Age | Commit message (Collapse) | Author |
|
commit 71f79fb3179e69b0c1448a2101a866d871c66e7f upstream.
In case a submitted request gets stuck for some reason, the block layer
can prevent the request starvation by starting the scheduled timeout work.
If this stuck request occurs at the same time another thread has started
a queue freeze, the blk_mq_timeout_work will not be able to acquire the
queue reference and will return silently, thus not issuing the timeout.
But since the request is already holding a q_usage_counter reference and
is unable to complete, it will never release its reference, preventing
the queue from completing the freeze started by first thread. This puts
the request_queue in a hung state, forever waiting for the freeze
completion.
This was observed while running IO to a NVMe device at the same time we
toggled the CPU hotplug code. Eventually, once a request got stuck
requiring a timeout during a queue freeze, we saw the CPU Hotplug
notification code get stuck inside blk_mq_freeze_queue_wait, as shown in
the trace below.
[c000000deaf13690] [c000000deaf13738] 0xc000000deaf13738 (unreliable)
[c000000deaf13860] [c000000000015ce8] __switch_to+0x1f8/0x350
[c000000deaf138b0] [c000000000ade0e4] __schedule+0x314/0x990
[c000000deaf13940] [c000000000ade7a8] schedule+0x48/0xc0
[c000000deaf13970] [c0000000005492a4] blk_mq_freeze_queue_wait+0x74/0x110
[c000000deaf139e0] [c00000000054b6a8] blk_mq_queue_reinit_notify+0x1a8/0x2e0
[c000000deaf13a40] [c0000000000e7878] notifier_call_chain+0x98/0x100
[c000000deaf13a90] [c0000000000b8e08] cpu_notify_nofail+0x48/0xa0
[c000000deaf13ac0] [c0000000000b92f0] _cpu_down+0x2a0/0x400
[c000000deaf13b90] [c0000000000b94a8] cpu_down+0x58/0xa0
[c000000deaf13bc0] [c0000000006d5dcc] cpu_subsys_offline+0x2c/0x50
[c000000deaf13bf0] [c0000000006cd244] device_offline+0x104/0x140
[c000000deaf13c30] [c0000000006cd40c] online_store+0x6c/0xc0
[c000000deaf13c80] [c0000000006c8c78] dev_attr_store+0x68/0xa0
[c000000deaf13cc0] [c0000000003974d0] sysfs_kf_write+0x80/0xb0
[c000000deaf13d00] [c0000000003963e8] kernfs_fop_write+0x188/0x200
[c000000deaf13d50] [c0000000002e0f6c] __vfs_write+0x6c/0xe0
[c000000deaf13d90] [c0000000002e1ca0] vfs_write+0xc0/0x230
[c000000deaf13de0] [c0000000002e2cdc] SyS_write+0x6c/0x110
[c000000deaf13e30] [c000000000009204] system_call+0x38/0xb4
The fix is to allow the timeout work to execute in the window between
dropping the initial refcount reference and the release of the last
reference, which actually marks the freeze completion. This can be
achieved with percpu_refcount_tryget, which does not require the counter
to be alive. This way the timeout work can do it's job and terminate a
stuck request even during a freeze, returning its reference and avoiding
the deadlock.
Allowing the timeout to run is just a part of the fix, since for some
devices, we might get stuck again inside the device driver's timeout
handler, should it attempt to allocate a new request in that path -
which is a quite common action for Abort commands, which need to be sent
after a timeout. In NVMe, for instance, we call blk_mq_alloc_request
from inside the timeout handler, which will fail during a freeze, since
it also tries to acquire a queue reference.
I considered a similar change to blk_mq_alloc_request as a generic
solution for further device driver hangs, but we can't do that, since it
would allow new requests to disturb the freeze process. I thought about
creating a new function in the block layer to support unfreezable
requests for these occasions, but after working on it for a while, I
feel like this should be handled in a per-driver basis. I'm now
experimenting with changes to the NVMe timeout path, but I'm open to
suggestions of ways to make this generic.
Signed-off-by: Gabriel Krisman Bertazi <krisman@linux.vnet.ibm.com>
Cc: Brian King <brking@linux.vnet.ibm.com>
Cc: Keith Busch <keith.busch@intel.com>
Cc: linux-nvme@lists.infradead.org
Cc: linux-block@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Giuliano Procida <gprocida@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 287922eb0b186e2a5bf54fdd04b734c25c90035c upstream.
Timer context is not very useful for drivers to perform any meaningful abort
action from. So instead of calling the driver from this useless context
defer it to a workqueue as soon as possible.
Note that while a delayed_work item would seem the right thing here I didn't
dare to use it due to the magic in blk_add_timer that pokes deep into timer
internals. But maybe this encourages Tejun to add a sensible API for that to
the workqueue API and we'll all be fine in the end :)
Contains a major update from Keith Bush:
"This patch removes synchronizing the timeout work so that the timer can
start a freeze on its own queue. The timer enters the queue, so timer
context can only start a freeze, but not wait for frozen."
-------------
NOTE: Back-ported to 4.4.y.
The only parts of the upstream commit that have been kept are various
locking changes, none of which were mentioned in the original commit
message which therefore describes this change not at all.
Timeout callbacks continue to be run via a timer. Both blk_mq_rq_timer
and blk_rq_timed_out_timer will return without without doing any work
if they cannot acquire the queue (without waiting).
-------------
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Giuliano Procida <gprocida@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b3a834b1596ac668df206aa2bb1f191c31f5f5e4 upstream.
When this_order variable in blk_mq_init_rq_map() becomes zero
the code incorrectly decrements the variable and passes the result
to order_to_size() helper causing undefined behaviour:
UBSAN: Undefined behaviour in block/blk-mq.c:1459:27
shift exponent 4294967295 is too large for 32-bit type 'unsigned int'
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.6.0-rc6-00072-g33656a1 #22
Fix the code by checking this_order variable for not having the zero
value first.
Reported-by: Meelis Roos <mroos@linux.ee>
Fixes: 320ae51feed5 ("blk-mq: new multi-queue block IO queueing mechanism")
Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 8ab0b7dc73e1b3e2987d42554b2bff503f692772 ]
HW queues may be unmapped in some cases, such as blk_mq_update_nr_hw_queues(),
then we need to check it before calling blk_mq_tag_idle(), otherwise
the following kernel oops can be triggered, so fix it by checking if
the hw queue is unmapped since it doesn't make sense to idle the tags
any more after hw queues are unmapped.
[ 440.771298] Workqueue: nvme-wq nvme_rdma_del_ctrl_work [nvme_rdma]
[ 440.779104] task: ffff894bae755ee0 ti: ffff893bf9bc8000 task.ti: ffff893bf9bc8000
[ 440.788359] RIP: 0010:[<ffffffffb730e2b4>] [<ffffffffb730e2b4>] __blk_mq_tag_idle+0x24/0x40
[ 440.798697] RSP: 0018:ffff893bf9bcbd10 EFLAGS: 00010286
[ 440.805538] RAX: 0000000000000000 RBX: ffff895bb131dc00 RCX: 000000000000011f
[ 440.814426] RDX: 00000000ffffffff RSI: 0000000000000120 RDI: ffff895bb131dc00
[ 440.823301] RBP: ffff893bf9bcbd10 R08: 000000000001b860 R09: 4a51d361c00c0000
[ 440.832193] R10: b5907f32b4cc7003 R11: ffffd6cabfb57000 R12: ffff894bafd1e008
[ 440.841091] R13: 0000000000000001 R14: ffff895baf770000 R15: 0000000000000080
[ 440.849988] FS: 0000000000000000(0000) GS:ffff894bbdcc0000(0000) knlGS:0000000000000000
[ 440.859955] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 440.867274] CR2: 0000000000000008 CR3: 000000103d098000 CR4: 00000000001407e0
[ 440.876169] Call Trace:
[ 440.879818] [<ffffffffb7309d68>] blk_mq_exit_hctx+0xd8/0xe0
[ 440.887051] [<ffffffffb730dc40>] blk_mq_free_queue+0xf0/0x160
[ 440.894465] [<ffffffffb72ff679>] blk_cleanup_queue+0xd9/0x150
[ 440.901881] [<ffffffffc08a802b>] nvme_ns_remove+0x5b/0xb0 [nvme_core]
[ 440.910068] [<ffffffffc08a811b>] nvme_remove_namespaces+0x3b/0x60 [nvme_core]
[ 440.919026] [<ffffffffc08b817b>] __nvme_rdma_remove_ctrl+0x2b/0xb0 [nvme_rdma]
[ 440.928079] [<ffffffffc08b8237>] nvme_rdma_del_ctrl_work+0x17/0x20 [nvme_rdma]
[ 440.937126] [<ffffffffb70ab58a>] process_one_work+0x17a/0x440
[ 440.944517] [<ffffffffb70ac3a8>] worker_thread+0x278/0x3c0
[ 440.951607] [<ffffffffb70ac130>] ? manage_workers.isra.24+0x2a0/0x2a0
[ 440.959760] [<ffffffffb70b352f>] kthread+0xcf/0xe0
[ 440.966055] [<ffffffffb70b3460>] ? insert_kthread_work+0x40/0x40
[ 440.973715] [<ffffffffb76d8658>] ret_from_fork+0x58/0x90
[ 440.980586] [<ffffffffb70b3460>] ? insert_kthread_work+0x40/0x40
[ 440.988229] Code: 5b 41 5c 5d c3 66 90 0f 1f 44 00 00 48 8b 87 20 01 00 00 f0 0f ba 77 40 01 19 d2 85 d2 75 08 c3 0f 1f 80 00 00 00 00 55 48 89 e5 <f0> ff 48 08 48 8d 78 10 e8 7f 0f 05 00 5d c3 0f 1f 00 66 2e 0f
[ 441.011620] RIP [<ffffffffb730e2b4>] __blk_mq_tag_idle+0x24/0x40
[ 441.019301] RSP <ffff893bf9bcbd10>
[ 441.024052] CR2: 0000000000000008
Reported-by: Zhang Yi <yizhan@redhat.com>
Tested-by: Zhang Yi <yizhan@redhat.com>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit f36ea50ca0043e7b1204feaf1d2ba6bd68c08d36 ]
When formatting NVMe to 512B/4K + T10 DIf/DIX, dd with split op returns
"Input/output error". Looks block layer split the bio after calling
bio_integrity_prep(bio). This patch fixes the issue.
Below is how we debug this issue:
(1)format nvme to 4K block # size with type 2 DIF
(2)dd with block size bigger than 1024k.
oflag=direct
dd: error writing '/dev/nvme0n1': Input/output error
We added some debug code in nvme device driver. It showed us the first
op and the second op have the same bi and pi address. This is not
correct.
1st op: nvme0n1 Op:Wr slba 0x505 length 0x100, PI ctrl=0x1400,
dsmgmt=0x0, AT=0x0 & RT=0x505
Guard 0x00b1, AT 0x0000, RT physical 0x00000505 RT virtual 0x00002828
2nd op: nvme0n1 Op:Wr slba 0x605 length 0x1, PI ctrl=0x1400, dsmgmt=0x0,
AT=0x0 & RT=0x605 ==> This op fails and subsequent 5 retires..
Guard 0x00b1, AT 0x0000, RT physical 0x00000605 RT virtual 0x00002828
With the fix, It showed us both of the first op and the second op have
correct bi and pi address.
1st op: nvme2n1 Op:Wr slba 0x505 length 0x100, PI ctrl=0x1400,
dsmgmt=0x0, AT=0x0 & RT=0x505
Guard 0x5ccb, AT 0x0000, RT physical 0x00000505 RT virtual
0x00002828
2nd op: nvme2n1 Op:Wr slba 0x605 length 0x1, PI ctrl=0x1400, dsmgmt=0x0,
AT=0x0 & RT=0x605
Guard 0xab4c, AT 0x0000, RT physical 0x00000605 RT virtual
0x00003028
Signed-off-by: Wen Xiong <wenxiong@linux.vnet.ibm.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 36e1f3d107867b25c616c2fd294f5a1c9d4e5d09 upstream.
While stressing memory and IO at the same time we changed SMT settings,
we were able to consistently trigger deadlocks in the mm system, which
froze the entire machine.
I think that under memory stress conditions, the large allocations
performed by blk_mq_init_rq_map may trigger a reclaim, which stalls
waiting on the block layer remmaping completion, thus deadlocking the
system. The trace below was collected after the machine stalled,
waiting for the hotplug event completion.
The simplest fix for this is to make allocations in this path
non-reclaimable, with GFP_NOIO. With this patch, We couldn't hit the
issue anymore.
This should apply on top of Jens's for-next branch cleanly.
Changes since v1:
- Use GFP_NOIO instead of GFP_NOWAIT.
Call Trace:
[c000000f0160aaf0] [c000000f0160ab50] 0xc000000f0160ab50 (unreliable)
[c000000f0160acc0] [c000000000016624] __switch_to+0x2e4/0x430
[c000000f0160ad20] [c000000000b1a880] __schedule+0x310/0x9b0
[c000000f0160ae00] [c000000000b1af68] schedule+0x48/0xc0
[c000000f0160ae30] [c000000000b1b4b0] schedule_preempt_disabled+0x20/0x30
[c000000f0160ae50] [c000000000b1d4fc] __mutex_lock_slowpath+0xec/0x1f0
[c000000f0160aed0] [c000000000b1d678] mutex_lock+0x78/0xa0
[c000000f0160af00] [d000000019413cac] xfs_reclaim_inodes_ag+0x33c/0x380 [xfs]
[c000000f0160b0b0] [d000000019415164] xfs_reclaim_inodes_nr+0x54/0x70 [xfs]
[c000000f0160b0f0] [d0000000194297f8] xfs_fs_free_cached_objects+0x38/0x60 [xfs]
[c000000f0160b120] [c0000000003172c8] super_cache_scan+0x1f8/0x210
[c000000f0160b190] [c00000000026301c] shrink_slab.part.13+0x21c/0x4c0
[c000000f0160b2d0] [c000000000268088] shrink_zone+0x2d8/0x3c0
[c000000f0160b380] [c00000000026834c] do_try_to_free_pages+0x1dc/0x520
[c000000f0160b450] [c00000000026876c] try_to_free_pages+0xdc/0x250
[c000000f0160b4e0] [c000000000251978] __alloc_pages_nodemask+0x868/0x10d0
[c000000f0160b6f0] [c000000000567030] blk_mq_init_rq_map+0x160/0x380
[c000000f0160b7a0] [c00000000056758c] blk_mq_map_swqueue+0x33c/0x360
[c000000f0160b820] [c000000000567904] blk_mq_queue_reinit+0x64/0xb0
[c000000f0160b850] [c00000000056a16c] blk_mq_queue_reinit_notify+0x19c/0x250
[c000000f0160b8a0] [c0000000000f5d38] notifier_call_chain+0x98/0x100
[c000000f0160b8f0] [c0000000000c5fb0] __cpu_notify+0x70/0xe0
[c000000f0160b930] [c0000000000c63c4] notify_prepare+0x44/0xb0
[c000000f0160b9b0] [c0000000000c52f4] cpuhp_invoke_callback+0x84/0x250
[c000000f0160ba10] [c0000000000c570c] cpuhp_up_callbacks+0x5c/0x120
[c000000f0160ba60] [c0000000000c7cb8] _cpu_up+0xf8/0x1d0
[c000000f0160bac0] [c0000000000c7eb0] do_cpu_up+0x120/0x150
[c000000f0160bb40] [c0000000006fe024] cpu_subsys_online+0x64/0xe0
[c000000f0160bb90] [c0000000006f5124] device_online+0xb4/0x120
[c000000f0160bbd0] [c0000000006f5244] online_store+0xb4/0xc0
[c000000f0160bc20] [c0000000006f0a68] dev_attr_store+0x68/0xa0
[c000000f0160bc60] [c0000000003ccc30] sysfs_kf_write+0x80/0xb0
[c000000f0160bca0] [c0000000003cbabc] kernfs_fop_write+0x17c/0x250
[c000000f0160bcf0] [c00000000030fe6c] __vfs_write+0x6c/0x1e0
[c000000f0160bd90] [c000000000311490] vfs_write+0xd0/0x270
[c000000f0160bde0] [c0000000003131fc] SyS_write+0x6c/0x110
[c000000f0160be30] [c000000000009204] system_call+0x38/0xec
Signed-off-by: Gabriel Krisman Bertazi <krisman@linux.vnet.ibm.com>
Cc: Brian King <brking@linux.vnet.ibm.com>
Cc: Douglas Miller <dougmill@linux.vnet.ibm.com>
Cc: linux-block@vger.kernel.org
Cc: linux-scsi@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Sumit Semwal <sumit.semwal@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 87c279e613f848c691111b29d49de8df3f4f56da upstream.
Commit 0809e3ac6231 ("block: fix plug list flushing for nomerge queues")
updated blk_mq_make_request() to set request_count even when
blk_queue_nomerges() returns true. However, blk_mq_make_request() only
does limited plugging and doesn't use request_count;
blk_sq_make_request() is the one that should have been fixed. Do that
and get rid of the unnecessary work in the mq version.
Fixes: 0809e3ac6231 ("block: fix plug list flushing for nomerge queues")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Ming Lei <tom.leiming@gmail.com>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c02ebfdddbafa9a6a0f52fbd715e6bfa229af9d3 upstream.
Commit 0e87e58bf60e ("blk-mq: improve warning for running a queue on the
wrong CPU") attempts to avoid triggering the WARN_ON in
__blk_mq_run_hw_queue when the expected CPU is dead. Problem is, in the
last batch execution before round robin, blk_mq_hctx_next_cpu can
schedule a dead CPU and also update next_cpu to the next alive CPU in
the mask, which will trigger the WARN_ON despite the previous
workaround.
The following patch fixes this scenario by always scheduling the value
in hctx->next_cpu. This changes the moment when we round-robin the CPU
running the hctx, but it really doesn't matter, since it still executes
BLK_MQ_CPU_WORK_BATCH times in a row before switching to another CPU.
Fixes: 0e87e58bf60e ("blk-mq: improve warning for running a queue on the wrong CPU")
Signed-off-by: Gabriel Krisman Bertazi <krisman@linux.vnet.ibm.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bc27c01b5c46d3bfec42c96537c7a3fae0bb2cc4 upstream.
The meaning of the BLK_MQ_S_STOPPED flag is "do not call
.queue_rq()". Hence modify blk_mq_make_request() such that requests
are queued instead of issued if a queue has been stopped.
Reported-by: Ming Lei <tom.leiming@gmail.com>
Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ming Lei <tom.leiming@gmail.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 52b9c330c6a8a4b5a1819bdaddf4ec76ab571e81 upstream.
If ->queue_rq() returns BLK_MQ_RQ_QUEUE_OK, we use continue and skip
over the rest of the loop body. However, dptr is assigned later in the
loop body, and the BLK_MQ_RQ_QUEUE_OK case is exactly the case that we'd
want it for.
NVMe isn't actually using BLK_MQ_F_DEFER_ISSUE yet, nor is any other
in-tree driver, but if the code's going to be there, it might as well
work.
Fixes: 74c450521dd8 ("blk-mq: add a 'list' parameter to ->queue_rq()")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit a59e0f5795fe52dad42a99c00287e3766153b312 ]
Go directly to ending a request if it wasn't started. Previously, completing a
request may invoke a driver callback for a request it didn't initialize.
Signed-off-by: Keith Busch <keith.busch@intel.com>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Reviewed-by: Johannes Thumshirn <jthumshirn at suse.de>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Liu reported that running certain parts of xfstests threw the
following error:
BUG: sleeping function called from invalid context at mm/page_alloc.c:3190
in_atomic(): 1, irqs_disabled(): 0, pid: 6, name: kworker/u16:0
3 locks held by kworker/u16:0/6:
#0: ("writeback"){++++.+}, at: [<ffffffff8107f083>] process_one_work+0x173/0x730
#1: ((&(&wb->dwork)->work)){+.+.+.}, at: [<ffffffff8107f083>] process_one_work+0x173/0x730
#2: (&type->s_umount_key#44){+++++.}, at: [<ffffffff811e6805>] trylock_super+0x25/0x60
CPU: 5 PID: 6 Comm: kworker/u16:0 Tainted: G OE 4.3.0+ #3
Hardware name: Red Hat KVM, BIOS Bochs 01/01/2011
Workqueue: writeback wb_workfn (flush-btrfs-108)
ffffffff81a3abab ffff88042e282ba8 ffffffff8130191b ffffffff81a3abab
0000000000000c76 ffff88042e282ba8 ffff88042e27c180 ffff88042e282bd8
ffffffff8108ed95 ffff880400000004 0000000000000000 0000000000000c76
Call Trace:
[<ffffffff8130191b>] dump_stack+0x4f/0x74
[<ffffffff8108ed95>] ___might_sleep+0x185/0x240
[<ffffffff8108eea2>] __might_sleep+0x52/0x90
[<ffffffff811817e8>] __alloc_pages_nodemask+0x268/0x410
[<ffffffff8109a43c>] ? sched_clock_local+0x1c/0x90
[<ffffffff8109a6d1>] ? local_clock+0x21/0x40
[<ffffffff810b9eb0>] ? __lock_release+0x420/0x510
[<ffffffff810b534c>] ? __lock_acquired+0x16c/0x3c0
[<ffffffff811ca265>] alloc_pages_current+0xc5/0x210
[<ffffffffa0577105>] ? rbio_is_full+0x55/0x70 [btrfs]
[<ffffffff810b7ed8>] ? mark_held_locks+0x78/0xa0
[<ffffffff81666d50>] ? _raw_spin_unlock_irqrestore+0x40/0x60
[<ffffffffa0578c0a>] full_stripe_write+0x5a/0xc0 [btrfs]
[<ffffffffa0578ca9>] __raid56_parity_write+0x39/0x60 [btrfs]
[<ffffffffa0578deb>] run_plug+0x11b/0x140 [btrfs]
[<ffffffffa0578e33>] btrfs_raid_unplug+0x23/0x70 [btrfs]
[<ffffffff812d36c2>] blk_flush_plug_list+0x82/0x1f0
[<ffffffff812e0349>] blk_sq_make_request+0x1f9/0x740
[<ffffffff812ceba2>] ? generic_make_request_checks+0x222/0x7c0
[<ffffffff812cf264>] ? blk_queue_enter+0x124/0x310
[<ffffffff812cf1d2>] ? blk_queue_enter+0x92/0x310
[<ffffffff812d0ae2>] generic_make_request+0x172/0x2c0
[<ffffffff812d0ad4>] ? generic_make_request+0x164/0x2c0
[<ffffffff812d0ca0>] submit_bio+0x70/0x140
[<ffffffffa0577b29>] ? rbio_add_io_page+0x99/0x150 [btrfs]
[<ffffffffa0578a89>] finish_rmw+0x4d9/0x600 [btrfs]
[<ffffffffa0578c4c>] full_stripe_write+0x9c/0xc0 [btrfs]
[<ffffffffa057ab7f>] raid56_parity_write+0xef/0x160 [btrfs]
[<ffffffffa052bd83>] btrfs_map_bio+0xe3/0x2d0 [btrfs]
[<ffffffffa04fbd6d>] btrfs_submit_bio_hook+0x8d/0x1d0 [btrfs]
[<ffffffffa05173c4>] submit_one_bio+0x74/0xb0 [btrfs]
[<ffffffffa0517f55>] submit_extent_page+0xe5/0x1c0 [btrfs]
[<ffffffffa0519b18>] __extent_writepage_io+0x408/0x4c0 [btrfs]
[<ffffffffa05179c0>] ? alloc_dummy_extent_buffer+0x140/0x140 [btrfs]
[<ffffffffa051dc88>] __extent_writepage+0x218/0x3a0 [btrfs]
[<ffffffff810b7ed8>] ? mark_held_locks+0x78/0xa0
[<ffffffffa051e2c9>] extent_write_cache_pages.clone.0+0x2f9/0x400 [btrfs]
[<ffffffffa051e422>] extent_writepages+0x52/0x70 [btrfs]
[<ffffffffa05001f0>] ? btrfs_set_inode_index+0x70/0x70 [btrfs]
[<ffffffffa04fcc17>] btrfs_writepages+0x27/0x30 [btrfs]
[<ffffffff81184df3>] do_writepages+0x23/0x40
[<ffffffff81212229>] __writeback_single_inode+0x89/0x4d0
[<ffffffff81212a60>] ? writeback_sb_inodes+0x260/0x480
[<ffffffff81212a60>] ? writeback_sb_inodes+0x260/0x480
[<ffffffff8121295f>] ? writeback_sb_inodes+0x15f/0x480
[<ffffffff81212ad2>] writeback_sb_inodes+0x2d2/0x480
[<ffffffff810b1397>] ? down_read_trylock+0x57/0x60
[<ffffffff811e6805>] ? trylock_super+0x25/0x60
[<ffffffff810d629f>] ? rcu_read_lock_sched_held+0x4f/0x90
[<ffffffff81212d0c>] __writeback_inodes_wb+0x8c/0xc0
[<ffffffff812130b5>] wb_writeback+0x2b5/0x500
[<ffffffff810b7ed8>] ? mark_held_locks+0x78/0xa0
[<ffffffff810660a8>] ? __local_bh_enable_ip+0x68/0xc0
[<ffffffff81213362>] ? wb_do_writeback+0x62/0x310
[<ffffffff812133c1>] wb_do_writeback+0xc1/0x310
[<ffffffff8107c3d9>] ? set_worker_desc+0x79/0x90
[<ffffffff81213842>] wb_workfn+0x92/0x330
[<ffffffff8107f133>] process_one_work+0x223/0x730
[<ffffffff8107f083>] ? process_one_work+0x173/0x730
[<ffffffff8108035f>] ? worker_thread+0x18f/0x430
[<ffffffff810802ed>] worker_thread+0x11d/0x430
[<ffffffff810801d0>] ? maybe_create_worker+0xf0/0xf0
[<ffffffff810801d0>] ? maybe_create_worker+0xf0/0xf0
[<ffffffff810858df>] kthread+0xef/0x110
[<ffffffff8108f74e>] ? schedule_tail+0x1e/0xd0
[<ffffffff810857f0>] ? __init_kthread_worker+0x70/0x70
[<ffffffff816673bf>] ret_from_fork+0x3f/0x70
[<ffffffff810857f0>] ? __init_kthread_worker+0x70/0x70
The issue is that we've got the software context pinned while
calling blk_flush_plug_list(), which flushes callbacks that
are allowed to sleep. btrfs and raid has such callbacks.
Flip the checks around a bit, so we can enable preempt a bit
earlier and flush plugs without having preempt disabled.
This only affects blk-mq driven devices, and only those that
register a single queue.
Reported-by: Liu Bo <bo.li.liu@oracle.com>
Tested-by: Liu Bo <bo.li.liu@oracle.com>
Cc: stable@kernel.org
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
It's no longer used outside of blk-mq core.
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Pull block IO poll support from Jens Axboe:
"Various groups have been doing experimentation around IO polling for
(really) fast devices. The code has been reviewed and has been
sitting on the side for a few releases, but this is now good enough
for coordinated benchmarking and further experimentation.
Currently O_DIRECT sync read/write are supported. A framework is in
the works that allows scalable stats tracking so we can auto-tune
this. And we'll add libaio support as well soon. Fow now, it's an
opt-in feature for test purposes"
* 'for-4.4/io-poll' of git://git.kernel.dk/linux-block:
direct-io: be sure to assign dio->bio_bdev for both paths
directio: add block polling support
NVMe: add blk polling support
block: add block polling support
blk-mq: return tag/queue combo in the make_request_fn handlers
block: change ->make_request_fn() and users to return a queue cookie
|
|
Return a cookie, blk_qc_t, from the blk-mq make request functions, that
allows a later caller to uniquely identify a specific IO. The cookie
doesn't mean anything to the caller, but the caller can use it to later
pass back to the block layer. The block layer can then identify the
hardware queue and request from that cookie.
Signed-off-by: Jens Axboe <axboe@fb.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Keith Busch <keith.busch@intel.com>
|
|
No functional changes in this patch, but it prepares us for returning
a more useful cookie related to the IO that was queued up.
Signed-off-by: Jens Axboe <axboe@fb.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Keith Busch <keith.busch@intel.com>
|
|
__GFP_WAIT was used to signal that the caller was in atomic context and
could not sleep. Now it is possible to distinguish between true atomic
context and callers that are not willing to sleep. The latter should
clear __GFP_DIRECT_RECLAIM so kswapd will still wake. As clearing
__GFP_WAIT behaves differently, there is a risk that people will clear the
wrong flags. This patch renames __GFP_WAIT to __GFP_RECLAIM to clearly
indicate what it does -- setting it allows all reclaim activity, clearing
them prevents it.
[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
sleep and avoiding waking kswapd
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts. They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve". __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".
Over time, callers had a requirement to not block when fallback options
were available. Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.
This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative. High priority users continue to use
__GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim. __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.
This patch then converts a number of sites
o __GFP_ATOMIC is used by callers that are high priority and have memory
pools for those requests. GFP_ATOMIC uses this flag.
o Callers that have a limited mempool to guarantee forward progress clear
__GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
into this category where kswapd will still be woken but atomic reserves
are not used as there is a one-entry mempool to guarantee progress.
o Callers that are checking if they are non-blocking should use the
helper gfpflags_allow_blocking() where possible. This is because
checking for __GFP_WAIT as was done historically now can trigger false
positives. Some exceptions like dm-crypt.c exist where the code intent
is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
flag manipulations.
o Callers that built their own GFP flags instead of starting with GFP_KERNEL
and friends now also need to specify __GFP_KSWAPD_RECLAIM.
The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.
The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL. They may
now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pull block integrity updates from Jens Axboe:
""This is the joint work of Dan and Martin, cleaning up and improving
the support for block data integrity"
* 'for-4.4/integrity' of git://git.kernel.dk/linux-block:
block, libnvdimm, nvme: provide a built-in blk_integrity nop profile
block: blk_flush_integrity() for bio-based drivers
block: move blk_integrity to request_queue
block: generic request_queue reference counting
nvme: suspend i/o during runtime blk_integrity_unregister
md: suspend i/o during runtime blk_integrity_unregister
md, dm, scsi, nvme, libnvdimm: drop blk_integrity_unregister() at shutdown
block: Inline blk_integrity in struct gendisk
block: Export integrity data interval size in sysfs
block: Reduce the size of struct blk_integrity
block: Consolidate static integrity profile properties
block: Move integrity kobject to struct gendisk
|
|
Pull core block updates from Jens Axboe:
"This is the core block pull request for 4.4. I've got a few more
topic branches this time around, some of them will layer on top of the
core+drivers changes and will come in a separate round. So not a huge
chunk of changes in this round.
This pull request contains:
- Enable blk-mq page allocation tracking with kmemleak, from Catalin.
- Unused prototype removal in blk-mq from Christoph.
- Cleanup of the q->blk_trace exchange, using cmpxchg instead of two
xchg()'s, from Davidlohr.
- A plug flush fix from Jeff.
- Also from Jeff, a fix that means we don't have to update shared tag
sets at init time unless we do a state change. This cuts down boot
times on thousands of devices a lot with scsi/blk-mq.
- blk-mq waitqueue barrier fix from Kosuke.
- Various fixes from Ming:
- Fixes for segment merging and splitting, and checks, for
the old core and blk-mq.
- Potential blk-mq speedup by marking ctx pending at the end
of a plug insertion batch in blk-mq.
- direct-io no page dirty on kernel direct reads.
- A WRITE_SYNC fix for mpage from Roman"
* 'for-4.4/core' of git://git.kernel.dk/linux-block:
blk-mq: avoid excessive boot delays with large lun counts
blktrace: re-write setting q->blk_trace
blk-mq: mark ctx as pending at batch in flush plug path
blk-mq: fix for trace_block_plug()
block: check bio_mergeable() early before merging
blk-mq: check bio_mergeable() early before merging
block: avoid to merge splitted bio
block: setup bi_phys_segments after splitting
block: fix plug list flushing for nomerge queues
blk-mq: remove unused blk_mq_clone_flush_request prototype
blk-mq: fix waitqueue_active without memory barrier in block/blk-mq-tag.c
fs: direct-io: don't dirtying pages for ITER_BVEC/ITER_KVEC direct read
fs/mpage.c: forgotten WRITE_SYNC in case of data integrity write
block: kmemleak: Track the page allocations for struct request
|
|
Hi,
Zhangqing Luo reported long boot times on a system with thousands of
LUNs when scsi-mq was enabled. He narrowed the problem down to
blk_mq_add_queue_tag_set, where every queue is frozen in order to set
the BLK_MQ_F_TAG_SHARED flag. Each added device will freeze all queues
added before it in sequence, which involves waiting for an RCU grace
period for each one. We don't need to do this. After the second queue
is added, only new queues need to be initialized with the shared tag.
We can do that by percolating the flag up to the blk_mq_tag_set, and
updating the newly added queue's hctxs if the flag is set.
This problem was introduced by commit 0d2602ca30e41 (blk-mq: improve
support for shared tags maps).
Reported-and-tested-by: Jason Luo <zhangqing.luo@oracle.com>
Reviewed-by: Ming Lei <ming.lei@canonical.com>
Signed-off-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Most of times, flush plug should be the hottest I/O path,
so mark ctx as pending after all requests in the list are
inserted.
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Ming Lei <ming.lei@canonical.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
The trace point is for tracing plug event of each request
queue instead of each task, so we should check the request
count in the plug list from current queue instead of
current task.
Signed-off-by: Ming Lei <ming.lei@canonical.com>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
It isn't necessary to try to merge the bio which is marked
as NOMERGE.
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Ming Lei <ming.lei@canonical.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Request queues with merging disabled will not flush the plug list after
BLK_MAX_REQUEST_COUNT requests have been queued, since the code relies
on blk_attempt_plug_merge to compute the request_count. Fix this by
computing the number of queued requests even for nomerge queues.
Signed-off-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Allow pmem, and other synchronous/bio-based block drivers, to fallback
on a per-cpu reference count managed by the core for tracking queue
live/dead state.
The existing per-cpu reference count for the blk_mq case is promoted to
be used in all block i/o scenarios. This involves initializing it by
default, waiting for it to drop to zero at exit, and holding a live
reference over the invocation of q->make_request_fn() in
generic_make_request(). The blk_mq code continues to take its own
reference per blk_mq request and retains the ability to freeze the
queue, but the check that the queue is frozen is moved to
generic_make_request().
This fixes crash signatures like the following:
BUG: unable to handle kernel paging request at ffff880140000000
[..]
Call Trace:
[<ffffffff8145e8bf>] ? copy_user_handle_tail+0x5f/0x70
[<ffffffffa004e1e0>] pmem_do_bvec.isra.11+0x70/0xf0 [nd_pmem]
[<ffffffffa004e331>] pmem_make_request+0xd1/0x200 [nd_pmem]
[<ffffffff811c3162>] ? mempool_alloc+0x72/0x1a0
[<ffffffff8141f8b6>] generic_make_request+0xd6/0x110
[<ffffffff8141f966>] submit_bio+0x76/0x170
[<ffffffff81286dff>] submit_bh_wbc+0x12f/0x160
[<ffffffff81286e62>] submit_bh+0x12/0x20
[<ffffffff813395bd>] jbd2_write_superblock+0x8d/0x170
[<ffffffff8133974d>] jbd2_mark_journal_empty+0x5d/0x90
[<ffffffff813399cb>] jbd2_journal_destroy+0x24b/0x270
[<ffffffff810bc4ca>] ? put_pwq_unlocked+0x2a/0x30
[<ffffffff810bc6f5>] ? destroy_workqueue+0x225/0x250
[<ffffffff81303494>] ext4_put_super+0x64/0x360
[<ffffffff8124ab1a>] generic_shutdown_super+0x6a/0xf0
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
tags is freed in blk_mq_free_rq_map() and should not be used after that.
The problem doesn't manifest if CONFIG_CPUMASK_OFFSTACK is false because
free_cpumask_var() is nop.
tags->cpumask is allocated in blk_mq_init_tags() so it's natural to
free cpumask in its counter part, blk_mq_free_tags().
Fixes: f26cdc8536ad ("blk-mq: Shared tag enhancements")
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Cc: Keith Busch <keith.busch@intel.com>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Linux 4.3-rc4
Pulling in v4.3-rc4 to avoid conflicts with NVMe fixes that have gone
in since for-4.4/core was based.
|
|
And replace the blk_mq_tag_busy_iter with it - the driver use has been
replaced with a new helper a while ago, and internal to the block we
only need the new version.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
blk_mq_complete_request may be a no-op if the request has already
been completed by others means (e.g. a timeout or cancellation), but
currently drivers have to set rq->errors before calling
blk_mq_complete_request, which might leave us with the wrong error value.
Add an error parameter to blk_mq_complete_request so that we can
defer setting rq->errors until we known we won the race to complete the
request.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Sagi Grimberg <sagig@mellanox.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
CPU hotplug handling for blk-mq (blk_mq_queue_reinit) acquires
all_q_mutex in blk_mq_queue_reinit_notify() and then removes sysfs
entries by blk_mq_sysfs_unregister(). Removing sysfs entry needs to
be blocked until the active reference of the kernfs_node to be zero.
On the other hand, reading blk_mq_hw_sysfs_cpu sysfs entry (e.g.
/sys/block/nullb0/mq/0/cpu_list) acquires all_q_mutex in
blk_mq_hw_sysfs_cpus_show().
If these happen at the same time, a deadlock can happen. Because one
can wait for the active reference to be zero with holding all_q_mutex,
and the other tries to acquire all_q_mutex with holding the active
reference.
The reason that all_q_mutex is acquired in blk_mq_hw_sysfs_cpus_show()
is to avoid reading an imcomplete hctx->cpumask. Since reading sysfs
entry for blk-mq needs to acquire q->sysfs_lock, we can avoid deadlock
and reading an imcomplete hctx->cpumask by protecting q->sysfs_lock
while hctx->cpumask is being updated.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Reviewed-by: Ming Lei <tom.leiming@gmail.com>
Cc: Ming Lei <tom.leiming@gmail.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Notifier callbacks for CPU_ONLINE action can be run on the other CPU
than the CPU which was just onlined. So it is possible for the
process running on the just onlined CPU to insert request and run
hw queue before establishing new mapping which is done by
blk_mq_queue_reinit_notify().
This can cause a problem when the CPU has just been onlined first time
since the request queue was initialized. At this time ctx->index_hw
for the CPU, which is the index in hctx->ctxs[] for this ctx, is still
zero before blk_mq_queue_reinit_notify() is called by notifier
callbacks for CPU_ONLINE action.
For example, there is a single hw queue (hctx) and two CPU queues
(ctx0 for CPU0, and ctx1 for CPU1). Now CPU1 is just onlined and
a request is inserted into ctx1->rq_list and set bit0 in pending
bitmap as ctx1->index_hw is still zero.
And then while running hw queue, flush_busy_ctxs() finds bit0 is set
in pending bitmap and tries to retrieve requests in
hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0, so the
request in ctx1->rq_list is ignored.
Fix it by ensuring that new mapping is established before onlined cpu
starts running.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Reviewed-by: Ming Lei <tom.leiming@gmail.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Ming Lei <tom.leiming@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
CPU hotplug handling for blk-mq (blk_mq_queue_reinit) accesses
q->mq_usage_counter while freezing all request queues in all_q_list.
On the other hand, q->mq_usage_counter is deinitialized in
blk_mq_free_queue() before deleting the queue from all_q_list.
So if CPU hotplug event occurs in the window, percpu_ref_kill() is
called with q->mq_usage_counter which has already been marked dead,
and it triggers warning. Fix it by deleting the queue from all_q_list
earlier than destroying q->mq_usage_counter.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Reviewed-by: Ming Lei <tom.leiming@gmail.com>
Cc: Ming Lei <tom.leiming@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
CPU hotplug handling for blk-mq (blk_mq_queue_reinit) updates
q->mq_map by blk_mq_update_queue_map() for all request queues in
all_q_list. On the other hand, q->mq_map is released before deleting
the queue from all_q_list.
So if CPU hotplug event occurs in the window, invalid memory access
can happen. Fix it by releasing q->mq_map in blk_mq_release() to make
it happen latter than removal from all_q_list.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Suggested-by: Ming Lei <tom.leiming@gmail.com>
Reviewed-by: Ming Lei <tom.leiming@gmail.com>
Cc: Ming Lei <tom.leiming@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
There is a race between cpu hotplug handling and adding/deleting
gendisk for blk-mq, where both are trying to register and unregister
the same sysfs entries.
null_add_dev
--> blk_mq_init_queue
--> blk_mq_init_allocated_queue
--> add to 'all_q_list' (*)
--> add_disk
--> blk_register_queue
--> blk_mq_register_disk (++)
null_del_dev
--> del_gendisk
--> blk_unregister_queue
--> blk_mq_unregister_disk (--)
--> blk_cleanup_queue
--> blk_mq_free_queue
--> del from 'all_q_list' (*)
blk_mq_queue_reinit
--> blk_mq_sysfs_unregister (-)
--> blk_mq_sysfs_register (+)
While the request queue is added to 'all_q_list' (*),
blk_mq_queue_reinit() can be called for the queue anytime by CPU
hotplug callback. But blk_mq_sysfs_unregister (-) and
blk_mq_sysfs_register (+) in blk_mq_queue_reinit must not be called
before blk_mq_register_disk (++) and after blk_mq_unregister_disk (--)
is finished. Because '/sys/block/*/mq/' is not exists.
There has already been BLK_MQ_F_SYSFS_UP flag in hctx->flags which can
be used to track these sysfs stuff, but it is only fixing this issue
partially.
In order to fix it completely, we just need per-queue flag instead of
per-hctx flag with appropriate locking. So this introduces
q->mq_sysfs_init_done which is properly protected with all_q_mutex.
Also, we need to ensure that blk_mq_map_swqueue() is called with
all_q_mutex is held. Since hctx->nr_ctx is reset temporarily and
updated in blk_mq_map_swqueue(), so we should avoid
blk_mq_register_hctx() seeing the temporary hctx->nr_ctx value
in CPU hotplug handling or adding/deleting gendisk .
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Reviewed-by: Ming Lei <tom.leiming@gmail.com>
Cc: Ming Lei <tom.leiming@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
When unmapped hw queue is remapped after CPU topology is changed,
hctx->tags->cpumask has to be set after hctx->tags is setup in
blk_mq_map_swqueue(), otherwise it causes null pointer dereference.
Fixes: f26cdc8536 ("blk-mq: Shared tag enhancements")
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Ming Lei <tom.leiming@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
The pages allocated for struct request contain pointers to other slab
allocations (via ops->init_request). Since kmemleak does not track/scan
page allocations, the slab objects will be reported as leaks (false
positives). This patch adds kmemleak callbacks to allow tracking of such
pages.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Bart Van Assche <bart.vanassche@sandisk.com>
Tested-by: Bart Van Assche<bart.vanassche@sandisk.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Inside timeout handler, blk_mq_tag_to_rq() is called
to retrieve the request from one tag. This way is obviously
wrong because the request can be freed any time and some
fiedds of the request can't be trusted, then kernel oops
might be triggered[1].
Currently wrt. blk_mq_tag_to_rq(), the only special case is
that the flush request can share same tag with the request
cloned from, and the two requests can't be active at the same
time, so this patch fixes the above issue by updating tags->rqs[tag]
with the active request(either flush rq or the request cloned
from) of the tag.
Also blk_mq_tag_to_rq() gets much simplified with this patch.
Given blk_mq_tag_to_rq() is mainly for drivers and the caller must
make sure the request can't be freed, so in bt_for_each() this
helper is replaced with tags->rqs[tag].
[1] kernel oops log
[ 439.696220] BUG: unable to handle kernel NULL pointer dereference at 0000000000000158^M
[ 439.697162] IP: [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M
[ 439.700653] PGD 7ef765067 PUD 7ef764067 PMD 0 ^M
[ 439.700653] Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC ^M
[ 439.700653] Dumping ftrace buffer:^M
[ 439.700653] (ftrace buffer empty)^M
[ 439.700653] Modules linked in: nbd ipv6 kvm_intel kvm serio_raw^M
[ 439.700653] CPU: 6 PID: 2779 Comm: stress-ng-sigfd Not tainted 4.2.0-rc5-next-20150805+ #265^M
[ 439.730500] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011^M
[ 439.730500] task: ffff880605308000 ti: ffff88060530c000 task.ti: ffff88060530c000^M
[ 439.730500] RIP: 0010:[<ffffffff812d89ba>] [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M
[ 439.730500] RSP: 0018:ffff880819203da0 EFLAGS: 00010283^M
[ 439.730500] RAX: ffff880811b0e000 RBX: ffff8800bb465f00 RCX: 0000000000000002^M
[ 439.730500] RDX: 0000000000000000 RSI: 0000000000000202 RDI: 0000000000000000^M
[ 439.730500] RBP: ffff880819203db0 R08: 0000000000000002 R09: 0000000000000000^M
[ 439.730500] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000202^M
[ 439.730500] R13: ffff880814104800 R14: 0000000000000002 R15: ffff880811a2ea00^M
[ 439.730500] FS: 00007f165b3f5740(0000) GS:ffff880819200000(0000) knlGS:0000000000000000^M
[ 439.730500] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b^M
[ 439.730500] CR2: 0000000000000158 CR3: 00000007ef766000 CR4: 00000000000006e0^M
[ 439.730500] Stack:^M
[ 439.730500] 0000000000000008 ffff8808114eed90 ffff880819203e00 ffffffff812dc104^M
[ 439.755663] ffff880819203e40 ffffffff812d9f5e 0000020000000000 ffff8808114eed80^M
[ 439.755663] Call Trace:^M
[ 439.755663] <IRQ> ^M
[ 439.755663] [<ffffffff812dc104>] bt_for_each+0x6e/0xc8^M
[ 439.755663] [<ffffffff812d9f5e>] ? blk_mq_rq_timed_out+0x6a/0x6a^M
[ 439.755663] [<ffffffff812d9f5e>] ? blk_mq_rq_timed_out+0x6a/0x6a^M
[ 439.755663] [<ffffffff812dc1b3>] blk_mq_tag_busy_iter+0x55/0x5e^M
[ 439.755663] [<ffffffff812d88b4>] ? blk_mq_bio_to_request+0x38/0x38^M
[ 439.755663] [<ffffffff812d8911>] blk_mq_rq_timer+0x5d/0xd4^M
[ 439.755663] [<ffffffff810a3e10>] call_timer_fn+0xf7/0x284^M
[ 439.755663] [<ffffffff810a3d1e>] ? call_timer_fn+0x5/0x284^M
[ 439.755663] [<ffffffff812d88b4>] ? blk_mq_bio_to_request+0x38/0x38^M
[ 439.755663] [<ffffffff810a46d6>] run_timer_softirq+0x1ce/0x1f8^M
[ 439.755663] [<ffffffff8104c367>] __do_softirq+0x181/0x3a4^M
[ 439.755663] [<ffffffff8104c76e>] irq_exit+0x40/0x94^M
[ 439.755663] [<ffffffff81031482>] smp_apic_timer_interrupt+0x33/0x3e^M
[ 439.755663] [<ffffffff815559a4>] apic_timer_interrupt+0x84/0x90^M
[ 439.755663] <EOI> ^M
[ 439.755663] [<ffffffff81554350>] ? _raw_spin_unlock_irq+0x32/0x4a^M
[ 439.755663] [<ffffffff8106a98b>] finish_task_switch+0xe0/0x163^M
[ 439.755663] [<ffffffff8106a94d>] ? finish_task_switch+0xa2/0x163^M
[ 439.755663] [<ffffffff81550066>] __schedule+0x469/0x6cd^M
[ 439.755663] [<ffffffff8155039b>] schedule+0x82/0x9a^M
[ 439.789267] [<ffffffff8119b28b>] signalfd_read+0x186/0x49a^M
[ 439.790911] [<ffffffff8106d86a>] ? wake_up_q+0x47/0x47^M
[ 439.790911] [<ffffffff811618c2>] __vfs_read+0x28/0x9f^M
[ 439.790911] [<ffffffff8117a289>] ? __fget_light+0x4d/0x74^M
[ 439.790911] [<ffffffff811620a7>] vfs_read+0x7a/0xc6^M
[ 439.790911] [<ffffffff8116292b>] SyS_read+0x49/0x7f^M
[ 439.790911] [<ffffffff81554c17>] entry_SYSCALL_64_fastpath+0x12/0x6f^M
[ 439.790911] Code: 48 89 e5 e8 a9 b8 e7 ff 5d c3 0f 1f 44 00 00 55 89
f2 48 89 e5 41 54 41 89 f4 53 48 8b 47 60 48 8b 1c d0 48 8b 7b 30 48 8b
53 38 <48> 8b 87 58 01 00 00 48 85 c0 75 09 48 8b 97 88 0c 00 00 eb 10
^M
[ 439.790911] RIP [<ffffffff812d89ba>] blk_mq_tag_to_rq+0x21/0x6e^M
[ 439.790911] RSP <ffff880819203da0>^M
[ 439.790911] CR2: 0000000000000158^M
[ 439.790911] ---[ end trace d40af58949325661 ]---^M
Cc: <stable@vger.kernel.org>
Signed-off-by: Ming Lei <ming.lei@canonical.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
The way the block layer is currently written, it goes to great lengths
to avoid having to split bios; upper layer code (such as bio_add_page())
checks what the underlying device can handle and tries to always create
bios that don't need to be split.
But this approach becomes unwieldy and eventually breaks down with
stacked devices and devices with dynamic limits, and it adds a lot of
complexity. If the block layer could split bios as needed, we could
eliminate a lot of complexity elsewhere - particularly in stacked
drivers. Code that creates bios can then create whatever size bios are
convenient, and more importantly stacked drivers don't have to deal with
both their own bio size limitations and the limitations of the
(potentially multiple) devices underneath them. In the future this will
let us delete merge_bvec_fn and a bunch of other code.
We do this by adding calls to blk_queue_split() to the various
make_request functions that need it - a few can already handle arbitrary
size bios. Note that we add the call _after_ any call to
blk_queue_bounce(); this means that blk_queue_split() and
blk_recalc_rq_segments() don't need to be concerned with bouncing
affecting segment merging.
Some make_request_fn() callbacks were simple enough to audit and verify
they don't need blk_queue_split() calls. The skipped ones are:
* nfhd_make_request (arch/m68k/emu/nfblock.c)
* axon_ram_make_request (arch/powerpc/sysdev/axonram.c)
* simdisk_make_request (arch/xtensa/platforms/iss/simdisk.c)
* brd_make_request (ramdisk - drivers/block/brd.c)
* mtip_submit_request (drivers/block/mtip32xx/mtip32xx.c)
* loop_make_request
* null_queue_bio
* bcache's make_request fns
Some others are almost certainly safe to remove now, but will be left
for future patches.
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ming Lei <ming.lei@canonical.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Mike Snitzer <snitzer@redhat.com>
Cc: dm-devel@redhat.com
Cc: Lars Ellenberg <drbd-dev@lists.linbit.com>
Cc: drbd-user@lists.linbit.com
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Jim Paris <jim@jtan.com>
Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Oleg Drokin <oleg.drokin@intel.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Acked-by: NeilBrown <neilb@suse.de> (for the 'md/md.c' bits)
Acked-by: Mike Snitzer <snitzer@redhat.com>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
[dpark: skip more mq-based drivers, resolve merge conflicts, etc.]
Signed-off-by: Dongsu Park <dpark@posteo.net>
Signed-off-by: Ming Lin <ming.l@ssi.samsung.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Currently we have two different ways to signal an I/O error on a BIO:
(1) by clearing the BIO_UPTODATE flag
(2) by returning a Linux errno value to the bi_end_io callback
The first one has the drawback of only communicating a single possible
error (-EIO), and the second one has the drawback of not beeing persistent
when bios are queued up, and are not passed along from child to parent
bio in the ever more popular chaining scenario. Having both mechanisms
available has the additional drawback of utterly confusing driver authors
and introducing bugs where various I/O submitters only deal with one of
them, and the others have to add boilerplate code to deal with both kinds
of error returns.
So add a new bi_error field to store an errno value directly in struct
bio and remove the existing mechanisms to clean all this up.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
It is reasonable to set default timeout of request as 30 seconds instead of
30000 ticks, which may be 300 seconds if HZ is 100, for example, some arm64
based systems may choose 100 HZ.
Signed-off-by: Ming Lei <ming.lei@canonical.com>
Fixes: c76cbbcf4044 ("blk-mq: put blk_queue_rq_timeout together in blk_mq_init_queue()"
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Pull core block IO update from Jens Axboe:
"Nothing really major in here, mostly a collection of smaller
optimizations and cleanups, mixed with various fixes. In more detail,
this contains:
- Addition of policy specific data to blkcg for block cgroups. From
Arianna Avanzini.
- Various cleanups around command types from Christoph.
- Cleanup of the suspend block I/O path from Christoph.
- Plugging updates from Shaohua and Jeff Moyer, for blk-mq.
- Eliminating atomic inc/dec of both remaining IO count and reference
count in a bio. From me.
- Fixes for SG gap and chunk size support for data-less (discards)
IO, so we can merge these better. From me.
- Small restructuring of blk-mq shared tag support, freeing drivers
from iterating hardware queues. From Keith Busch.
- A few cfq-iosched tweaks, from Tahsin Erdogan and me. Makes the
IOPS mode the default for non-rotational storage"
* 'for-4.2/core' of git://git.kernel.dk/linux-block: (35 commits)
cfq-iosched: fix other locations where blkcg_to_cfqgd() can return NULL
cfq-iosched: fix sysfs oops when attempting to read unconfigured weights
cfq-iosched: move group scheduling functions under ifdef
cfq-iosched: fix the setting of IOPS mode on SSDs
blktrace: Add blktrace.c to BLOCK LAYER in MAINTAINERS file
block, cgroup: implement policy-specific per-blkcg data
block: Make CFQ default to IOPS mode on SSDs
block: add blk_set_queue_dying() to blkdev.h
blk-mq: Shared tag enhancements
block: don't honor chunk sizes for data-less IO
block: only honor SG gap prevention for merges that contain data
block: fix returnvar.cocci warnings
block, dm: don't copy bios for request clones
block: remove management of bi_remaining when restoring original bi_end_io
block: replace trylock with mutex_lock in blkdev_reread_part()
block: export blkdev_reread_part() and __blkdev_reread_part()
suspend: simplify block I/O handling
block: collapse bio bit space
block: remove unused BIO_RW_BLOCK and BIO_EOF flags
block: remove BIO_EOPNOTSUPP
...
|
|
Now blk_cleanup_queue() can be called before calling
del_gendisk()[1], inside which hctx->ctxs is touched
from blk_mq_unregister_hctx(), but the variable has
been freed by blk_cleanup_queue() at that time.
So this patch moves freeing of hctx->ctxs into queue's
release handler for fixing the oops reported by Stefan.
[1], 6cd18e711dd8075 (block: destroy bdi before blockdev is
unregistered)
Reported-by: Stefan Seyfried <stefan.seyfried@googlemail.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: stable@vger.kernel.org (v4.0)
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Storage controllers may expose multiple block devices that share hardware
resources managed by blk-mq. This patch enhances the shared tags so a
low-level driver can access the shared resources not tied to the unshared
h/w contexts. This way the LLD can dynamically add and delete disks and
request queues without having to track all the request_queue hctx's to
iterate outstanding tags.
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
lockdep gets unhappy about the not disabling irqs when using the queue_lock
around it. Instead of trying to fix that up just switch to an atomic_t
and get rid of the lock.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Last patch makes plug work for multiple queue case. However it only
works for single disk case, because it assumes only one request in the
plug list. If a task is accessing multiple disks, eg MD/DM, the
assumption is wrong. Let blk_attempt_plug_merge() record request from
the same queue.
V2: use NULL parameter in !mq case. Fix a bug. Add comments in
blk_attempt_plug_merge to make it less (hopefully) confusion.
Cc: Jens Axboe <axboe@fb.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
plug is still helpful for workload with IO merge, but it can be harmful
otherwise especially with multiple hardware queues, as there is
(supposed) no lock contention in this case and plug can introduce
latency. For multiple queues, we do limited plug, eg plug only if there
is request merge. If a request doesn't have merge with following
request, the requet will be dispatched immediately.
V2: check blk_queue_nomerges() as suggested by Jeff.
Cc: Jens Axboe <axboe@fb.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
If we directly issue a request and it fails, we use
blk_mq_merge_queue_io(). But we already assigned bio to a request in
blk_mq_bio_to_request. blk_mq_merge_queue_io shouldn't run
blk_mq_bio_to_request again.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
The following appears in blk_sq_make_request:
/*
* If we have multiple hardware queues, just go directly to
* one of those for sync IO.
*/
We clearly don't have multiple hardware queues, here! This comment was
introduced with this commit 07068d5b8e (blk-mq: split make request
handler for multi and single queue):
We want slightly different behavior from them:
- On single queue devices, we currently use the per-process plug
for deferred IO and for merging.
- On multi queue devices, we don't use the per-process plug, but
we want to go straight to hardware for SYNC IO.
The old code had this:
use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
and that was converted to:
use_plug = !is_flush_fua && !is_sync;
which is not equivalent. For the single queue case, that second half of
the && expression is always true. So, what I think was actually inteded
follows (and this more closely matches what is done in blk_queue_bio).
V2: delete the 'likely', which should not be a big deal
Signed-off-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Normally if driver is busy to dispatch a request the logic is like below:
block layer: driver:
__blk_mq_run_hw_queue
a. blk_mq_stop_hw_queue
b. rq add to ctx->dispatch
later:
1. blk_mq_start_hw_queue
2. __blk_mq_run_hw_queue
But it's possible step 1-2 runs between a and b. And since rq isn't in
ctx->dispatch yet, step 2 will not run rq. The rq might get lost if
there are no subsequent requests kick in.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|