAC + - mal-rx-channel : 1 cell, index of the rx channel on McMAL associated + with this EMAC + - cell-index : 1 cell, hardware index of the EMAC cell on a given + ASIC (typically 0x0 and 0x1 for EMAC0 and EMAC1 on + each Axon chip) + - max-frame-size : 1 cell, maximum frame size supported in bytes + - rx-fifo-size : 1 cell, Rx fifo size in bytes for 10 and 100 Mb/sec + operations. + For Axon, 2048 + - tx-fifo-size : 1 cell, Tx fifo size in bytes for 10 and 100 Mb/sec + operations. + For Axon, 2048. + - fifo-entry-size : 1 cell, size of a fifo entry (used to calculate + thresholds). + For Axon, 0x00000010 + - mal-burst-size : 1 cell, MAL burst size (used to calculate thresholds) + in bytes. + For Axon, 0x00000100 (I think ...) + - phy-mode : string, mode of operations of the PHY interface. + Supported values are: "mii", "rmii", "smii", "rgmii", + "tbi", "gmii", rtbi", "sgmii". + For Axon on CAB, it is "rgmii" + - mdio-device : 1 cell, required iff using shared MDIO registers + (440EP). phandle of the EMAC to use to drive the + MDIO lines for the PHY used by this EMAC. + - zmii-device : 1 cell, required iff connected to a ZMII. phandle of + the ZMII device node + - zmii-channel : 1 cell, required iff connected to a ZMII. Which ZMII + channel or 0xffffffff if ZMII is only used for MDIO. + - rgmii-device : 1 cell, required iff connected to an RGMII. phandle + of the RGMII device node. + For Axon: phandle of plb5/plb4/opb/rgmii + - rgmii-channel : 1 cell, required iff connected to an RGMII. Which + RGMII channel is used by this EMAC. + Fox Axon: present, whatever value is appropriate for each + EMAC, that is the content of the current (bogus) "phy-port" + property. + + Optional properties: + - phy-address : 1 cell, optional, MDIO address of the PHY. If absent, + a search is performed. + - phy-map : 1 cell, optional, bitmap of addresses to probe the PHY + for, used if phy-address is absent. bit 0x00000001 is + MDIO address 0. + For Axon it can be absent, though my current driver + doesn't handle phy-address yet so for now, keep + 0x00ffffff in it. + - rx-fifo-size-gige : 1 cell, Rx fifo size in bytes for 1000 Mb/sec + operations (if absent the value is the same as + rx-fifo-size). For Axon, either absent or 2048. + - tx-fifo-size-gige : 1 cell, Tx fifo size in bytes for 1000 Mb/sec + operations (if absent the value is the same as + tx-fifo-size). For Axon, either absent or 2048. + - tah-device : 1 cell, optional. If connected to a TAH engine for + offload, phandle of the TAH device node. + - tah-channel : 1 cell, optional. If appropriate, channel used on the + TAH engine. + + Example: + + EMAC0: ethernet@40000800 { + device_type = "network"; + compatible = "ibm,emac-440gp", "ibm,emac"; + interrupt-parent = <&UIC1>; + interrupts = <1c 4 1d 4>; + reg = <40000800 70>; + local-mac-address = [00 04 AC E3 1B 1E]; + mal-device = <&MAL0>; + mal-tx-channel = <0 1>; + mal-rx-channel = <0>; + cell-index = <0>; + max-frame-size = <5dc>; + rx-fifo-size = <1000>; + tx-fifo-size = <800>; + phy-mode = "rmii"; + phy-map = <00000001>; + zmii-device = <&ZMII0>; + zmii-channel = <0>; + }; + + ii) McMAL node + + Required properties: + - device_type : "dma-controller" + - compatible : compatible list, containing 2 entries, first is + "ibm,mcmal-CHIP" where CHIP is the host ASIC (like + emac) and the second is either "ibm,mcmal" or + "ibm,mcmal2". + For Axon, "ibm,mcmal-axon","ibm,mcmal2" + - interrupts : <interrupt mapping for the MAL interrupts sources: + 5 sources: tx_eob, rx_eob, serr, txde, rxde>. + For Axon: This is _different_ from the current + firmware. We use the "delayed" interrupts for txeob + and rxeob. Thus we end up with mapping those 5 MPIC + interrupts, all level positive sensitive: 10, 11, 32, + 33, 34 (in decimal) + - dcr-reg : < DCR registers range > + - dcr-parent : if needed for dcr-reg + - num-tx-chans : 1 cell, number of Tx channels + - num-rx-chans : 1 cell, number of Rx channels + + iii) ZMII node + + Required properties: + - compatible : compatible list, containing 2 entries, first is + "ibm,zmii-CHIP" where CHIP is the host ASIC (like + EMAC) and the second is "ibm,zmii". + For Axon, there is no ZMII node. + - reg : <registers mapping> + + iv) RGMII node + + Required properties: + - compatible : compatible list, containing 2 entries, first is + "ibm,rgmii-CHIP" where CHIP is the host ASIC (like + EMAC) and the second is "ibm,rgmii". + For Axon, "ibm,rgmii-axon","ibm,rgmii" + - reg : <registers mapping> + - revision : as provided by the RGMII new version register if + available. + For Axon: 0x0000012a + diff --git a/Documentation/powerpc/dts-bindings/gpio/gpio.txt b/Documentation/powerpc/dts-bindings/gpio/gpio.txt new file mode 100644 index 000000000000..edaa84d288a1 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/gpio/gpio.txt @@ -0,0 +1,50 @@ +Specifying GPIO information for devices +============================================ + +1) gpios property +----------------- + +Nodes that makes use of GPIOs should define them using `gpios' property, +format of which is: <&gpio-controller1-phandle gpio1-specifier + &gpio-controller2-phandle gpio2-specifier + 0 /* holes are permitted, means no GPIO 3 */ + &gpio-controller4-phandle gpio4-specifier + ...>; + +Note that gpio-specifier length is controller dependent. + +gpio-specifier may encode: bank, pin position inside the bank, +whether pin is open-drain and whether pin is logically inverted. + +Example of the node using GPIOs: + + node { + gpios = <&qe_pio_e 18 0>; + }; + +In this example gpio-specifier is "18 0" and encodes GPIO pin number, +and empty GPIO flags as accepted by the "qe_pio_e" gpio-controller. + +2) gpio-controller nodes +------------------------ + +Every GPIO controller node must have #gpio-cells property defined, +this information will be used to translate gpio-specifiers. + +Example of two SOC GPIO banks defined as gpio-controller nodes: + + qe_pio_a: gpio-controller@1400 { + #gpio-cells = <2>; + compatible = "fsl,qe-pario-bank-a", "fsl,qe-pario-bank"; + reg = <0x1400 0x18>; + gpio-controller; + }; + + qe_pio_e: gpio-controller@1460 { + #gpio-cells = <2>; + compatible = "fsl,qe-pario-bank-e", "fsl,qe-pario-bank"; + reg = <0x1460 0x18>; + gpio-controller; + }; + + diff --git a/Documentation/powerpc/dts-bindings/gpio/led.txt b/Documentation/powerpc/dts-bindings/gpio/led.txt index 4fe14deedc0a..064db928c3c1 100644 --- a/Documentation/powerpc/dts-bindings/gpio/led.txt +++ b/Documentation/powerpc/dts-bindings/gpio/led.txt @@ -16,10 +16,17 @@ LED sub-node properties: string defining the trigger assigned to the LED. Current triggers are: "backlight" - LED will act as a back-light, controlled by the framebuffer system - "default-on" - LED will turn on + "default-on" - LED will turn on, but see "default-state" below "heartbeat" - LED "double" flashes at a load average based rate "ide-disk" - LED indicates disk activity "timer" - LED flashes at a fixed, configurable rate +- default-state: (optional) The initial state of the LED. Valid + values are "on", "off", and "keep". If the LED is already on or off + and the default-state property is set the to same value, then no + glitch should be produced where the LED momentarily turns off (or + on). The "keep" setting will keep the LED at whatever its current + state is, without producing a glitch. The default is off if this + property is not present. Examples: @@ -30,14 +37,22 @@ leds { gpios = <&mcu_pio 0 1>; /* Active low */ linux,default-trigger = "ide-disk"; }; + + fault { + gpios = <&mcu_pio 1 0>; + /* Keep LED on if BIOS detected hardware fault */ + default-state = "keep"; + }; }; run-control { compatible = "gpio-leds"; red { gpios = <&mpc8572 6 0>; + default-state = "off"; }; green { gpios = <&mpc8572 7 0>; + default-state = "on"; }; } diff --git a/Documentation/powerpc/dts-bindings/gpio/mdio.txt b/Documentation/powerpc/dts-bindings/gpio/mdio.txt new file mode 100644 index 000000000000..bc9549529014 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/gpio/mdio.txt @@ -0,0 +1,19 @@ +MDIO on GPIOs + +Currently defined compatibles: +- virtual,gpio-mdio + +MDC and MDIO lines connected to GPIO controllers are listed in the +gpios property as described in section VIII.1 in the following order: + +MDC, MDIO. + +Example: + +mdio { + compatible = "virtual,mdio-gpio"; + #address-cells = <1>; + #size-cells = <0>; + gpios = <&qe_pio_a 11 + &qe_pio_c 6>; +}; diff --git a/Documentation/powerpc/dts-bindings/marvell.txt b/Documentation/powerpc/dts-bindings/marvell.txt new file mode 100644 index 000000000000..3708a2fd4747 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/marvell.txt @@ -0,0 +1,521 @@ +Marvell Discovery mv64[345]6x System Controller chips +=========================================================== + +The Marvell mv64[345]60 series of system controller chips contain +many of the peripherals needed to implement a complete computer +system. In this section, we define device tree nodes to describe +the system controller chip itself and each of the peripherals +which it contains. Compatible string values for each node are +prefixed with the string "marvell,", for Marvell Technology Group Ltd. + +1) The /system-controller node + + This node is used to represent the system-controller and must be + present when the system uses a system controller chip. The top-level + system-controller node contains information that is global to all + devices within the system controller chip. The node name begins + with "system-controller" followed by the unit address, which is + the base address of the memory-mapped register set for the system + controller chip. + + Required properties: + + - ranges : Describes the translation of system controller addresses + for memory mapped registers. + - clock-frequency: Contains the main clock frequency for the system + controller chip. + - reg : This property defines the address and size of the + memory-mapped registers contained within the system controller + chip. The address specified in the "reg" property should match + the unit address of the system-controller node. + - #address-cells : Address representation for system controller + devices. This field represents the number of cells needed to + represent the address of the memory-mapped registers of devices + within the system controller chip. + - #size-cells : Size representation for for the memory-mapped + registers within the system controller chip. + - #interrupt-cells : Defines the width of cells used to represent + interrupts. + + Optional properties: + + - model : The specific model of the system controller chip. Such + as, "mv64360", "mv64460", or "mv64560". + - compatible : A string identifying the compatibility identifiers + of the system controller chip. + + The system-controller node contains child nodes for each system + controller device that the platform uses. Nodes should not be created + for devices which exist on the system controller chip but are not used + + Example Marvell Discovery mv64360 system-controller node: + + system-controller@f1000000 { /* Marvell Discovery mv64360 */ + #address-cells = <1>; + #size-cells = <1>; + model = "mv64360"; /* Default */ + compatible = "marvell,mv64360"; + clock-frequency = <133333333>; + reg = <0xf1000000 0x10000>; + virtual-reg = <0xf1000000>; + ranges = <0x88000000 0x88000000 0x1000000 /* PCI 0 I/O Space */ + 0x80000000 0x80000000 0x8000000 /* PCI 0 MEM Space */ + 0xa0000000 0xa0000000 0x4000000 /* User FLASH */ + 0x00000000 0xf1000000 0x0010000 /* Bridge's regs */ + 0xf2000000 0xf2000000 0x0040000>;/* Integrated SRAM */ + + [ child node definitions... ] + } + +2) Child nodes of /system-controller + + a) Marvell Discovery MDIO bus + + The MDIO is a bus to which the PHY devices are connected. For each + device that exists on this bus, a child node should be created. See + the definition of the PHY node below for an example of how to define + a PHY. + + Required properties: + - #address-cells : Should be <1> + - #size-cells : Should be <0> + - device_type : Should be "mdio" + - compatible : Should be "marvell,mv64360-mdio" + + Example: + + mdio { + #address-cells = <1>; + #size-cells = <0>; + device_type = "mdio"; + compatible = "marvell,mv64360-mdio"; + + ethernet-phy@0 { + ...... + }; + }; + + + b) Marvell Discovery ethernet controller + + The Discover ethernet controller is described with two levels + of nodes. The first level describes an ethernet silicon block + and the second level describes up to 3 ethernet nodes within + that block. The reason for the multiple levels is that the + registers for the node are interleaved within a single set + of registers. The "ethernet-block" level describes the + shared register set, and the "ethernet" nodes describe ethernet + port-specific properties. + + Ethernet block node + + Required properties: + - #address-cells : <1> + - #size-cells : <0> + - compatible : "marvell,mv64360-eth-block" + - reg : Offset and length of the register set for this block + + Example Discovery Ethernet block node: + ethernet-block@2000 { + #address-cells = <1>; + #size-cells = <0>; + compatible = "marvell,mv64360-eth-block"; + reg = <0x2000 0x2000>; + ethernet@0 { + ....... + }; + }; + + Ethernet port node + + Required properties: + - device_type : Should be "network". + - compatible : Should be "marvell,mv64360-eth". + - reg : Should be <0>, <1>, or <2>, according to which registers + within the silicon block the device uses. + - interrupts : <a> where a is the interrupt number for the port. + - interrupt-parent : the phandle for the interrupt controller + that services interrupts for this device. + - phy : the phandle for the PHY connected to this ethernet + controller. + - local-mac-address : 6 bytes, MAC address + + Example Discovery Ethernet port node: + ethernet@0 { + device_type = "network"; + compatible = "marvell,mv64360-eth"; + reg = <0>; + interrupts = <32>; + interrupt-parent = <&PIC>; + phy = <&PHY0>; + local-mac-address = [ 00 00 00 00 00 00 ]; + }; + + + + c) Marvell Discovery PHY nodes + + Required properties: + - device_type : Should be "ethernet-phy" + - interrupts : <a> where a is the interrupt number for this phy. + - interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + - reg : The ID number for the phy, usually a small integer + + Example Discovery PHY node: + ethernet-phy@1 { + device_type = "ethernet-phy"; + compatible = "broadcom,bcm5421"; + interrupts = <76>; /* GPP 12 */ + interrupt-parent = <&PIC>; + reg = <1>; + }; + + + d) Marvell Discovery SDMA nodes + + Represent DMA hardware associated with the MPSC (multiprotocol + serial controllers). + + Required properties: + - compatible : "marvell,mv64360-sdma" + - reg : Offset and length of the register set for this device + - interrupts : <a> where a is the interrupt number for the DMA + device. + - interrupt-parent : the phandle for the interrupt controller + that services interrupts for this device. + + Example Discovery SDMA node: + sdma@4000 { + compatible = "marvell,mv64360-sdma"; + reg = <0x4000 0xc18>; + virtual-reg = <0xf1004000>; + interrupts = <36>; + interrupt-parent = <&PIC>; + }; + + + e) Marvell Discovery BRG nodes + + Represent baud rate generator hardware associated with the MPSC + (multiprotocol serial controllers). + + Required properties: + - compatible : "marvell,mv64360-brg" + - reg : Offset and length of the register set for this device + - clock-src : A value from 0 to 15 which selects the clock + source for the baud rate generator. This value corresponds + to the CLKS value in the BRGx configuration register. See + the mv64x60 User's Manual. + - clock-frequence : The frequency (in Hz) of the baud rate + generator's input clock. + - current-speed : The current speed setting (presumably by + firmware) of the baud rate generator. + + Example Discovery BRG node: + brg@b200 { + compatible = "marvell,mv64360-brg"; + reg = <0xb200 0x8>; + clock-src = <8>; + clock-frequency = <133333333>; + current-speed = <9600>; + }; + + + f) Marvell Discovery CUNIT nodes + + Represent the Serial Communications Unit device hardware. + + Required properties: + - reg : Offset and length of the register set for this device + + Example Discovery CUNIT node: + cunit@f200 { + reg = <0xf200 0x200>; + }; + + + g) Marvell Discovery MPSCROUTING nodes + + Represent the Discovery's MPSC routing hardware + + Required properties: + - reg : Offset and length of the register set for this device + + Example Discovery CUNIT node: + mpscrouting@b500 { + reg = <0xb400 0xc>; + }; + + + h) Marvell Discovery MPSCINTR nodes + + Represent the Discovery's MPSC DMA interrupt hardware registers + (SDMA cause and mask registers). + + Required properties: + - reg : Offset and length of the register set for this device + + Example Discovery MPSCINTR node: + mpsintr@b800 { + reg = <0xb800 0x100>; + }; + + + i) Marvell Discovery MPSC nodes + + Represent the Discovery's MPSC (Multiprotocol Serial Controller) + serial port. + + Required properties: + - device_type : "serial" + - compatible : "marvell,mv64360-mpsc" + - reg : Offset and length of the register set for this device + - sdma : the phandle for the SDMA node used by this port + - brg : the phandle for the BRG node used by this port + - cunit : the phandle for the CUNIT node used by this port + - mpscrouting : the phandle for the MPSCROUTING node used by this port + - mpscintr : the phandle for the MPSCINTR node used by this port + - cell-index : the hardware index of this cell in the MPSC core + - max_idle : value needed for MPSC CHR3 (Maximum Frame Length) + register + - interrupts : <a> where a is the interrupt number for the MPSC. + - interrupt-parent : the phandle for the interrupt controller + that services interrupts for this device. + + Example Discovery MPSCINTR node: + mpsc@8000 { + device_type = "serial"; + compatible = "marvell,mv64360-mpsc"; + reg = <0x8000 0x38>; + virtual-reg = <0xf1008000>; + sdma = <&SDMA0>; + brg = <&BRG0>; + cunit = <&CUNIT>; + mpscrouting = <&MPSCROUTING>; + mpscintr = <&MPSCINTR>; + cell-index = <0>; + max_idle = <40>; + interrupts = <40>; + interrupt-parent = <&PIC>; + }; + + + j) Marvell Discovery Watch Dog Timer nodes + + Represent the Discovery's watchdog timer hardware + + Required properties: + - compatible : "marvell,mv64360-wdt" + - reg : Offset and length of the register set for this device + + Example Discovery Watch Dog Timer node: + wdt@b410 { + compatible = "marvell,mv64360-wdt"; + reg = <0xb410 0x8>; + }; + + + k) Marvell Discovery I2C nodes + + Represent the Discovery's I2C hardware + + Required properties: + - device_type : "i2c" + - compatible : "marvell,mv64360-i2c" + - reg : Offset and length of the register set for this device + - interrupts : <a> where a is the interrupt number for the I2C. + - interrupt-parent : the phandle for the interrupt controller + that services interrupts for this device. + + Example Discovery I2C node: + compatible = "marvell,mv64360-i2c"; + reg = <0xc000 0x20>; + virtual-reg = <0xf100c000>; + interrupts = <37>; + interrupt-parent = <&PIC>; + }; + + + l) Marvell Discovery PIC (Programmable Interrupt Controller) nodes + + Represent the Discovery's PIC hardware + + Required properties: + - #interrupt-cells : <1> + - #address-cells : <0> + - compatible : "marvell,mv64360-pic" + - reg : Offset and length of the register set for this device + - interrupt-controller + + Example Discovery PIC node: + pic { + #interrupt-cells = <1>; + #address-cells = <0>; + compatible = "marvell,mv64360-pic"; + reg = <0x0 0x88>; + interrupt-controller; + }; + + + m) Marvell Discovery MPP (Multipurpose Pins) multiplexing nodes + + Represent the Discovery's MPP hardware + + Required properties: + - compatible : "marvell,mv64360-mpp" + - reg : Offset and length of the register set for this device + + Example Discovery MPP node: + mpp@f000 { + compatible = "marvell,mv64360-mpp"; + reg = <0xf000 0x10>; + }; + + + n) Marvell Discovery GPP (General Purpose Pins) nodes + + Represent the Discovery's GPP hardware + + Required properties: + - compatible : "marvell,mv64360-gpp" + - reg : Offset and length of the register set for this device + + Example Discovery GPP node: + gpp@f000 { + compatible = "marvell,mv64360-gpp"; + reg = <0xf100 0x20>; + }; + + + o) Marvell Discovery PCI host bridge node + + Represents the Discovery's PCI host bridge device. The properties + for this node conform to Rev 2.1 of the PCI Bus Binding to IEEE + 1275-1994. A typical value for the compatible property is + "marvell,mv64360-pci". + + Example Discovery PCI host bridge node + pci@80000000 { + #address-cells = <3>; + #size-cells = <2>; + #interrupt-cells = <1>; + device_type = "pci"; + compatible = "marvell,mv64360-pci"; + reg = <0xcf8 0x8>; + ranges = <0x01000000 0x0 0x0 + 0x88000000 0x0 0x01000000 + 0x02000000 0x0 0x80000000 + 0x80000000 0x0 0x08000000>; + bus-range = <0 255>; + clock-frequency = <66000000>; + interrupt-parent = <&PIC>; + interrupt-map-mask = <0xf800 0x0 0x0 0x7>; + interrupt-map = < + /* IDSEL 0x0a */ + 0x5000 0 0 1 &PIC 80 + 0x5000 0 0 2 &PIC 81 + 0x5000 0 0 3 &PIC 91 + 0x5000 0 0 4 &PIC 93 + + /* IDSEL 0x0b */ + 0x5800 0 0 1 &PIC 91 + 0x5800 0 0 2 &PIC 93 + 0x5800 0 0 3 &PIC 80 + 0x5800 0 0 4 &PIC 81 + + /* IDSEL 0x0c */ + 0x6000 0 0 1 &PIC 91 + 0x6000 0 0 2 &PIC 93 + 0x6000 0 0 3 &PIC 80 + 0x6000 0 0 4 &PIC 81 + + /* IDSEL 0x0d */ + 0x6800 0 0 1 &PIC 93 + 0x6800 0 0 2 &PIC 80 + 0x6800 0 0 3 &PIC 81 + 0x6800 0 0 4 &PIC 91 + >; + }; + + + p) Marvell Discovery CPU Error nodes + + Represent the Discovery's CPU error handler device. + + Required properties: + - compatible : "marvell,mv64360-cpu-error" + - reg : Offset and length of the register set for this device + - interrupts : the interrupt number for this device + - interrupt-parent : the phandle for the interrupt controller + that services interrupts for this device. + + Example Discovery CPU Error node: + cpu-error@0070 { + compatible = "marvell,mv64360-cpu-error"; + reg = <0x70 0x10 0x128 0x28>; + interrupts = <3>; + interrupt-parent = <&PIC>; + }; + + + q) Marvell Discovery SRAM Controller nodes + + Represent the Discovery's SRAM controller device. + + Required properties: + - compatible : "marvell,mv64360-sram-ctrl" + - reg : Offset and length of the register set for this device + - interrupts : the interrupt number for this device + - interrupt-parent : the phandle for the interrupt controller + that services interrupts for this device. + + Example Discovery SRAM Controller node: + sram-ctrl@0380 { + compatible = "marvell,mv64360-sram-ctrl"; + reg = <0x380 0x80>; + interrupts = <13>; + interrupt-parent = <&PIC>; + }; + + + r) Marvell Discovery PCI Error Handler nodes + + Represent the Discovery's PCI error handler device. + + Required properties: + - compatible : "marvell,mv64360-pci-error" + - reg : Offset and length of the register set for this device + - interrupts : the interrupt number for this device + - interrupt-parent : the phandle for the interrupt controller + that services interrupts for this device. + + Example Discovery PCI Error Handler node: + pci-error@1d40 { + compatible = "marvell,mv64360-pci-error"; + reg = <0x1d40 0x40 0xc28 0x4>; + interrupts = <12>; + interrupt-parent = <&PIC>; + }; + + + s) Marvell Discovery Memory Controller nodes + + Represent the Discovery's memory controller device. + + Required properties: + - compatible : "marvell,mv64360-mem-ctrl" + - reg : Offset and length of the register set for this device + - interrupts : the interrupt number for this device + - interrupt-parent : the phandle for the interrupt controller + that services interrupts for this device. + + Example Discovery Memory Controller node: + mem-ctrl@1400 { + compatible = "marvell,mv64360-mem-ctrl"; + reg = <0x1400 0x60>; + interrupts = <17>; + interrupt-parent = <&PIC>; + }; + + diff --git a/Documentation/powerpc/dts-bindings/phy.txt b/Documentation/powerpc/dts-bindings/phy.txt new file mode 100644 index 000000000000..bb8c742eb8c5 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/phy.txt @@ -0,0 +1,25 @@ +PHY nodes + +Required properties: + + - device_type : Should be "ethernet-phy" + - interrupts : <a b> where a is the interrupt number and b is a + field that represents an encoding of the sense and level + information for the interrupt. This should be encoded based on + the information in section 2) depending on the type of interrupt + controller you have. + - interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + - reg : The ID number for the phy, usually a small integer + - linux,phandle : phandle for this node; likely referenced by an + ethernet controller node. + +Example: + +ethernet-phy@0 { + linux,phandle = <2452000> + interrupt-parent = <40000>; + interrupts = <35 1>; + reg = <0>; + device_type = "ethernet-phy"; +}; diff --git a/Documentation/powerpc/dts-bindings/spi-bus.txt b/Documentation/powerpc/dts-bindings/spi-bus.txt new file mode 100644 index 000000000000..e782add2e457 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/spi-bus.txt @@ -0,0 +1,57 @@ +SPI (Serial Peripheral Interface) busses + +SPI busses can be described with a node for the SPI master device +and a set of child nodes for each SPI slave on the bus. For this +discussion, it is assumed that the system's SPI controller is in +SPI master mode. This binding does not describe SPI controllers +in slave mode. + +The SPI master node requires the following properties: +- #address-cells - number of cells required to define a chip select + address on the SPI bus. +- #size-cells - should be zero. +- compatible - name of SPI bus controller following generic names + recommended practice. +No other properties are required in the SPI bus node. It is assumed +that a driver for an SPI bus device will understand that it is an SPI bus. +However, the binding does not attempt to define the specific method for +assigning chip select numbers. Since SPI chip select configuration is +flexible and non-standardized, it is left out of this binding with the +assumption that board specific platform code will be used to manage +chip selects. Individual drivers can define additional properties to +support describing the chip select layout. + +SPI slave nodes must be children of the SPI master node and can +contain the following properties. +- reg - (required) chip select address of device. +- compatible - (required) name of SPI device following generic names + recommended practice +- spi-max-frequency - (required) Maximum SPI clocking speed of device in Hz +- spi-cpol - (optional) Empty property indicating device requires + inverse clock polarity (CPOL) mode +- spi-cpha - (optional) Empty property indicating device requires + shifted clock phase (CPHA) mode +- spi-cs-high - (optional) Empty property indicating device requires + chip select active high + +SPI example for an MPC5200 SPI bus: + spi@f00 { + #address-cells = <1>; + #size-cells = <0>; + compatible = "fsl,mpc5200b-spi","fsl,mpc5200-spi"; + reg = <0xf00 0x20>; + interrupts = <2 13 0 2 14 0>; + interrupt-parent = <&mpc5200_pic>; + + ethernet-switch@0 { + compatible = "micrel,ks8995m"; + spi-max-frequency = <1000000>; + reg = <0>; + }; + + codec@1 { + compatible = "ti,tlv320aic26"; + spi-max-frequency = <100000>; + reg = <1>; + }; + }; diff --git a/Documentation/powerpc/dts-bindings/usb-ehci.txt b/Documentation/powerpc/dts-bindings/usb-ehci.txt new file mode 100644 index 000000000000..fa18612f757b --- /dev/null +++ b/Documentation/powerpc/dts-bindings/usb-ehci.txt @@ -0,0 +1,25 @@ +USB EHCI controllers + +Required properties: + - compatible : should be "usb-ehci". + - reg : should contain at least address and length of the standard EHCI + register set for the device. Optional platform-dependent registers + (debug-port or other) can be also specified here, but only after + definition of standard EHCI registers. + - interrupts : one EHCI interrupt should be described here. +If device registers are implemented in big endian mode, the device +node should have "big-endian-regs" property. +If controller implementation operates with big endian descriptors, +"big-endian-desc" property should be specified. +If both big endian registers and descriptors are used by the controller +implementation, "big-endian" property can be specified instead of having +both "big-endian-regs" and "big-endian-desc". + +Example (Sequoia 440EPx): + ehci@e0000300 { + compatible = "ibm,usb-ehci-440epx", "usb-ehci"; + interrupt-parent = <&UIC0>; + interrupts = <1a 4>; + reg = <0 e0000300 90 0 e0000390 70>; + big-endian; + }; diff --git a/Documentation/powerpc/dts-bindings/xilinx.txt b/Documentation/powerpc/dts-bindings/xilinx.txt new file mode 100644 index 000000000000..80339fe4300b --- /dev/null +++ b/Documentation/powerpc/dts-bindings/xilinx.txt @@ -0,0 +1,295 @@ + d) Xilinx IP cores + + The Xilinx EDK toolchain ships with a set of IP cores (devices) for use + in Xilinx Spartan and Virtex FPGAs. The devices cover the whole range + of standard device types (network, serial, etc.) and miscellaneous + devices (gpio, LCD, spi, etc). Also, since these devices are + implemented within the fpga fabric every instance of the device can be + synthesised with different options that change the behaviour. + + Each IP-core has a set of parameters which the FPGA designer can use to + control how the core is synthesized. Historically, the EDK tool would + extract the device parameters relevant to device drivers and copy them + into an 'xparameters.h' in the form of #define symbols. This tells the + device drivers how the IP cores are configured, but it requres the kernel + to be recompiled every time the FPGA bitstream is resynthesized. + + The new approach is to export the parameters into the device tree and + generate a new device tree each time the FPGA bitstream changes. The + parameters which used to be exported as #defines will now become + properties of the device node. In general, device nodes for IP-cores + will take the following form: + + (name): (generic-name)@(base-address) { + compatible = "xlnx,(ip-core-name)-(HW_VER)" + [, (list of compatible devices), ...]; + reg = <(baseaddr) (size)>; + interrupt-parent = <&interrupt-controller-phandle>; + interrupts = < ... >; + xlnx,(parameter1) = "(string-value)"; + xlnx,(parameter2) = <(int-value)>; + }; + + (generic-name): an open firmware-style name that describes the + generic class of device. Preferably, this is one word, such + as 'serial' or 'ethernet'. + (ip-core-name): the name of the ip block (given after the BEGIN + directive in system.mhs). Should be in lowercase + and all underscores '_' converted to dashes '-'. + (name): is derived from the "PARAMETER INSTANCE" value. + (parameter#): C_* parameters from system.mhs. The C_ prefix is + dropped from the parameter name, the name is converted + to lowercase and all underscore '_' characters are + converted to dashes '-'. + (baseaddr): the baseaddr parameter value (often named C_BASEADDR). + (HW_VER): from the HW_VER parameter. + (size): the address range size (often C_HIGHADDR - C_BASEADDR + 1). + + Typically, the compatible list will include the exact IP core version + followed by an older IP core version which implements the same + interface or any other device with the same interface. + + 'reg', 'interrupt-parent' and 'interrupts' are all optional properties. + + For example, the following block from system.mhs: + + BEGIN opb_uartlite + PARAMETER INSTANCE = opb_uartlite_0 + PARAMETER HW_VER = 1.00.b + PARAMETER C_BAUDRATE = 115200 + PARAMETER C_DATA_BITS = 8 + PARAMETER C_ODD_PARITY = 0 + PARAMETER C_USE_PARITY = 0 + PARAMETER C_CLK_FREQ = 50000000 + PARAMETER C_BASEADDR = 0xEC100000 + PARAMETER C_HIGHADDR = 0xEC10FFFF + BUS_INTERFACE SOPB = opb_7 + PORT OPB_Clk = CLK_50MHz + PORT Interrupt = opb_uartlite_0_Interrupt + PORT RX = opb_uartlite_0_RX + PORT TX = opb_uartlite_0_TX + PORT OPB_Rst = sys_bus_reset_0 + END + + becomes the following device tree node: + + opb_uartlite_0: serial@ec100000 { + device_type = "serial"; + compatible = "xlnx,opb-uartlite-1.00.b"; + reg = <ec100000 10000>; + interrupt-parent = <&opb_intc_0>; + interrupts = <1 0>; // got this from the opb_intc parameters + current-speed = <d#115200>; // standard serial device prop + clock-frequency = <d#50000000>; // standard serial device prop + xlnx,data-bits = <8>; + xlnx,odd-parity = <0>; + xlnx,use-parity = <0>; + }; + + Some IP cores actually implement 2 or more logical devices. In + this case, the device should still describe the whole IP core with + a single node and add a child node for each logical device. The + ranges property can be used to translate from parent IP-core to the + registers of each device. In addition, the parent node should be + compatible with the bus type 'xlnx,compound', and should contain + #address-cells and #size-cells, as with any other bus. (Note: this + makes the assumption that both logical devices have the same bus + binding. If this is not true, then separate nodes should be used + for each logical device). The 'cell-index' property can be used to + enumerate logical devices within an IP core. For example, the + following is the system.mhs entry for the dual ps2 controller found + on the ml403 reference design. + + BEGIN opb_ps2_dual_ref + PARAMETER INSTANCE = opb_ps2_dual_ref_0 + PARAMETER HW_VER = 1.00.a + PARAMETER C_BASEADDR = 0xA9000000 + PARAMETER C_HIGHADDR = 0xA9001FFF + BUS_INTERFACE SOPB = opb_v20_0 + PORT Sys_Intr1 = ps2_1_intr + PORT Sys_Intr2 = ps2_2_intr + PORT Clkin1 = ps2_clk_rx_1 + PORT Clkin2 = ps2_clk_rx_2 + PORT Clkpd1 = ps2_clk_tx_1 + PORT Clkpd2 = ps2_clk_tx_2 + PORT Rx1 = ps2_d_rx_1 + PORT Rx2 = ps2_d_rx_2 + PORT Txpd1 = ps2_d_tx_1 + PORT Txpd2 = ps2_d_tx_2 + END + + It would result in the following device tree nodes: + + opb_ps2_dual_ref_0: opb-ps2-dual-ref@a9000000 { + #address-cells = <1>; + #size-cells = <1>; + compatible = "xlnx,compound"; + ranges = <0 a9000000 2000>; + // If this device had extra parameters, then they would + // go here. + ps2@0 { + compatible = "xlnx,opb-ps2-dual-ref-1.00.a"; + reg = <0 40>; + interrupt-parent = <&opb_intc_0>; + interrupts = <3 0>; + cell-index = <0>; + }; + ps2@1000 { + compatible = "xlnx,opb-ps2-dual-ref-1.00.a"; + reg = <1000 40>; + interrupt-parent = <&opb_intc_0>; + interrupts = <3 0>; + cell-index = <0>; + }; + }; + + Also, the system.mhs file defines bus attachments from the processor + to the devices. The device tree structure should reflect the bus + attachments. Again an example; this system.mhs fragment: + + BEGIN ppc405_virtex4 + PARAMETER INSTANCE = ppc405_0 + PARAMETER HW_VER = 1.01.a + BUS_INTERFACE DPLB = plb_v34_0 + BUS_INTERFACE IPLB = plb_v34_0 + END + + BEGIN opb_intc + PARAMETER INSTANCE = opb_intc_0 + PARAMETER HW_VER = 1.00.c + PARAMETER C_BASEADDR = 0xD1000FC0 + PARAMETER C_HIGHADDR = 0xD1000FDF + BUS_INTERFACE SOPB = opb_v20_0 + END + + BEGIN opb_uart16550 + PARAMETER INSTANCE = opb_uart16550_0 + PARAMETER HW_VER = 1.00.d + PARAMETER C_BASEADDR = 0xa0000000 + PARAMETER C_HIGHADDR = 0xa0001FFF + BUS_INTERFACE SOPB = opb_v20_0 + END + + BEGIN plb_v34 + PARAMETER INSTANCE = plb_v34_0 + PARAMETER HW_VER = 1.02.a + END + + BEGIN plb_bram_if_cntlr + PARAMETER INSTANCE = plb_bram_if_cntlr_0 + PARAMETER HW_VER = 1.00.b + PARAMETER C_BASEADDR = 0xFFFF0000 + PARAMETER C_HIGHADDR = 0xFFFFFFFF + BUS_INTERFACE SPLB = plb_v34_0 + END + + BEGIN plb2opb_bridge + PARAMETER INSTANCE = plb2opb_bridge_0 + PARAMETER HW_VER = 1.01.a + PARAMETER C_RNG0_BASEADDR = 0x20000000 + PARAMETER C_RNG0_HIGHADDR = 0x3FFFFFFF + PARAMETER C_RNG1_BASEADDR = 0x60000000 + PARAMETER C_RNG1_HIGHADDR = 0x7FFFFFFF + PARAMETER C_RNG2_BASEADDR = 0x80000000 + PARAMETER C_RNG2_HIGHADDR = 0xBFFFFFFF + PARAMETER C_RNG3_BASEADDR = 0xC0000000 + PARAMETER C_RNG3_HIGHADDR = 0xDFFFFFFF + BUS_INTERFACE SPLB = plb_v34_0 + BUS_INTERFACE MOPB = opb_v20_0 + END + + Gives this device tree (some properties removed for clarity): + + plb@0 { + #address-cells = <1>; + #size-cells = <1>; + compatible = "xlnx,plb-v34-1.02.a"; + device_type = "ibm,plb"; + ranges; // 1:1 translation + + plb_bram_if_cntrl_0: bram@ffff0000 { + reg = <ffff0000 10000>; + } + + opb@20000000 { + #address-cells = <1>; + #size-cells = <1>; + ranges = <20000000 20000000 20000000 + 60000000 60000000 20000000 + 80000000 80000000 40000000 + c0000000 c0000000 20000000>; + + opb_uart16550_0: serial@a0000000 { + reg = <a00000000 2000>; + }; + + opb_intc_0: interrupt-controller@d1000fc0 { + reg = <d1000fc0 20>; + }; + }; + }; + + That covers the general approach to binding xilinx IP cores into the + device tree. The following are bindings for specific devices: + + i) Xilinx ML300 Framebuffer + + Simple framebuffer device from the ML300 reference design (also on the + ML403 reference design as well as others). + + Optional properties: + - resolution = <xres yres> : pixel resolution of framebuffer. Some + implementations use a different resolution. + Default is <d#640 d#480> + - virt-resolution = <xvirt yvirt> : Size of framebuffer in memory. + Default is <d#1024 d#480>. + - rotate-display (empty) : rotate display 180 degrees. + + ii) Xilinx SystemACE + + The Xilinx SystemACE device is used to program FPGAs from an FPGA + bitstream stored on a CF card. It can also be used as a generic CF + interface device. + + Optional properties: + - 8-bit (empty) : Set this property for SystemACE in 8 bit mode + + iii) Xilinx EMAC and Xilinx TEMAC + + Xilinx Ethernet devices. In addition to general xilinx properties + listed above, nodes for these devices should include a phy-handle + property, and may include other common network device properties + like local-mac-address. + + iv) Xilinx Uartlite + + Xilinx uartlite devices are simple fixed speed serial ports. + + Required properties: + - current-speed : Baud rate of uartlite + + v) Xilinx hwicap + + Xilinx hwicap devices provide access to the configuration logic + of the FPGA through the Internal Configuration Access Port + (ICAP). The ICAP enables partial reconfiguration of the FPGA, + readback of the configuration information, and some control over + 'warm boots' of the FPGA fabric. + + Required properties: + - xlnx,family : The family of the FPGA, necessary since the + capabilities of the underlying ICAP hardware + differ between different families. May be + 'virtex2p', 'virtex4', or 'virtex5'. + + vi) Xilinx Uart 16550 + + Xilinx UART 16550 devices are very similar to the NS16550 but with + different register spacing and an offset from the base address. + + Required properties: + - clock-frequency : Frequency of the clock input + - reg-offset : A value of 3 is required + - reg-shift : A value of 2 is required + + diff --git a/Documentation/sound/alsa/HD-Audio-Models.txt b/Documentation/sound/alsa/HD-Audio-Models.txt index 0d8d23581c44..939a3dd58148 100644 --- a/Documentation/sound/alsa/HD-Audio-Models.txt +++ b/Documentation/sound/alsa/HD-Audio-Models.txt @@ -240,6 +240,7 @@ AD1986A laptop-automute 2-channel with EAPD and HP-automute (Lenovo N100) ultra 2-channel with EAPD (Samsung Ultra tablet PC) samsung 2-channel with EAPD (Samsung R65) + samsung-p50 2-channel with HP-automute (Samsung P50) AD1988/AD1988B/AD1989A/AD1989B ============================== diff --git a/Documentation/spi/spidev_test.c b/Documentation/spi/spidev_test.c index cf0e3ce0d526..c1a5aad3c75a 100644 --- a/Documentation/spi/spidev_test.c +++ b/Documentation/spi/spidev_test.c @@ -99,11 +99,13 @@ void parse_opts(int argc, char *argv[]) { "lsb", 0, 0, 'L' }, { "cs-high", 0, 0, 'C' }, { "3wire", 0, 0, '3' }, + { "no-cs", 0, 0, 'N' }, + { "ready", 0, 0, 'R' }, { NULL, 0, 0, 0 }, }; int c; - c = getopt_long(argc, argv, "D:s:d:b:lHOLC3", lopts, NULL); + c = getopt_long(argc, argv, "D:s:d:b:lHOLC3NR", lopts, NULL); if (c == -1) break; @@ -139,6 +141,12 @@ void parse_opts(int argc, char *argv[]) case '3': mode |= SPI_3WIRE; break; + case 'N': + mode |= SPI_NO_CS; + break; + case 'R': + mode |= SPI_READY; + break; default: print_usage(argv[0]); break; |