diff options
Diffstat (limited to 'arch/arm/mm/mmu.c')
-rw-r--r-- | arch/arm/mm/mmu.c | 173 |
1 files changed, 74 insertions, 99 deletions
diff --git a/arch/arm/mm/mmu.c b/arch/arm/mm/mmu.c index 4e6ef896c619..6ca7d9aa896f 100644 --- a/arch/arm/mm/mmu.c +++ b/arch/arm/mm/mmu.c @@ -1112,22 +1112,22 @@ void __init sanity_check_meminfo(void) } /* - * Find the first non-section-aligned page, and point + * Find the first non-pmd-aligned page, and point * memblock_limit at it. This relies on rounding the - * limit down to be section-aligned, which happens at - * the end of this function. + * limit down to be pmd-aligned, which happens at the + * end of this function. * * With this algorithm, the start or end of almost any - * bank can be non-section-aligned. The only exception - * is that the start of the bank 0 must be section- + * bank can be non-pmd-aligned. The only exception is + * that the start of the bank 0 must be section- * aligned, since otherwise memory would need to be * allocated when mapping the start of bank 0, which * occurs before any free memory is mapped. */ if (!memblock_limit) { - if (!IS_ALIGNED(block_start, SECTION_SIZE)) + if (!IS_ALIGNED(block_start, PMD_SIZE)) memblock_limit = block_start; - else if (!IS_ALIGNED(block_end, SECTION_SIZE)) + else if (!IS_ALIGNED(block_end, PMD_SIZE)) memblock_limit = arm_lowmem_limit; } @@ -1137,12 +1137,12 @@ void __init sanity_check_meminfo(void) high_memory = __va(arm_lowmem_limit - 1) + 1; /* - * Round the memblock limit down to a section size. This + * Round the memblock limit down to a pmd size. This * helps to ensure that we will allocate memory from the - * last full section, which should be mapped. + * last full pmd, which should be mapped. */ if (memblock_limit) - memblock_limit = round_down(memblock_limit, SECTION_SIZE); + memblock_limit = round_down(memblock_limit, PMD_SIZE); if (!memblock_limit) memblock_limit = arm_lowmem_limit; @@ -1387,123 +1387,98 @@ static void __init map_lowmem(void) } } -#ifdef CONFIG_ARM_LPAE +#ifdef CONFIG_ARM_PV_FIXUP +extern unsigned long __atags_pointer; +typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata); +pgtables_remap lpae_pgtables_remap_asm; + /* * early_paging_init() recreates boot time page table setup, allowing machines * to switch over to a high (>4G) address space on LPAE systems */ -void __init early_paging_init(const struct machine_desc *mdesc, - struct proc_info_list *procinfo) +void __init early_paging_init(const struct machine_desc *mdesc) { - pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags; - unsigned long map_start, map_end; - pgd_t *pgd0, *pgdk; - pud_t *pud0, *pudk, *pud_start; - pmd_t *pmd0, *pmdk; - phys_addr_t phys; - int i; + pgtables_remap *lpae_pgtables_remap; + unsigned long pa_pgd; + unsigned int cr, ttbcr; + long long offset; + void *boot_data; - if (!(mdesc->init_meminfo)) + if (!mdesc->pv_fixup) return; - /* remap kernel code and data */ - map_start = init_mm.start_code & PMD_MASK; - map_end = ALIGN(init_mm.brk, PMD_SIZE); + offset = mdesc->pv_fixup(); + if (offset == 0) + return; - /* get a handle on things... */ - pgd0 = pgd_offset_k(0); - pud_start = pud0 = pud_offset(pgd0, 0); - pmd0 = pmd_offset(pud0, 0); + /* + * Get the address of the remap function in the 1:1 identity + * mapping setup by the early page table assembly code. We + * must get this prior to the pv update. The following barrier + * ensures that this is complete before we fixup any P:V offsets. + */ + lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm); + pa_pgd = __pa(swapper_pg_dir); + boot_data = __va(__atags_pointer); + barrier(); - pgdk = pgd_offset_k(map_start); - pudk = pud_offset(pgdk, map_start); - pmdk = pmd_offset(pudk, map_start); + pr_info("Switching physical address space to 0x%08llx\n", + (u64)PHYS_OFFSET + offset); - mdesc->init_meminfo(); + /* Re-set the phys pfn offset, and the pv offset */ + __pv_offset += offset; + __pv_phys_pfn_offset += PFN_DOWN(offset); /* Run the patch stub to update the constants */ fixup_pv_table(&__pv_table_begin, (&__pv_table_end - &__pv_table_begin) << 2); /* - * Cache cleaning operations for self-modifying code - * We should clean the entries by MVA but running a - * for loop over every pv_table entry pointer would - * just complicate the code. - */ - flush_cache_louis(); - dsb(ishst); - isb(); - - /* - * FIXME: This code is not architecturally compliant: we modify - * the mappings in-place, indeed while they are in use by this - * very same code. This may lead to unpredictable behaviour of - * the CPU. - * - * Even modifying the mappings in a separate page table does - * not resolve this. - * - * The architecture strongly recommends that when a mapping is - * changed, that it is changed by first going via an invalid - * mapping and back to the new mapping. This is to ensure that - * no TLB conflicts (caused by the TLB having more than one TLB - * entry match a translation) can occur. However, doing that - * here will result in unmapping the code we are running. - */ - pr_warn("WARNING: unsafe modification of in-place page tables - tainting kernel\n"); - add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); - - /* - * Remap level 1 table. This changes the physical addresses - * used to refer to the level 2 page tables to the high - * physical address alias, leaving everything else the same. - */ - for (i = 0; i < PTRS_PER_PGD; pud0++, i++) { - set_pud(pud0, - __pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER)); - pmd0 += PTRS_PER_PMD; - } - - /* - * Remap the level 2 table, pointing the mappings at the high - * physical address alias of these pages. - */ - phys = __pa(map_start); - do { - *pmdk++ = __pmd(phys | pmdprot); - phys += PMD_SIZE; - } while (phys < map_end); - - /* - * Ensure that the above updates are flushed out of the cache. - * This is not strictly correct; on a system where the caches - * are coherent with each other, but the MMU page table walks - * may not be coherent, flush_cache_all() may be a no-op, and - * this will fail. + * We changing not only the virtual to physical mapping, but also + * the physical addresses used to access memory. We need to flush + * all levels of cache in the system with caching disabled to + * ensure that all data is written back, and nothing is prefetched + * into the caches. We also need to prevent the TLB walkers + * allocating into the caches too. Note that this is ARMv7 LPAE + * specific. */ + cr = get_cr(); + set_cr(cr & ~(CR_I | CR_C)); + asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr)); + asm volatile("mcr p15, 0, %0, c2, c0, 2" + : : "r" (ttbcr & ~(3 << 8 | 3 << 10))); flush_cache_all(); /* - * Re-write the TTBR values to point them at the high physical - * alias of the page tables. We expect __va() will work on - * cpu_get_pgd(), which returns the value of TTBR0. + * Fixup the page tables - this must be in the idmap region as + * we need to disable the MMU to do this safely, and hence it + * needs to be assembly. It's fairly simple, as we're using the + * temporary tables setup by the initial assembly code. */ - cpu_switch_mm(pgd0, &init_mm); - cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET); + lpae_pgtables_remap(offset, pa_pgd, boot_data); - /* Finally flush any stale TLB values. */ - local_flush_bp_all(); - local_flush_tlb_all(); + /* Re-enable the caches and cacheable TLB walks */ + asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr)); + set_cr(cr); } #else -void __init early_paging_init(const struct machine_desc *mdesc, - struct proc_info_list *procinfo) +void __init early_paging_init(const struct machine_desc *mdesc) { - if (mdesc->init_meminfo) - mdesc->init_meminfo(); + long long offset; + + if (!mdesc->pv_fixup) + return; + + offset = mdesc->pv_fixup(); + if (offset == 0) + return; + + pr_crit("Physical address space modification is only to support Keystone2.\n"); + pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n"); + pr_crit("feature. Your kernel may crash now, have a good day.\n"); + add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); } #endif |