summaryrefslogtreecommitdiff
path: root/fs
AgeCommit message (Collapse)Author
2016-06-01remove directory incorrectly tries to set delete on close on non-empty ↵Steve French
directories commit 897fba1172d637d344f009d700f7eb8a1fa262f1 upstream. Wrong return code was being returned on SMB3 rmdir of non-empty directory. For SMB3 (unlike for cifs), we attempt to delete a directory by set of delete on close flag on the open. Windows clients set this flag via a set info (SET_FILE_DISPOSITION to set this flag) which properly checks if the directory is empty. With this patch on smb3 mounts we correctly return "DIRECTORY NOT EMPTY" on attempts to remove a non-empty directory. Signed-off-by: Steve French <steve.french@primarydata.com> Acked-by: Sachin Prabhu <sprabhu@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-01ext4: iterate over buffer heads correctly in move_extent_per_page()Eryu Guan
commit 6ffe77bad545f4a7c8edd2a4ee797ccfcd894ab4 upstream. In commit bcff24887d00 ("ext4: don't read blocks from disk after extents being swapped") bh is not updated correctly in the for loop and wrong data has been written to disk. generic/324 catches this on sub-page block size ext4. Fixes: bcff24887d00 ("ext4: don't read blocks from disk after extentsbeing swapped") Signed-off-by: Eryu Guan <guaneryu@gmail.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-06-01Btrfs: don't use src fd for printkJosef Bacik
commit c79b4713304f812d3d6c95826fc3e5fc2c0b0c14 upstream. The fd we pass in may not be on a btrfs file system, so don't try to do BTRFS_I() on it. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Cc: Jeff Mahoney <jeffm@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-18get_rock_ridge_filename(): handle malformed NM entriesAl Viro
commit 99d825822eade8d827a1817357cbf3f889a552d6 upstream. Payloads of NM entries are not supposed to contain NUL. When we run into such, only the part prior to the first NUL goes into the concatenation (i.e. the directory entry name being encoded by a bunch of NM entries). We do stop when the amount collected so far + the claimed amount in the current NM entry exceed 254. So far, so good, but what we return as the total length is the sum of *claimed* sizes, not the actual amount collected. And that can grow pretty large - not unlimited, since you'd need to put CE entries in between to be able to get more than the maximum that could be contained in one isofs directory entry / continuation chunk and we are stop once we'd encountered 32 CEs, but you can get about 8Kb easily. And that's what will be passed to readdir callback as the name length. 8Kb __copy_to_user() from a buffer allocated by __get_free_page() Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-18atomic_open(): fix the handling of create_errorAl Viro
commit 10c64cea04d3c75c306b3f990586ffb343b63287 upstream. * if we have a hashed negative dentry and either CREAT|EXCL on r/o filesystem, or CREAT|TRUNC on r/o filesystem, or CREAT|EXCL with failing may_o_create(), we should fail with EROFS or the error may_o_create() has returned, but not ENOENT. Which is what the current code ends up returning. * if we have CREAT|TRUNC hitting a regular file on a read-only filesystem, we can't fail with EROFS here. At the very least, not until we'd done follow_managed() - we might have a writable file (or a device, for that matter) bound on top of that one. Moreover, the code downstream will see that O_TRUNC and attempt to grab the write access (*after* following possible mount), so if we really should fail with EROFS, it will happen. No need to do that inside atomic_open(). The real logics is much simpler than what the current code is trying to do - if we decided to go for simple lookup, ended up with a negative dentry *and* had create_error set, fail with create_error. No matter whether we'd got that negative dentry from lookup_real() or had found it in dcache. Acked-by: Miklos Szeredi <mszeredi@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-18vfs: rename: check backing inode being equalMiklos Szeredi
commit 9409e22acdfc9153f88d9b1ed2bd2a5b34d2d3ca upstream. If a file is renamed to a hardlink of itself POSIX specifies that rename(2) should do nothing and return success. This condition is checked in vfs_rename(). However it won't detect hard links on overlayfs where these are given separate inodes on the overlayfs layer. Overlayfs itself detects this condition and returns success without doing anything, but then vfs_rename() will proceed as if this was a successful rename (detach_mounts(), d_move()). The correct thing to do is to detect this condition before even calling into overlayfs. This patch does this by calling vfs_select_inode() to get the underlying inodes. Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-18vfs: add vfs_select_inode() helperMiklos Szeredi
commit 54d5ca871e72f2bb172ec9323497f01cd5091ec7 upstream. Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-18ocfs2: fix posix_acl_create deadlockJunxiao Bi
commit c25a1e0671fbca7b2c0d0757d533bd2650d6dc0c upstream. Commit 702e5bc68ad2 ("ocfs2: use generic posix ACL infrastructure") refactored code to use posix_acl_create. The problem with this function is that it is not mindful of the cluster wide inode lock making it unsuitable for use with ocfs2 inode creation with ACLs. For example, when used in ocfs2_mknod, this function can cause deadlock as follows. The parent dir inode lock is taken when calling posix_acl_create -> get_acl -> ocfs2_iop_get_acl which takes the inode lock again. This can cause deadlock if there is a blocked remote lock request waiting for the lock to be downconverted. And same deadlock happened in ocfs2_reflink. This fix is to revert back using ocfs2_init_acl. Fixes: 702e5bc68ad2 ("ocfs2: use generic posix ACL infrastructure") Signed-off-by: Tariq Saeed <tariq.x.saeed@oracle.com> Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com> Cc: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Cc: Joseph Qi <joseph.qi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-18ocfs2: revert using ocfs2_acl_chmod to avoid inode cluster lock hangJunxiao Bi
commit 5ee0fbd50fdf1c1329de8bee35ea9d7c6a81a2e0 upstream. Commit 743b5f1434f5 ("ocfs2: take inode lock in ocfs2_iop_set/get_acl()") introduced this issue. ocfs2_setattr called by chmod command holds cluster wide inode lock when calling posix_acl_chmod. This latter function in turn calls ocfs2_iop_get_acl and ocfs2_iop_set_acl. These two are also called directly from vfs layer for getfacl/setfacl commands and therefore acquire the cluster wide inode lock. If a remote conversion request comes after the first inode lock in ocfs2_setattr, OCFS2_LOCK_BLOCKED will be set. And this will cause the second call to inode lock from the ocfs2_iop_get_acl() to block indefinetly. The deleted version of ocfs2_acl_chmod() calls __posix_acl_chmod() which does not call back into the filesystem. Therefore, we restore ocfs2_acl_chmod(), modify it slightly for locking as needed, and use that instead. Fixes: 743b5f1434f5 ("ocfs2: take inode lock in ocfs2_iop_set/get_acl()") Signed-off-by: Tariq Saeed <tariq.x.saeed@oracle.com> Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com> Cc: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Cc: Joseph Qi <joseph.qi@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-11propogate_mnt: Handle the first propogated copy being a slaveEric W. Biederman
commit 5ec0811d30378ae104f250bfc9b3640242d81e3f upstream. When the first propgated copy was a slave the following oops would result: > BUG: unable to handle kernel NULL pointer dereference at 0000000000000010 > IP: [<ffffffff811fba4e>] propagate_one+0xbe/0x1c0 > PGD bacd4067 PUD bac66067 PMD 0 > Oops: 0000 [#1] SMP > Modules linked in: > CPU: 1 PID: 824 Comm: mount Not tainted 4.6.0-rc5userns+ #1523 > Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 > task: ffff8800bb0a8000 ti: ffff8800bac3c000 task.ti: ffff8800bac3c000 > RIP: 0010:[<ffffffff811fba4e>] [<ffffffff811fba4e>] propagate_one+0xbe/0x1c0 > RSP: 0018:ffff8800bac3fd38 EFLAGS: 00010283 > RAX: 0000000000000000 RBX: ffff8800bb77ec00 RCX: 0000000000000010 > RDX: 0000000000000000 RSI: ffff8800bb58c000 RDI: ffff8800bb58c480 > RBP: ffff8800bac3fd48 R08: 0000000000000001 R09: 0000000000000000 > R10: 0000000000001ca1 R11: 0000000000001c9d R12: 0000000000000000 > R13: ffff8800ba713800 R14: ffff8800bac3fda0 R15: ffff8800bb77ec00 > FS: 00007f3c0cd9b7e0(0000) GS:ffff8800bfb00000(0000) knlGS:0000000000000000 > CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 > CR2: 0000000000000010 CR3: 00000000bb79d000 CR4: 00000000000006e0 > Stack: > ffff8800bb77ec00 0000000000000000 ffff8800bac3fd88 ffffffff811fbf85 > ffff8800bac3fd98 ffff8800bb77f080 ffff8800ba713800 ffff8800bb262b40 > 0000000000000000 0000000000000000 ffff8800bac3fdd8 ffffffff811f1da0 > Call Trace: > [<ffffffff811fbf85>] propagate_mnt+0x105/0x140 > [<ffffffff811f1da0>] attach_recursive_mnt+0x120/0x1e0 > [<ffffffff811f1ec3>] graft_tree+0x63/0x70 > [<ffffffff811f1f6b>] do_add_mount+0x9b/0x100 > [<ffffffff811f2c1a>] do_mount+0x2aa/0xdf0 > [<ffffffff8117efbe>] ? strndup_user+0x4e/0x70 > [<ffffffff811f3a45>] SyS_mount+0x75/0xc0 > [<ffffffff8100242b>] do_syscall_64+0x4b/0xa0 > [<ffffffff81988f3c>] entry_SYSCALL64_slow_path+0x25/0x25 > Code: 00 00 75 ec 48 89 0d 02 22 22 01 8b 89 10 01 00 00 48 89 05 fd 21 22 01 39 8e 10 01 00 00 0f 84 e0 00 00 00 48 8b 80 d8 00 00 00 <48> 8b 50 10 48 89 05 df 21 22 01 48 89 15 d0 21 22 01 8b 53 30 > RIP [<ffffffff811fba4e>] propagate_one+0xbe/0x1c0 > RSP <ffff8800bac3fd38> > CR2: 0000000000000010 > ---[ end trace 2725ecd95164f217 ]--- This oops happens with the namespace_sem held and can be triggered by non-root users. An all around not pleasant experience. To avoid this scenario when finding the appropriate source mount to copy stop the walk up the mnt_master chain when the first source mount is encountered. Further rewrite the walk up the last_source mnt_master chain so that it is clear what is going on. The reason why the first source mount is special is that it it's mnt_parent is not a mount in the dest_mnt propagation tree, and as such termination conditions based up on the dest_mnt mount propgation tree do not make sense. To avoid other kinds of confusion last_dest is not changed when computing last_source. last_dest is only used once in propagate_one and that is above the point of the code being modified, so changing the global variable is meaningless and confusing. fixes: f2ebb3a921c1ca1e2ddd9242e95a1989a50c4c68 ("smarter propagate_mnt()") Reported-by: Tycho Andersen <tycho.andersen@canonical.com> Reviewed-by: Seth Forshee <seth.forshee@canonical.com> Tested-by: Seth Forshee <seth.forshee@canonical.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-11fs/pnode.c: treat zero mnt_group_id-s as unequalMaxim Patlasov
commit 7ae8fd0351f912b075149a1e03a017be8b903b9a upstream. propagate_one(m) calculates "type" argument for copy_tree() like this: > if (m->mnt_group_id == last_dest->mnt_group_id) { > type = CL_MAKE_SHARED; > } else { > type = CL_SLAVE; > if (IS_MNT_SHARED(m)) > type |= CL_MAKE_SHARED; > } The "type" argument then governs clone_mnt() behavior with respect to flags and mnt_master of new mount. When we iterate through a slave group, it is possible that both current "m" and "last_dest" are not shared (although, both are slaves, i.e. have non-NULL mnt_master-s). Then the comparison above erroneously makes new mount shared and sets its mnt_master to last_source->mnt_master. The patch fixes the problem by handling zero mnt_group_id-s as though they are unequal. The similar problem exists in the implementation of "else" clause above when we have to ascend upward in the master/slave tree by calling: > last_source = last_source->mnt_master; > last_dest = last_source->mnt_parent; proper number of times. The last step is governed by "n->mnt_group_id != last_dest->mnt_group_id" condition that may lie if both are zero. The patch fixes this case in the same way as the former one. [AV: don't open-code an obvious helper...] Signed-off-by: Maxim Patlasov <mpatlasov@virtuozzo.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Seth Forshee <seth.forshee@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-11proc: prevent accessing /proc/<PID>/environ until it's readyMathias Krause
commit 8148a73c9901a8794a50f950083c00ccf97d43b3 upstream. If /proc/<PID>/environ gets read before the envp[] array is fully set up in create_{aout,elf,elf_fdpic,flat}_tables(), we might end up trying to read more bytes than are actually written, as env_start will already be set but env_end will still be zero, making the range calculation underflow, allowing to read beyond the end of what has been written. Fix this as it is done for /proc/<PID>/cmdline by testing env_end for zero. It is, apparently, intentionally set last in create_*_tables(). This bug was found by the PaX size_overflow plugin that detected the arithmetic underflow of 'this_len = env_end - (env_start + src)' when env_end is still zero. The expected consequence is that userland trying to access /proc/<PID>/environ of a not yet fully set up process may get inconsistent data as we're in the middle of copying in the environment variables. Fixes: https://forums.grsecurity.net/viewtopic.php?f=3&t=4363 Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=116461 Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Emese Revfy <re.emese@gmail.com> Cc: Pax Team <pageexec@freemail.hu> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Mateusz Guzik <mguzik@redhat.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Jarod Wilson <jarod@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-04ext4: fix races of writeback with punch hole and zero rangeJan Kara
commit 011278485ecc3cd2a3954b5d4c73101d919bf1fa upstream. When doing delayed allocation, update of on-disk inode size is postponed until IO submission time. However hole punch or zero range fallocate calls can end up discarding the tail page cache page and thus on-disk inode size would never be properly updated. Make sure the on-disk inode size is updated before truncating page cache. Signed-off-by: Jan Kara <jack@suse.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-04ext4: fix races between buffered IO and collapse / insert rangeJan Kara
commit 32ebffd3bbb4162da5ff88f9a35dd32d0a28ea70 upstream. Current code implementing FALLOC_FL_COLLAPSE_RANGE and FALLOC_FL_INSERT_RANGE is prone to races with buffered writes and page faults. If buffered write or write via mmap manages to squeeze between filemap_write_and_wait_range() and truncate_pagecache() in the fallocate implementations, the written data is simply discarded by truncate_pagecache() although it should have been shifted. Fix the problem by moving filemap_write_and_wait_range() call inside i_mutex and i_mmap_sem. That way we are protected against races with both buffered writes and page faults. Signed-off-by: Jan Kara <jack@suse.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-04ext4: move unlocked dio protection from ext4_alloc_file_blocks()Jan Kara
commit 17048e8a083fec7ad841d88ef0812707fbc7e39f upstream. Currently ext4_alloc_file_blocks() was handling protection against unlocked DIO. However we now need to sometimes call it under i_mmap_sem and sometimes not and DIO protection ranks above it (although strictly speaking this cannot currently create any deadlocks). Also ext4_zero_range() was actually getting & releasing unlocked DIO protection twice in some cases. Luckily it didn't introduce any real bug but it was a land mine waiting to be stepped on. So move DIO protection out from ext4_alloc_file_blocks() into the two callsites. Signed-off-by: Jan Kara <jack@suse.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-04ext4: fix races between page faults and hole punchingJan Kara
commit ea3d7209ca01da209cda6f0dea8be9cc4b7a933b upstream. Currently, page faults and hole punching are completely unsynchronized. This can result in page fault faulting in a page into a range that we are punching after truncate_pagecache_range() has been called and thus we can end up with a page mapped to disk blocks that will be shortly freed. Filesystem corruption will shortly follow. Note that the same race is avoided for truncate by checking page fault offset against i_size but there isn't similar mechanism available for punching holes. Fix the problem by creating new rw semaphore i_mmap_sem in inode and grab it for writing over truncate, hole punching, and other functions removing blocks from extent tree and for read over page faults. We cannot easily use i_data_sem for this since that ranks below transaction start and we need something ranking above it so that it can be held over the whole truncate / hole punching operation. Also remove various workarounds we had in the code to reduce race window when page fault could have created pages with stale mapping information. Signed-off-by: Jan Kara <jack@suse.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-04ext4: fix NULL pointer dereference in ext4_mark_inode_dirty()Eryu Guan
commit 5e1021f2b6dff1a86a468a1424d59faae2bc63c1 upstream. ext4_reserve_inode_write() in ext4_mark_inode_dirty() could fail on error (e.g. EIO) and iloc.bh can be NULL in this case. But the error is ignored in the following "if" condition and ext4_expand_extra_isize() might be called with NULL iloc.bh set, which triggers NULL pointer dereference. This is uncovered by commit 8b4953e13f4c ("ext4: reserve code points for the project quota feature"), which enlarges the ext4_inode size, and run the following script on new kernel but with old mke2fs: #/bin/bash mnt=/mnt/ext4 devname=ext4-error dev=/dev/mapper/$devname fsimg=/home/fs.img trap cleanup 0 1 2 3 9 15 cleanup() { umount $mnt >/dev/null 2>&1 dmsetup remove $devname losetup -d $backend_dev rm -f $fsimg exit 0 } rm -f $fsimg fallocate -l 1g $fsimg backend_dev=`losetup -f --show $fsimg` devsize=`blockdev --getsz $backend_dev` good_tab="0 $devsize linear $backend_dev 0" error_tab="0 $devsize error $backend_dev 0" dmsetup create $devname --table "$good_tab" mkfs -t ext4 $dev mount -t ext4 -o errors=continue,strictatime $dev $mnt dmsetup load $devname --table "$error_tab" && dmsetup resume $devname echo 3 > /proc/sys/vm/drop_caches ls -l $mnt exit 0 [ Patch changed to simplify the function a tiny bit. -- Ted ] Signed-off-by: Eryu Guan <guaneryu@gmail.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-04numa: fix /proc/<pid>/numa_maps for THPGerald Schaefer
commit 28093f9f34cedeaea0f481c58446d9dac6dd620f upstream. In gather_pte_stats() a THP pmd is cast into a pte, which is wrong because the layouts may differ depending on the architecture. On s390 this will lead to inaccurate numa_maps accounting in /proc because of misguided pte_present() and pte_dirty() checks on the fake pte. On other architectures pte_present() and pte_dirty() may work by chance, but there may be an issue with direct-access (dax) mappings w/o underlying struct pages when HAVE_PTE_SPECIAL is set and THP is available. In vm_normal_page() the fake pte will be checked with pte_special() and because there is no "special" bit in a pmd, this will always return false and the VM_PFNMAP | VM_MIXEDMAP checking will be skipped. On dax mappings w/o struct pages, an invalid struct page pointer would then be returned that can crash the kernel. This patch fixes the numa_maps THP handling by introducing new "_pmd" variants of the can_gather_numa_stats() and vm_normal_page() functions. Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Michael Holzheu <holzheu@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-05-04debugfs: Make automount point inodes permanently emptySeth Forshee
commit 87243deb88671f70def4c52dfa7ca7830707bd31 upstream. Starting with 4.1 the tracing subsystem has its own filesystem which is automounted in the tracing subdirectory of debugfs. Prior to this debugfs could be bind mounted in a cloned mount namespace, but if tracefs has been mounted under debugfs this now fails because there is a locked child mount. This creates a regression for container software which bind mounts debugfs to satisfy the assumption of some userspace software. In other pseudo filesystems such as proc and sysfs we're already creating mountpoints like this in such a way that no dirents can be created in the directories, allowing them to be exceptions to some MNT_LOCKED tests. In fact we're already do this for the tracefs mountpoint in sysfs. Do the same in debugfs_create_automount(), since the intention here is clearly to create a mountpoint. This fixes the regression, as locked child mounts on permanently empty directories do not cause a bind mount to fail. Signed-off-by: Seth Forshee <seth.forshee@canonical.com> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-20Btrfs: fix file/data loss caused by fsync after rename and new inodeFilipe Manana
commit 56f23fdbb600e6087db7b009775b95ce07cc3195 upstream. If we rename an inode A (be it a file or a directory), create a new inode B with the old name of inode A and under the same parent directory, fsync inode B and then power fail, at log tree replay time we end up removing inode A completely. If inode A is a directory then all its files are gone too. Example scenarios where this happens: This is reproducible with the following steps, taken from a couple of test cases written for fstests which are going to be submitted upstream soon: # Scenario 1 mkfs.btrfs -f /dev/sdc mount /dev/sdc /mnt mkdir -p /mnt/a/x echo "hello" > /mnt/a/x/foo echo "world" > /mnt/a/x/bar sync mv /mnt/a/x /mnt/a/y mkdir /mnt/a/x xfs_io -c fsync /mnt/a/x <power failure happens> The next time the fs is mounted, log tree replay happens and the directory "y" does not exist nor do the files "foo" and "bar" exist anywhere (neither in "y" nor in "x", nor the root nor anywhere). # Scenario 2 mkfs.btrfs -f /dev/sdc mount /dev/sdc /mnt mkdir /mnt/a echo "hello" > /mnt/a/foo sync mv /mnt/a/foo /mnt/a/bar echo "world" > /mnt/a/foo xfs_io -c fsync /mnt/a/foo <power failure happens> The next time the fs is mounted, log tree replay happens and the file "bar" does not exists anymore. A file with the name "foo" exists and it matches the second file we created. Another related problem that does not involve file/data loss is when a new inode is created with the name of a deleted snapshot and we fsync it: mkfs.btrfs -f /dev/sdc mount /dev/sdc /mnt mkdir /mnt/testdir btrfs subvolume snapshot /mnt /mnt/testdir/snap btrfs subvolume delete /mnt/testdir/snap rmdir /mnt/testdir mkdir /mnt/testdir xfs_io -c fsync /mnt/testdir # or fsync some file inside /mnt/testdir <power failure> The next time the fs is mounted the log replay procedure fails because it attempts to delete the snapshot entry (which has dir item key type of BTRFS_ROOT_ITEM_KEY) as if it were a regular (non-root) entry, resulting in the following error that causes mount to fail: [52174.510532] BTRFS info (device dm-0): failed to delete reference to snap, inode 257 parent 257 [52174.512570] ------------[ cut here ]------------ [52174.513278] WARNING: CPU: 12 PID: 28024 at fs/btrfs/inode.c:3986 __btrfs_unlink_inode+0x178/0x351 [btrfs]() [52174.514681] BTRFS: Transaction aborted (error -2) [52174.515630] Modules linked in: btrfs dm_flakey dm_mod overlay crc32c_generic ppdev xor raid6_pq acpi_cpufreq parport_pc tpm_tis sg parport tpm evdev i2c_piix4 proc [52174.521568] CPU: 12 PID: 28024 Comm: mount Tainted: G W 4.5.0-rc6-btrfs-next-27+ #1 [52174.522805] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [52174.524053] 0000000000000000 ffff8801df2a7710 ffffffff81264e93 ffff8801df2a7758 [52174.524053] 0000000000000009 ffff8801df2a7748 ffffffff81051618 ffffffffa03591cd [52174.524053] 00000000fffffffe ffff88015e6e5000 ffff88016dbc3c88 ffff88016dbc3c88 [52174.524053] Call Trace: [52174.524053] [<ffffffff81264e93>] dump_stack+0x67/0x90 [52174.524053] [<ffffffff81051618>] warn_slowpath_common+0x99/0xb2 [52174.524053] [<ffffffffa03591cd>] ? __btrfs_unlink_inode+0x178/0x351 [btrfs] [52174.524053] [<ffffffff81051679>] warn_slowpath_fmt+0x48/0x50 [52174.524053] [<ffffffffa03591cd>] __btrfs_unlink_inode+0x178/0x351 [btrfs] [52174.524053] [<ffffffff8118f5e9>] ? iput+0xb0/0x284 [52174.524053] [<ffffffffa0359fe8>] btrfs_unlink_inode+0x1c/0x3d [btrfs] [52174.524053] [<ffffffffa038631e>] check_item_in_log+0x1fe/0x29b [btrfs] [52174.524053] [<ffffffffa0386522>] replay_dir_deletes+0x167/0x1cf [btrfs] [52174.524053] [<ffffffffa038739e>] fixup_inode_link_count+0x289/0x2aa [btrfs] [52174.524053] [<ffffffffa038748a>] fixup_inode_link_counts+0xcb/0x105 [btrfs] [52174.524053] [<ffffffffa038a5ec>] btrfs_recover_log_trees+0x258/0x32c [btrfs] [52174.524053] [<ffffffffa03885b2>] ? replay_one_extent+0x511/0x511 [btrfs] [52174.524053] [<ffffffffa034f288>] open_ctree+0x1dd4/0x21b9 [btrfs] [52174.524053] [<ffffffffa032b753>] btrfs_mount+0x97e/0xaed [btrfs] [52174.524053] [<ffffffff8108e1b7>] ? trace_hardirqs_on+0xd/0xf [52174.524053] [<ffffffff8117bafa>] mount_fs+0x67/0x131 [52174.524053] [<ffffffff81193003>] vfs_kern_mount+0x6c/0xde [52174.524053] [<ffffffffa032af81>] btrfs_mount+0x1ac/0xaed [btrfs] [52174.524053] [<ffffffff8108e1b7>] ? trace_hardirqs_on+0xd/0xf [52174.524053] [<ffffffff8108c262>] ? lockdep_init_map+0xb9/0x1b3 [52174.524053] [<ffffffff8117bafa>] mount_fs+0x67/0x131 [52174.524053] [<ffffffff81193003>] vfs_kern_mount+0x6c/0xde [52174.524053] [<ffffffff8119590f>] do_mount+0x8a6/0x9e8 [52174.524053] [<ffffffff811358dd>] ? strndup_user+0x3f/0x59 [52174.524053] [<ffffffff81195c65>] SyS_mount+0x77/0x9f [52174.524053] [<ffffffff814935d7>] entry_SYSCALL_64_fastpath+0x12/0x6b [52174.561288] ---[ end trace 6b53049efb1a3ea6 ]--- Fix this by forcing a transaction commit when such cases happen. This means we check in the commit root of the subvolume tree if there was any other inode with the same reference when the inode we are fsync'ing is a new inode (created in the current transaction). Test cases for fstests, covering all the scenarios given above, were submitted upstream for fstests: * fstests: generic test for fsync after renaming directory https://patchwork.kernel.org/patch/8694281/ * fstests: generic test for fsync after renaming file https://patchwork.kernel.org/patch/8694301/ * fstests: add btrfs test for fsync after snapshot deletion https://patchwork.kernel.org/patch/8670671/ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-20ext4: ignore quota mount options if the quota feature is enabledTheodore Ts'o
commit c325a67c72903e1cc30e990a15ce745bda0dbfde upstream. Previously, ext4 would fail the mount if the file system had the quota feature enabled and quota mount options (used for the older quota setups) were present. This broke xfstests, since xfs silently ignores the usrquote and grpquota mount options if they are specified. This commit changes things so that we are consistent with xfs; having the mount options specified is harmless, so no sense break users by forbidding them. Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-20ext4: add lockdep annotations for i_data_semTheodore Ts'o
commit daf647d2dd58cec59570d7698a45b98e580f2076 upstream. With the internal Quota feature, mke2fs creates empty quota inodes and quota usage tracking is enabled as soon as the file system is mounted. Since quotacheck is no longer preallocating all of the blocks in the quota inode that are likely needed to be written to, we are now seeing a lockdep false positive caused by needing to allocate a quota block from inside ext4_map_blocks(), while holding i_data_sem for a data inode. This results in this complaint: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&ei->i_data_sem); lock(&s->s_dquot.dqio_mutex); lock(&ei->i_data_sem); lock(&s->s_dquot.dqio_mutex); Google-Bug-Id: 27907753 Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-20btrfs: fix crash/invalid memory access on fsync when using overlayfsFilipe Manana
commit de17e793b104d690e1d007dfc5cb6b4f649598ca upstream. If the lower or upper directory of an overlayfs mount belong to a btrfs file system and we fsync the file through the overlayfs' merged directory we ended up accessing an inode that didn't belong to btrfs as if it were a btrfs inode at btrfs_sync_file() resulting in a crash like the following: [ 7782.588845] BUG: unable to handle kernel NULL pointer dereference at 0000000000000544 [ 7782.590624] IP: [<ffffffffa030b7ab>] btrfs_sync_file+0x11b/0x3e9 [btrfs] [ 7782.591931] PGD 4d954067 PUD 1e878067 PMD 0 [ 7782.592016] Oops: 0002 [#6] PREEMPT SMP DEBUG_PAGEALLOC [ 7782.592016] Modules linked in: btrfs overlay ppdev crc32c_generic evdev xor raid6_pq psmouse pcspkr sg serio_raw acpi_cpufreq parport_pc parport tpm_tis i2c_piix4 tpm i2c_core processor button loop autofs4 ext4 crc16 mbcache jbd2 sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix virtio_pci libata virtio_ring virtio scsi_mod e1000 floppy [last unloaded: btrfs] [ 7782.592016] CPU: 10 PID: 16437 Comm: xfs_io Tainted: G D 4.5.0-rc6-btrfs-next-26+ #1 [ 7782.592016] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [ 7782.592016] task: ffff88001b8d40c0 ti: ffff880137488000 task.ti: ffff880137488000 [ 7782.592016] RIP: 0010:[<ffffffffa030b7ab>] [<ffffffffa030b7ab>] btrfs_sync_file+0x11b/0x3e9 [btrfs] [ 7782.592016] RSP: 0018:ffff88013748be40 EFLAGS: 00010286 [ 7782.592016] RAX: 0000000080000000 RBX: ffff880133b30c88 RCX: 0000000000000001 [ 7782.592016] RDX: 0000000000000001 RSI: ffffffff8148fec0 RDI: 00000000ffffffff [ 7782.592016] RBP: ffff88013748bec0 R08: 0000000000000001 R09: 0000000000000000 [ 7782.624248] R10: ffff88013748be40 R11: 0000000000000246 R12: 0000000000000000 [ 7782.624248] R13: 0000000000000000 R14: 00000000009305a0 R15: ffff880015e3be40 [ 7782.624248] FS: 00007fa83b9cb700(0000) GS:ffff88023ed40000(0000) knlGS:0000000000000000 [ 7782.624248] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 7782.624248] CR2: 0000000000000544 CR3: 00000001fa652000 CR4: 00000000000006e0 [ 7782.624248] Stack: [ 7782.624248] ffffffff8108b5cc ffff88013748bec0 0000000000000246 ffff8800b005ded0 [ 7782.624248] ffff880133b30d60 8000000000000000 7fffffffffffffff 0000000000000246 [ 7782.624248] 0000000000000246 ffffffff81074f9b ffffffff8104357c ffff880015e3be40 [ 7782.624248] Call Trace: [ 7782.624248] [<ffffffff8108b5cc>] ? arch_local_irq_save+0x9/0xc [ 7782.624248] [<ffffffff81074f9b>] ? ___might_sleep+0xce/0x217 [ 7782.624248] [<ffffffff8104357c>] ? __do_page_fault+0x3c0/0x43a [ 7782.624248] [<ffffffff811a2351>] vfs_fsync_range+0x8c/0x9e [ 7782.624248] [<ffffffff811a237f>] vfs_fsync+0x1c/0x1e [ 7782.624248] [<ffffffff811a24d6>] do_fsync+0x31/0x4a [ 7782.624248] [<ffffffff811a2700>] SyS_fsync+0x10/0x14 [ 7782.624248] [<ffffffff81493617>] entry_SYSCALL_64_fastpath+0x12/0x6b [ 7782.624248] Code: 85 c0 0f 85 e2 02 00 00 48 8b 45 b0 31 f6 4c 29 e8 48 ff c0 48 89 45 a8 48 8d 83 d8 00 00 00 48 89 c7 48 89 45 a0 e8 fc 43 18 e1 <f0> 41 ff 84 24 44 05 00 00 48 8b 83 58 ff ff ff 48 c1 e8 07 83 [ 7782.624248] RIP [<ffffffffa030b7ab>] btrfs_sync_file+0x11b/0x3e9 [btrfs] [ 7782.624248] RSP <ffff88013748be40> [ 7782.624248] CR2: 0000000000000544 [ 7782.661994] ---[ end trace 721e14960eb939bc ]--- This started happening since commit 4bacc9c9234 (overlayfs: Make f_path always point to the overlay and f_inode to the underlay) and even though after this change we could still access the btrfs inode through struct file->f_mapping->host or struct file->f_inode, we would end up resulting in more similar issues later on at check_parent_dirs_for_sync() because the dentry we got (from struct file->f_path.dentry) was from overlayfs and not from btrfs, that is, we had no way of getting the dentry that belonged to btrfs (we always got the dentry that belonged to overlayfs). The new patch from Miklos Szeredi, titled "vfs: add file_dentry()" and recently submitted to linux-fsdevel, adds a file_dentry() API that allows us to get the btrfs dentry from the input file and therefore being able to fsync when the upper and lower directories belong to btrfs filesystems. This issue has been reported several times by users in the mailing list and bugzilla. A test case for xfstests is being submitted as well. Fixes: 4bacc9c9234c ("overlayfs: Make f_path always point to the overlay and f_inode to the underlay") Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=101951 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=109791 Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-20nfs: use file_dentry()Miklos Szeredi
commit be62a1a8fd116f5cd9e53726601f970e16e17558 upstream. NFS may be used as lower layer of overlayfs and accessing f_path.dentry can lead to a crash. Fix by replacing direct access of file->f_path.dentry with the file_dentry() accessor, which will always return a native object. Fixes: 4bacc9c9234c ("overlayfs: Make f_path always point to the overlay and f_inode to the underlay") Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Acked-by: Trond Myklebust <trond.myklebust@primarydata.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-20fs: add file_dentry()Miklos Szeredi
commit d101a125954eae1d397adda94ca6319485a50493 upstream. This series fixes bugs in nfs and ext4 due to 4bacc9c9234c ("overlayfs: Make f_path always point to the overlay and f_inode to the underlay"). Regular files opened on overlayfs will result in the file being opened on the underlying filesystem, while f_path points to the overlayfs mount/dentry. This confuses filesystems which get the dentry from struct file and assume it's theirs. Add a new helper, file_dentry() [*], to get the filesystem's own dentry from the file. This checks file->f_path.dentry->d_flags against DCACHE_OP_REAL, and returns file->f_path.dentry if DCACHE_OP_REAL is not set (this is the common, non-overlayfs case). In the uncommon case it will call into overlayfs's ->d_real() to get the underlying dentry, matching file_inode(file). The reason we need to check against the inode is that if the file is copied up while being open, d_real() would return the upper dentry, while the open file comes from the lower dentry. [*] If possible, it's better simply to use file_inode() instead. Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: Trond Myklebust <trond.myklebust@primarydata.com> Cc: David Howells <dhowells@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Daniel Axtens <dja@axtens.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12ocfs2/dlm: fix BUG in dlm_move_lockres_to_recovery_listJoseph Qi
commit be12b299a83fc807bbaccd2bcb8ec50cbb0cb55c upstream. When master handles convert request, it queues ast first and then returns status. This may happen that the ast is sent before the request status because the above two messages are sent by two threads. And right after the ast is sent, if master down, it may trigger BUG in dlm_move_lockres_to_recovery_list in the requested node because ast handler moves it to grant list without clear lock->convert_pending. So remove BUG_ON statement and check if the ast is processed in dlmconvert_remote. Signed-off-by: Joseph Qi <joseph.qi@huawei.com> Reported-by: Yiwen Jiang <jiangyiwen@huawei.com> Cc: Junxiao Bi <junxiao.bi@oracle.com> Cc: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Cc: Tariq Saeed <tariq.x.saeed@oracle.com> Cc: Junxiao Bi <junxiao.bi@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12ocfs2/dlm: fix race between convert and recoveryJoseph Qi
commit ac7cf246dfdbec3d8fed296c7bf30e16f5099dac upstream. There is a race window between dlmconvert_remote and dlm_move_lockres_to_recovery_list, which will cause a lock with OCFS2_LOCK_BUSY in grant list, thus system hangs. dlmconvert_remote { spin_lock(&res->spinlock); list_move_tail(&lock->list, &res->converting); lock->convert_pending = 1; spin_unlock(&res->spinlock); status = dlm_send_remote_convert_request(); >>>>>> race window, master has queued ast and return DLM_NORMAL, and then down before sending ast. this node detects master down and calls dlm_move_lockres_to_recovery_list, which will revert the lock to grant list. Then OCFS2_LOCK_BUSY won't be cleared as new master won't send ast any more because it thinks already be authorized. spin_lock(&res->spinlock); lock->convert_pending = 0; if (status != DLM_NORMAL) dlm_revert_pending_convert(res, lock); spin_unlock(&res->spinlock); } In this case, check if res->state has DLM_LOCK_RES_RECOVERING bit set (res is still in recovering) or res master changed (new master has finished recovery), reset the status to DLM_RECOVERING, then it will retry convert. Signed-off-by: Joseph Qi <joseph.qi@huawei.com> Reported-by: Yiwen Jiang <jiangyiwen@huawei.com> Reviewed-by: Junxiao Bi <junxiao.bi@oracle.com> Cc: Mark Fasheh <mfasheh@suse.de> Cc: Joel Becker <jlbec@evilplan.org> Cc: Tariq Saeed <tariq.x.saeed@oracle.com> Cc: Junxiao Bi <junxiao.bi@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12writeback, cgroup: fix use of the wrong bdi_writeback which mismatches the inodeTejun Heo
commit aaf2559332ba272671bb870464a99b909b29a3a1 upstream. When cgroup writeback is in use, there can be multiple wb's (bdi_writeback's) per bdi and an inode may switch among them dynamically. In a couple places, the wrong wb was used leading to performing operations on the wrong list under the wrong lock corrupting the io lists. * writeback_single_inode() was taking @wb parameter and used it to remove the inode from io lists if it becomes clean after writeback. The callers of this function were always passing in the root wb regardless of the actual wb that the inode was associated with, which could also change while writeback is in progress. Fix it by dropping the @wb parameter and using inode_to_wb_and_lock_list() to determine and lock the associated wb. * After writeback_sb_inodes() writes out an inode, it re-locks @wb and inode to remove it from or move it to the right io list. It assumes that the inode is still associated with @wb; however, the inode may have switched to another wb while writeback was in progress. Fix it by using inode_to_wb_and_lock_list() to determine and lock the associated wb after writeback is complete. As the function requires the original @wb->list_lock locked for the next iteration, in the unlikely case where the inode has changed association, switch the locks. Kudos to Tahsin for pinpointing these subtle breakages. Signed-off-by: Tejun Heo <tj@kernel.org> Fixes: d10c80955265 ("writeback: implement foreign cgroup inode bdi_writeback switching") Link: http://lkml.kernel.org/g/CAAeU0aMYeM_39Y2+PaRvyB1nqAPYZSNngJ1eBRmrxn7gKAt2Mg@mail.gmail.com Reported-and-diagnosed-by: Tahsin Erdogan <tahsin@google.com> Tested-by: Tahsin Erdogan <tahsin@google.com> Signed-off-by: Jens Axboe <axboe@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12writeback, cgroup: fix premature wb_put() in locked_inode_to_wb_and_lock_list()Tejun Heo
commit 614a4e3773148a31f58dc174bbf578ceb63510c2 upstream. locked_inode_to_wb_and_lock_list() wb_get()'s the wb associated with the target inode, unlocks inode, locks the wb's list_lock and verifies that the inode is still associated with the wb. To prevent the wb going away between dropping inode lock and acquiring list_lock, the wb is pinned while inode lock is held. The wb reference is put right after acquiring list_lock citing that the wb won't be dereferenced anymore. This isn't true. If the inode is still associated with the wb, the inode has reference and it's safe to return the wb; however, if inode has been switched, the wb still needs to be unlocked which is a dereference and can lead to use-after-free if it it races with wb destruction. Fix it by putting the reference after releasing list_lock. Signed-off-by: Tejun Heo <tj@kernel.org> Fixes: 87e1d789bf55 ("writeback: implement [locked_]inode_to_wb_and_lock_list()") Tested-by: Tahsin Erdogan <tahsin@google.com> Signed-off-by: Jens Axboe <axboe@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12nfsd: fix deadlock secinfo+readdir compoundJ. Bruce Fields
commit 2f6fc056e899bd0144a08da5cacaecbe8997cd74 upstream. nfsd_lookup_dentry exits with the parent filehandle locked. fh_put also unlocks if necessary (nfsd filehandle locking is probably too lenient), so it gets unlocked eventually, but if the following op in the compound needs to lock it again, we can deadlock. A fuzzer ran into this; normal clients don't send a secinfo followed by a readdir in the same compound. Signed-off-by: J. Bruce Fields <bfields@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12nfsd4: fix bad bounds checkingJ. Bruce Fields
commit 4aed9c46afb80164401143aa0fdcfe3798baa9d5 upstream. A number of spots in the xdr decoding follow a pattern like n = be32_to_cpup(p++); READ_BUF(n + 4); where n is a u32. The only bounds checking is done in READ_BUF itself, but since it's checking (n + 4), it won't catch cases where n is very large, (u32)(-4) or higher. I'm not sure exactly what the consequences are, but we've seen crashes soon after. Instead, just break these up into two READ_BUF()s. Signed-off-by: J. Bruce Fields <bfields@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12fs/coredump: prevent fsuid=0 dumps into user-controlled directoriesJann Horn
commit 378c6520e7d29280f400ef2ceaf155c86f05a71a upstream. This commit fixes the following security hole affecting systems where all of the following conditions are fulfilled: - The fs.suid_dumpable sysctl is set to 2. - The kernel.core_pattern sysctl's value starts with "/". (Systems where kernel.core_pattern starts with "|/" are not affected.) - Unprivileged user namespace creation is permitted. (This is true on Linux >=3.8, but some distributions disallow it by default using a distro patch.) Under these conditions, if a program executes under secure exec rules, causing it to run with the SUID_DUMP_ROOT flag, then unshares its user namespace, changes its root directory and crashes, the coredump will be written using fsuid=0 and a path derived from kernel.core_pattern - but this path is interpreted relative to the root directory of the process, allowing the attacker to control where a coredump will be written with root privileges. To fix the security issue, always interpret core_pattern for dumps that are written under SUID_DUMP_ROOT relative to the root directory of init. Signed-off-by: Jann Horn <jann@thejh.net> Acked-by: Kees Cook <keescook@chromium.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12fuse: Add reference counting for fuse_io_privSeth Forshee
commit 744742d692e37ad5c20630e57d526c8f2e2fe3c9 upstream. The 'reqs' member of fuse_io_priv serves two purposes. First is to track the number of oustanding async requests to the server and to signal that the io request is completed. The second is to be a reference count on the structure to know when it can be freed. For sync io requests these purposes can be at odds. fuse_direct_IO() wants to block until the request is done, and since the signal is sent when 'reqs' reaches 0 it cannot keep a reference to the object. Yet it needs to use the object after the userspace server has completed processing requests. This leads to some handshaking and special casing that it needlessly complicated and responsible for at least one race condition. It's much cleaner and safer to maintain a separate reference count for the object lifecycle and to let 'reqs' just be a count of outstanding requests to the userspace server. Then we can know for sure when it is safe to free the object without any handshaking or special cases. The catch here is that most of the time these objects are stack allocated and should not be freed. Initializing these objects with a single reference that is never released prevents accidental attempts to free the objects. Fixes: 9d5722b7777e ("fuse: handle synchronous iocbs internally") Signed-off-by: Seth Forshee <seth.forshee@canonical.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12fuse: do not use iocb after it may have been freedRobert Doebbelin
commit 7cabc61e01a0a8b663bd2b4c982aa53048218734 upstream. There's a race in fuse_direct_IO(), whereby is_sync_kiocb() is called on an iocb that could have been freed if async io has already completed. The fix in this case is simple and obvious: cache the result before starting io. It was discovered by KASan: kernel: ================================================================== kernel: BUG: KASan: use after free in fuse_direct_IO+0xb1a/0xcc0 at addr ffff88036c414390 Signed-off-by: Robert Doebbelin <robert@quobyte.com> Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Fixes: bcba24ccdc82 ("fuse: enable asynchronous processing direct IO") Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12xfs: fix two memory leaks in xfs_attr_list.c error pathsMateusz Guzik
commit 2e83b79b2d6c78bf1b4aa227938a214dcbddc83f upstream. This plugs 2 trivial leaks in xfs_attr_shortform_list and xfs_attr3_leaf_list_int. Signed-off-by: Mateusz Guzik <mguzik@redhat.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12quota: Fix possible GPF due to uninitialised pointersNikolay Borisov
commit ab73ef46398e2c0159f3a71de834586422d2a44a upstream. When dqget() in __dquot_initialize() fails e.g. due to IO error, __dquot_initialize() will pass an array of uninitialized pointers to dqput_all() and thus can lead to deference of random data. Fix the problem by properly initializing the array. Signed-off-by: Nikolay Borisov <kernel@kyup.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12splice: handle zero nr_pages in splice_to_pipe()Rabin Vincent
commit d6785d9152147596f60234157da2b02540c3e60f upstream. Running the following command: busybox cat /sys/kernel/debug/tracing/trace_pipe > /dev/null with any tracing enabled pretty very quickly leads to various NULL pointer dereferences and VM BUG_ON()s, such as these: BUG: unable to handle kernel NULL pointer dereference at 0000000000000020 IP: [<ffffffff8119df6c>] generic_pipe_buf_release+0xc/0x40 Call Trace: [<ffffffff811c48a3>] splice_direct_to_actor+0x143/0x1e0 [<ffffffff811c42e0>] ? generic_pipe_buf_nosteal+0x10/0x10 [<ffffffff811c49cf>] do_splice_direct+0x8f/0xb0 [<ffffffff81196869>] do_sendfile+0x199/0x380 [<ffffffff81197600>] SyS_sendfile64+0x90/0xa0 [<ffffffff8192cbee>] entry_SYSCALL_64_fastpath+0x12/0x6d page dumped because: VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0) kernel BUG at include/linux/mm.h:367! invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC RIP: [<ffffffff8119df9c>] generic_pipe_buf_release+0x3c/0x40 Call Trace: [<ffffffff811c48a3>] splice_direct_to_actor+0x143/0x1e0 [<ffffffff811c42e0>] ? generic_pipe_buf_nosteal+0x10/0x10 [<ffffffff811c49cf>] do_splice_direct+0x8f/0xb0 [<ffffffff81196869>] do_sendfile+0x199/0x380 [<ffffffff81197600>] SyS_sendfile64+0x90/0xa0 [<ffffffff8192cd1e>] tracesys_phase2+0x84/0x89 (busybox's cat uses sendfile(2), unlike the coreutils version) This is because tracing_splice_read_pipe() can call splice_to_pipe() with spd->nr_pages == 0. spd_pages underflows in splice_to_pipe() and we fill the page pointers and the other fields of the pipe_buffers with garbage. All other callers of splice_to_pipe() avoid calling it when nr_pages == 0, and we could make tracing_splice_read_pipe() do that too, but it seems reasonable to have splice_to_page() handle this condition gracefully. Signed-off-by: Rabin Vincent <rabin@rab.in> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12vfs: show_vfsstat: do not ignore errors from show_devname methodDmitry V. Levin
commit 5f8d498d4364f544fee17125787a47553db02afa upstream. Explicitly check show_devname method return code and bail out in case of an error. This fixes regression introduced by commit 9d4d65748a5c. Signed-off-by: Dmitry V. Levin <ldv@altlinux.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12jbd2: fix FS corruption possibility in jbd2_journal_destroy() on umount pathOGAWA Hirofumi
commit c0a2ad9b50dd80eeccd73d9ff962234590d5ec93 upstream. On umount path, jbd2_journal_destroy() writes latest transaction ID (->j_tail_sequence) to be used at next mount. The bug is that ->j_tail_sequence is not holding latest transaction ID in some cases. So, at next mount, there is chance to conflict with remaining (not overwritten yet) transactions. mount (id=10) write transaction (id=11) write transaction (id=12) umount (id=10) <= the bug doesn't write latest ID mount (id=10) write transaction (id=11) crash mount [recovery process] transaction (id=11) transaction (id=12) <= valid transaction ID, but old commit must not replay Like above, this bug become the cause of recovery failure, or FS corruption. So why ->j_tail_sequence doesn't point latest ID? Because if checkpoint transactions was reclaimed by memory pressure (i.e. bdev_try_to_free_page()), then ->j_tail_sequence is not updated. (And another case is, __jbd2_journal_clean_checkpoint_list() is called with empty transaction.) So in above cases, ->j_tail_sequence is not pointing latest transaction ID at umount path. Plus, REQ_FLUSH for checkpoint is not done too. So, to fix this problem with minimum changes, this patch updates ->j_tail_sequence, and issue REQ_FLUSH. (With more complex changes, some optimizations would be possible to avoid unnecessary REQ_FLUSH for example though.) BTW, journal->j_tail_sequence = ++journal->j_transaction_sequence; Increment of ->j_transaction_sequence seems to be unnecessary, but ext3 does this. Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-16ovl: fix getcwd() failure after unsuccessful rmdirRui Wang
commit ce9113bbcbf45a57c082d6603b9a9f342be3ef74 upstream. ovl_remove_upper() should do d_drop() only after it successfully removes the dir, otherwise a subsequent getcwd() system call will fail, breaking userspace programs. This is to fix: https://bugzilla.kernel.org/show_bug.cgi?id=110491 Signed-off-by: Rui Wang <rui.y.wang@intel.com> Reviewed-by: Konstantin Khlebnikov <koct9i@gmail.com> Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-16ovl: copy new uid/gid into overlayfs runtime inodeKonstantin Khlebnikov
commit b81de061fa59f17d2730aabb1b84419ef3913810 upstream. Overlayfs must update uid/gid after chown, otherwise functions like inode_owner_or_capable() will check user against stale uid. Catched by xfstests generic/087, it chowns file and calls utimes. Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com> Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-16userfaultfd: don't block on the last VM updates at exit timeLinus Torvalds
commit 39680f50ae54cbbb6e72ac38b8329dd3eb9105f4 upstream. The exit path will do some final updates to the VM of an exiting process to inform others of the fact that the process is going away. That happens, for example, for robust futex state cleanup, but also if the parent has asked for a TID update when the process exits (we clear the child tid field in user space). However, at the time we do those final VM accesses, we've already stopped accepting signals, so the usual "stop waiting for userfaults on signal" code in fs/userfaultfd.c no longer works, and the process can become an unkillable zombie waiting for something that will never happen. To solve this, just make handle_userfault() abort any user fault handling if we're already in the exit path past the signal handling state being dead (marked by PF_EXITING). This VM special case is pretty ugly, and it is possible that we should look at finalizing signals later (or move the VM final accesses earlier). But in the meantime this is a fairly minimally intrusive fix. Reported-and-tested-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Sedat Dilek <sedat.dilek@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-16ovl: fix working on distributed fs as lower layerKonstantin Khlebnikov
commit b5891cfab08fe3144a616e8e734df7749fb3b7d0 upstream. This adds missing .d_select_inode into alternative dentry_operations. Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com> Fixes: 7c03b5d45b8e ("ovl: allow distributed fs as lower layer") Fixes: 4bacc9c9234c ("overlayfs: Make f_path always point to the overlay and f_inode to the underlay") Reviewed-by: Nikolay Borisov <kernel@kyup.com> Tested-by: Nikolay Borisov <kernel@kyup.com> Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-16ovl: ignore lower entries when checking purity of non-directory entriesKonstantin Khlebnikov
commit 45d11738969633ec07ca35d75d486bf2d8918df6 upstream. After rename file dentry still holds reference to lower dentry from previous location. This doesn't matter for data access because data comes from upper dentry. But this stale lower dentry taints dentry at new location and turns it into non-pure upper. Such file leaves visible whiteout entry after remove in directory which shouldn't have whiteouts at all. Overlayfs already tracks pureness of file location in oe->opaque. This patch just uses that for detecting actual path type. Comment from Vivek Goyal's patch: Here are the details of the problem. Do following. $ mkdir upper lower work merged upper/dir/ $ touch lower/test $ sudo mount -t overlay overlay -olowerdir=lower,upperdir=upper,workdir= work merged $ mv merged/test merged/dir/ $ rm merged/dir/test $ ls -l merged/dir/ /usr/bin/ls: cannot access merged/dir/test: No such file or directory total 0 c????????? ? ? ? ? ? test Basic problem seems to be that once a file has been unlinked, a whiteout has been left behind which was not needed and hence it becomes visible. Whiteout is visible because parent dir is of not type MERGE, hence od->is_real is set during ovl_dir_open(). And that means ovl_iterate() passes on iterate handling directly to underlying fs. Underlying fs does not know/filter whiteouts so it becomes visible to user. Why did we leave a whiteout to begin with when we should not have. ovl_do_remove() checks for OVL_TYPE_PURE_UPPER() and does not leave whiteout if file is pure upper. In this case file is not found to be pure upper hence whiteout is left. So why file was not PURE_UPPER in this case? I think because dentry is still carrying some leftover state which was valid before rename. For example, od->numlower was set to 1 as it was a lower file. After rename, this state is not valid anymore as there is no such file in lower. Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com> Reported-by: Viktor Stanchev <me@viktorstanchev.com> Suggested-by: Vivek Goyal <vgoyal@redhat.com> Link: https://bugzilla.kernel.org/show_bug.cgi?id=109611 Acked-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-16ncpfs: fix a braino in OOM handling in ncp_fill_cache()Al Viro
commit 803c00123a8012b3a283c0530910653973ef6d8f upstream. Failing to allocate an inode for child means that cache for *parent* is incompletely populated. So it's parent directory inode ('dir') that needs NCPI_DIR_CACHE flag removed, *not* the child inode ('inode', which is what we'd failed to allocate in the first place). Fucked-up-in: commit 5e993e25 ("ncpfs: get rid of d_validate() nonsense") Fucked-up-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-16jffs2: reduce the breakage on recovery from halfway failed rename()Al Viro
commit f93812846f31381d35c04c6c577d724254355e7f upstream. d_instantiate(new_dentry, old_inode) is absolutely wrong thing to do - it will oops if new_dentry used to be positive, for starters. What we need is d_invalidate() the target and be done with that. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-09Fix directory hardlinks from deleted directoriesDavid Woodhouse
commit be629c62a603e5935f8177fd8a19e014100a259e upstream. When a directory is deleted, we don't take too much care about killing off all the dirents that belong to it — on the basis that on remount, the scan will conclude that the directory is dead anyway. This doesn't work though, when the deleted directory contained a child directory which was moved *out*. In the early stages of the fs build we can then end up with an apparent hard link, with the child directory appearing both in its true location, and as a child of the original directory which are this stage of the mount process we don't *yet* know is defunct. To resolve this, take out the early special-casing of the "directories shall not have hard links" rule in jffs2_build_inode_pass1(), and let the normal nlink processing happen for directories as well as other inodes. Then later in the build process we can set ic->pino_nlink to the parent inode#, as is required for directories during normal operaton, instead of the nlink. And complain only *then* about hard links which are still in evidence even after killing off all the unreachable paths. Reported-by: Liu Song <liu.song11@zte.com.cn> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-09jffs2: Fix page lock / f->sem deadlockDavid Woodhouse
commit 49e91e7079febe59a20ca885a87dd1c54240d0f1 upstream. With this fix, all code paths should now be obtaining the page lock before f->sem. Reported-by: Szabó Tamás <sztomi89@gmail.com> Tested-by: Thomas Betker <thomas.betker@rohde-schwarz.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-09Revert "jffs2: Fix lock acquisition order bug in jffs2_write_begin"Thomas Betker
commit 157078f64b8a9cd7011b6b900b2f2498df850748 upstream. This reverts commit 5ffd3412ae55 ("jffs2: Fix lock acquisition order bug in jffs2_write_begin"). The commit modified jffs2_write_begin() to remove a deadlock with jffs2_garbage_collect_live(), but this introduced new deadlocks found by multiple users. page_lock() actually has to be called before mutex_lock(&c->alloc_sem) or mutex_lock(&f->sem) because jffs2_write_end() and jffs2_readpage() are called with the page locked, and they acquire c->alloc_sem and f->sem, resp. In other words, the lock order in jffs2_write_begin() was correct, and it is the jffs2_garbage_collect_live() path that has to be changed. Revert the commit to get rid of the new deadlocks, and to clear the way for a better fix of the original deadlock. Reported-by: Deng Chao <deng.chao1@zte.com.cn> Reported-by: Ming Liu <liu.ming50@gmail.com> Reported-by: wangzaiwei <wangzaiwei@top-vision.cn> Signed-off-by: Thomas Betker <thomas.betker@rohde-schwarz.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-03-09Btrfs: fix loading of orphan roots leading to BUG_ONFilipe Manana
commit 909c3a22da3b8d2cfd3505ca5658f0176859d400 upstream. When looking for orphan roots during mount we can end up hitting a BUG_ON() (at root-item.c:btrfs_find_orphan_roots()) if a log tree is replayed and qgroups are enabled. This is because after a log tree is replayed, a transaction commit is made, which triggers qgroup extent accounting which in turn does backref walking which ends up reading and inserting all roots in the radix tree fs_info->fs_root_radix, including orphan roots (deleted snapshots). So after the log tree is replayed, when finding orphan roots we hit the BUG_ON with the following trace: [118209.182438] ------------[ cut here ]------------ [118209.183279] kernel BUG at fs/btrfs/root-tree.c:314! [118209.184074] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [118209.185123] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic ppdev xor raid6_pq evdev sg parport_pc parport acpi_cpufreq tpm_tis tpm psmouse processor i2c_piix4 serio_raw pcspkr i2c_core button loop autofs4 ext4 crc16 mbcache jbd2 sd_mod sr_mod cdrom ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring virtio scsi_mod e1000 floppy [last unloaded: btrfs] [118209.186318] CPU: 14 PID: 28428 Comm: mount Tainted: G W 4.5.0-rc5-btrfs-next-24+ #1 [118209.186318] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [118209.186318] task: ffff8801ec131040 ti: ffff8800af34c000 task.ti: ffff8800af34c000 [118209.186318] RIP: 0010:[<ffffffffa04237d7>] [<ffffffffa04237d7>] btrfs_find_orphan_roots+0x1fc/0x244 [btrfs] [118209.186318] RSP: 0018:ffff8800af34faa8 EFLAGS: 00010246 [118209.186318] RAX: 00000000ffffffef RBX: 00000000ffffffef RCX: 0000000000000001 [118209.186318] RDX: 0000000080000000 RSI: 0000000000000001 RDI: 00000000ffffffff [118209.186318] RBP: ffff8800af34fb08 R08: 0000000000000001 R09: 0000000000000000 [118209.186318] R10: ffff8800af34f9f0 R11: 6db6db6db6db6db7 R12: ffff880171b97000 [118209.186318] R13: ffff8801ca9d65e0 R14: ffff8800afa2e000 R15: 0000160000000000 [118209.186318] FS: 00007f5bcb914840(0000) GS:ffff88023edc0000(0000) knlGS:0000000000000000 [118209.186318] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [118209.186318] CR2: 00007f5bcaceb5d9 CR3: 00000000b49b5000 CR4: 00000000000006e0 [118209.186318] Stack: [118209.186318] fffffbffffffffff 010230ffffffffff 0101000000000000 ff84000000000000 [118209.186318] fbffffffffffffff 30ffffffffffffff 0000000000000101 ffff880082348000 [118209.186318] 0000000000000000 ffff8800afa2e000 ffff8800afa2e000 0000000000000000 [118209.186318] Call Trace: [118209.186318] [<ffffffffa042e2db>] open_ctree+0x1e37/0x21b9 [btrfs] [118209.186318] [<ffffffffa040a753>] btrfs_mount+0x97e/0xaed [btrfs] [118209.186318] [<ffffffff8108e1c0>] ? trace_hardirqs_on+0xd/0xf [118209.186318] [<ffffffff8117b87e>] mount_fs+0x67/0x131 [118209.186318] [<ffffffff81192d2b>] vfs_kern_mount+0x6c/0xde [118209.186318] [<ffffffffa0409f81>] btrfs_mount+0x1ac/0xaed [btrfs] [118209.186318] [<ffffffff8108e1c0>] ? trace_hardirqs_on+0xd/0xf [118209.186318] [<ffffffff8108c26b>] ? lockdep_init_map+0xb9/0x1b3 [118209.186318] [<ffffffff8117b87e>] mount_fs+0x67/0x131 [118209.186318] [<ffffffff81192d2b>] vfs_kern_mount+0x6c/0xde [118209.186318] [<ffffffff81195637>] do_mount+0x8a6/0x9e8 [118209.186318] [<ffffffff8119598d>] SyS_mount+0x77/0x9f [118209.186318] [<ffffffff81493017>] entry_SYSCALL_64_fastpath+0x12/0x6b [118209.186318] Code: 64 00 00 85 c0 89 c3 75 24 f0 41 80 4c 24 20 20 49 8b bc 24 f0 01 00 00 4c 89 e6 e8 e8 65 00 00 85 c0 89 c3 74 11 83 f8 ef 75 02 <0f> 0b 4c 89 e7 e8 da 72 00 00 eb 1c 41 83 bc 24 00 01 00 00 00 [118209.186318] RIP [<ffffffffa04237d7>] btrfs_find_orphan_roots+0x1fc/0x244 [btrfs] [118209.186318] RSP <ffff8800af34faa8> [118209.230735] ---[ end trace 83938f987d85d477 ]--- So fix this by not treating the error -EEXIST, returned when attempting to insert a root already inserted by the backref walking code, as an error. The following test case for xfstests reproduces the bug: seq=`basename $0` seqres=$RESULT_DIR/$seq echo "QA output created by $seq" tmp=/tmp/$$ status=1 # failure is the default! trap "_cleanup; exit \$status" 0 1 2 3 15 _cleanup() { _cleanup_flakey cd / rm -f $tmp.* } # get standard environment, filters and checks . ./common/rc . ./common/filter . ./common/dmflakey # real QA test starts here _supported_fs btrfs _supported_os Linux _require_scratch _require_dm_target flakey _require_metadata_journaling $SCRATCH_DEV rm -f $seqres.full _scratch_mkfs >>$seqres.full 2>&1 _init_flakey _mount_flakey _run_btrfs_util_prog quota enable $SCRATCH_MNT # Create 2 directories with one file in one of them. # We use these just to trigger a transaction commit later, moving the file from # directory a to directory b and doing an fsync against directory a. mkdir $SCRATCH_MNT/a mkdir $SCRATCH_MNT/b touch $SCRATCH_MNT/a/f sync # Create our test file with 2 4K extents. $XFS_IO_PROG -f -s -c "pwrite -S 0xaa 0 8K" $SCRATCH_MNT/foobar | _filter_xfs_io # Create a snapshot and delete it. This doesn't really delete the snapshot # immediately, just makes it inaccessible and invisible to user space, the # snapshot is deleted later by a dedicated kernel thread (cleaner kthread) # which is woke up at the next transaction commit. # A root orphan item is inserted into the tree of tree roots, so that if a # power failure happens before the dedicated kernel thread does the snapshot # deletion, the next time the filesystem is mounted it resumes the snapshot # deletion. _run_btrfs_util_prog subvolume snapshot $SCRATCH_MNT $SCRATCH_MNT/snap _run_btrfs_util_prog subvolume delete $SCRATCH_MNT/snap # Now overwrite half of the extents we wrote before. Because we made a snapshpot # before, which isn't really deleted yet (since no transaction commit happened # after we did the snapshot delete request), the non overwritten extents get # referenced twice, once by the default subvolume and once by the snapshot. $XFS_IO_PROG -c "pwrite -S 0xbb 4K 8K" $SCRATCH_MNT/foobar | _filter_xfs_io # Now move file f from directory a to directory b and fsync directory a. # The fsync on the directory a triggers a transaction commit (because a file # was moved from it to another directory) and the file fsync leaves a log tree # with file extent items to replay. mv $SCRATCH_MNT/a/f $SCRATCH_MNT/a/b $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/a $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foobar echo "File digest before power failure:" md5sum $SCRATCH_MNT/foobar | _filter_scratch # Now simulate a power failure and mount the filesystem to replay the log tree. # After the log tree was replayed, we used to hit a BUG_ON() when processing # the root orphan item for the deleted snapshot. This is because when processing # an orphan root the code expected to be the first code inserting the root into # the fs_info->fs_root_radix radix tree, while in reallity it was the second # caller attempting to do it - the first caller was the transaction commit that # took place after replaying the log tree, when updating the qgroup counters. _flakey_drop_and_remount echo "File digest before after failure:" # Must match what he got before the power failure. md5sum $SCRATCH_MNT/foobar | _filter_scratch _unmount_flakey status=0 exit Fixes: 2d9e97761087 ("Btrfs: use btrfs_get_fs_root in resolve_indirect_ref") Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>