summaryrefslogtreecommitdiff
path: root/mm/hugetlb.c
AgeCommit message (Collapse)Author
2009-07-29hugetlbfs: fix i_blocks accountingEric Sandeen
As reported in Red Hat bz #509671, i_blocks for files on hugetlbfs get accounting wrong when doing something like: $ > foo $ date > foo date: write error: Invalid argument $ /usr/bin/stat foo File: `foo' Size: 0 Blocks: 18446744073709547520 IO Block: 2097152 regular ... This is because hugetlb_unreserve_pages() is unconditionally removing blocks_per_huge_page(h) on each call rather than using the freed amount. If there were 0 blocks, it goes negative, resulting in the above. This is a regression from commit a5516438959d90b071ff0a484ce4f3f523dc3152 ("hugetlb: modular state for hugetlb page size") which did: - inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed; + inode->i_blocks -= blocks_per_huge_page(h); so just put back the freed multiplier, and it's all happy again. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Acked-by: Andi Kleen <andi@firstfloor.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-23hugetlb: fault flags instead of write_accessHugh Dickins
handle_mm_fault() is now passing fault flags rather than write_access down to hugetlb_fault(), so better recognize that in hugetlb_fault(), and in hugetlb_no_page(). Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Acked-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16mm: introduce PageHuge() for testing huge/gigantic pagesWu Fengguang
A series of patches to enhance the /proc/pagemap interface and to add a userspace executable which can be used to present the pagemap data. Export 10 more flags to end users (and more for kernel developers): 11. KPF_MMAP (pseudo flag) memory mapped page 12. KPF_ANON (pseudo flag) memory mapped page (anonymous) 13. KPF_SWAPCACHE page is in swap cache 14. KPF_SWAPBACKED page is swap/RAM backed 15. KPF_COMPOUND_HEAD (*) 16. KPF_COMPOUND_TAIL (*) 17. KPF_HUGE hugeTLB pages 18. KPF_UNEVICTABLE page is in the unevictable LRU list 19. KPF_HWPOISON hardware detected corruption 20. KPF_NOPAGE (pseudo flag) no page frame at the address (*) For compound pages, exporting _both_ head/tail info enables users to tell where a compound page starts/ends, and its order. a simple demo of the page-types tool # ./page-types -h page-types [options] -r|--raw Raw mode, for kernel developers -a|--addr addr-spec Walk a range of pages -b|--bits bits-spec Walk pages with specified bits -l|--list Show page details in ranges -L|--list-each Show page details one by one -N|--no-summary Don't show summay info -h|--help Show this usage message addr-spec: N one page at offset N (unit: pages) N+M pages range from N to N+M-1 N,M pages range from N to M-1 N, pages range from N to end ,M pages range from 0 to M bits-spec: bit1,bit2 (flags & (bit1|bit2)) != 0 bit1,bit2=bit1 (flags & (bit1|bit2)) == bit1 bit1,~bit2 (flags & (bit1|bit2)) == bit1 =bit1,bit2 flags == (bit1|bit2) bit-names: locked error referenced uptodate dirty lru active slab writeback reclaim buddy mmap anonymous swapcache swapbacked compound_head compound_tail huge unevictable hwpoison nopage reserved(r) mlocked(r) mappedtodisk(r) private(r) private_2(r) owner_private(r) arch(r) uncached(r) readahead(o) slob_free(o) slub_frozen(o) slub_debug(o) (r) raw mode bits (o) overloaded bits # ./page-types flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000000000 487369 1903 _________________________________ 0x0000000000000014 5 0 __R_D____________________________ referenced,dirty 0x0000000000000020 1 0 _____l___________________________ lru 0x0000000000000024 34 0 __R__l___________________________ referenced,lru 0x0000000000000028 3838 14 ___U_l___________________________ uptodate,lru 0x0001000000000028 48 0 ___U_l_______________________I___ uptodate,lru,readahead 0x000000000000002c 6478 25 __RU_l___________________________ referenced,uptodate,lru 0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead 0x0000000000000040 8344 32 ______A__________________________ active 0x0000000000000060 1 0 _____lA__________________________ lru,active 0x0000000000000068 348 1 ___U_lA__________________________ uptodate,lru,active 0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead 0x000000000000006c 988 3 __RU_lA__________________________ referenced,uptodate,lru,active 0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead 0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked 0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked 0x0000000000000400 503 1 __________B______________________ buddy 0x0000000000000804 1 0 __R________M_____________________ referenced,mmap 0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap 0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead 0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap 0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead 0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap 0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead 0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap 0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead 0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked 0x0000000000001000 492 1 ____________a____________________ anonymous 0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked 0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked 0x000000000000586c 30 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked total 513968 2007 # ./page-types -r flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000000000 468002 1828 _________________________________ 0x0000000100000000 19102 74 _____________________r___________ reserved 0x0000000000008000 41 0 _______________H_________________ compound_head 0x0000000000010000 188 0 ________________T________________ compound_tail 0x0000000000008014 1 0 __R_D__________H_________________ referenced,dirty,compound_head 0x0000000000010014 4 0 __R_D___________T________________ referenced,dirty,compound_tail 0x0000000000000020 1 0 _____l___________________________ lru 0x0000000800000024 34 0 __R__l__________________P________ referenced,lru,private 0x0000000000000028 3794 14 ___U_l___________________________ uptodate,lru 0x0001000000000028 46 0 ___U_l_______________________I___ uptodate,lru,readahead 0x0000000400000028 44 0 ___U_l_________________d_________ uptodate,lru,mappedtodisk 0x0001000400000028 2 0 ___U_l_________________d_____I___ uptodate,lru,mappedtodisk,readahead 0x000000000000002c 6434 25 __RU_l___________________________ referenced,uptodate,lru 0x000100000000002c 47 0 __RU_l_______________________I___ referenced,uptodate,lru,readahead 0x000000040000002c 14 0 __RU_l_________________d_________ referenced,uptodate,lru,mappedtodisk 0x000000080000002c 30 0 __RU_l__________________P________ referenced,uptodate,lru,private 0x0000000800000040 8124 31 ______A_________________P________ active,private 0x0000000000000040 219 0 ______A__________________________ active 0x0000000800000060 1 0 _____lA_________________P________ lru,active,private 0x0000000000000068 322 1 ___U_lA__________________________ uptodate,lru,active 0x0001000000000068 12 0 ___U_lA______________________I___ uptodate,lru,active,readahead 0x0000000400000068 13 0 ___U_lA________________d_________ uptodate,lru,active,mappedtodisk 0x0000000800000068 12 0 ___U_lA_________________P________ uptodate,lru,active,private 0x000000000000006c 977 3 __RU_lA__________________________ referenced,uptodate,lru,active 0x000100000000006c 48 0 __RU_lA______________________I___ referenced,uptodate,lru,active,readahead 0x000000040000006c 5 0 __RU_lA________________d_________ referenced,uptodate,lru,active,mappedtodisk 0x000000080000006c 3 0 __RU_lA_________________P________ referenced,uptodate,lru,active,private 0x0000000c0000006c 3 0 __RU_lA________________dP________ referenced,uptodate,lru,active,mappedtodisk,private 0x0000000c00000068 1 0 ___U_lA________________dP________ uptodate,lru,active,mappedtodisk,private 0x0000000000004078 1 0 ___UDlA_______b__________________ uptodate,dirty,lru,active,swapbacked 0x000000000000407c 34 0 __RUDlA_______b__________________ referenced,uptodate,dirty,lru,active,swapbacked 0x0000000000000400 538 2 __________B______________________ buddy 0x0000000000000804 1 0 __R________M_____________________ referenced,mmap 0x0000000000000828 1029 4 ___U_l_____M_____________________ uptodate,lru,mmap 0x0001000000000828 43 0 ___U_l_____M_________________I___ uptodate,lru,mmap,readahead 0x000000000000082c 382 1 __RU_l_____M_____________________ referenced,uptodate,lru,mmap 0x000100000000082c 12 0 __RU_l_____M_________________I___ referenced,uptodate,lru,mmap,readahead 0x0000000000000868 192 0 ___U_lA____M_____________________ uptodate,lru,active,mmap 0x0001000000000868 12 0 ___U_lA____M_________________I___ uptodate,lru,active,mmap,readahead 0x000000000000086c 800 3 __RU_lA____M_____________________ referenced,uptodate,lru,active,mmap 0x000100000000086c 31 0 __RU_lA____M_________________I___ referenced,uptodate,lru,active,mmap,readahead 0x0000000000004878 2 0 ___UDlA____M__b__________________ uptodate,dirty,lru,active,mmap,swapbacked 0x0000000000001000 492 1 ____________a____________________ anonymous 0x0000000000005008 2 0 ___U________a_b__________________ uptodate,anonymous,swapbacked 0x0000000000005808 4 0 ___U_______Ma_b__________________ uptodate,mmap,anonymous,swapbacked 0x000000000000580c 1 0 __RU_______Ma_b__________________ referenced,uptodate,mmap,anonymous,swapbacked 0x0000000000005868 2839 11 ___U_lA____Ma_b__________________ uptodate,lru,active,mmap,anonymous,swapbacked 0x000000000000586c 29 0 __RU_lA____Ma_b__________________ referenced,uptodate,lru,active,mmap,anonymous,swapbacked total 513968 2007 # ./page-types --raw --list --no-summary --bits reserved offset count flags 0 15 _____________________r___________ 31 4 _____________________r___________ 159 97 _____________________r___________ 4096 2067 _____________________r___________ 6752 2390 _____________________r___________ 9355 3 _____________________r___________ 9728 14526 _____________________r___________ This patch: Introduce PageHuge(), which identifies huge/gigantic pages by their dedicated compound destructor functions. Also move prep_compound_gigantic_page() to hugetlb.c and make __free_pages_ok() non-static. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16page allocator: use a pre-calculated value instead of num_online_nodes() in ↵Christoph Lameter
fast paths num_online_nodes() is called in a number of places but most often by the page allocator when deciding whether the zonelist needs to be filtered based on cpusets or the zonelist cache. This is actually a heavy function and touches a number of cache lines. This patch stores the number of online nodes at boot time and updates the value when nodes get onlined and offlined. The value is then used in a number of important paths in place of num_online_nodes(). [rientjes@google.com: do not override definition of node_set_online() with macro] Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16page allocator: do not check NUMA node ID when the caller knows the node is ↵Mel Gorman
valid Callers of alloc_pages_node() can optionally specify -1 as a node to mean "allocate from the current node". However, a number of the callers in fast paths know for a fact their node is valid. To avoid a comparison and branch, this patch adds alloc_pages_exact_node() that only checks the nid with VM_BUG_ON(). Callers that know their node is valid are then converted. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi> Acked-by: Paul Mundt <lethal@linux-sh.org> [for the SLOB NUMA bits] Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-29mm: account for MAP_SHARED mappings using VM_MAYSHARE and not VM_SHARED in ↵Mel Gorman
hugetlbfs Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302 hugetlbfs reserves huge pages but does not fault them at mmap() time to ensure that future faults succeed. The reservation behaviour differs depending on whether the mapping was mapped MAP_SHARED or MAP_PRIVATE. For MAP_SHARED mappings, hugepages are reserved when mmap() is first called and are tracked based on information associated with the inode. Other processes mapping MAP_SHARED use the same reservation. MAP_PRIVATE track the reservations based on the VMA created as part of the mmap() operation. Each process mapping MAP_PRIVATE must make its own reservation. hugetlbfs currently checks if a VMA is MAP_SHARED with the VM_SHARED flag and not VM_MAYSHARE. For file-backed mappings, such as hugetlbfs, VM_SHARED is set only if the mapping is MAP_SHARED and the file was opened read-write. If a shared memory mapping was mapped shared-read-write for populating of data and mapped shared-read-only by other processes, then hugetlbfs would account for the mapping as if it was MAP_PRIVATE. This causes processes to fail to map the file MAP_SHARED even though it should succeed as the reservation is there. This patch alters mm/hugetlb.c and replaces VM_SHARED with VM_MAYSHARE when the intent of the code was to check whether the VMA was mapped MAP_SHARED or MAP_PRIVATE. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: <stable@kernel.org> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <starlight@binnacle.cx> Cc: Eric B Munson <ebmunson@us.ibm.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-01hugetlb: chg cannot become less than 0Roel Kluin
chg is unsigned, so it cannot be less than 0. Also, since region_chg returns long, let vma_needs_reservation() forward this to alloc_huge_page(). Store it as long as well. all callers cast it to long anyway. Signed-off-by: Roel Kluin <roel.kluin@gmail.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-02-11Do not account for hugetlbfs quota at mmap() time if mapping [SHM|MAP]_NORESERVEMel Gorman
Commit 5a6fe125950676015f5108fb71b2a67441755003 brought hugetlbfs more in line with the core VM by obeying VM_NORESERVE and not reserving hugepages for both shared and private mappings when [SHM|MAP]_NORESERVE are specified. However, it is still taking filesystem quota unconditionally. At fault time, if there are no reserves and attempt is made to allocate the page and account for filesystem quota. If either fail, the fault fails. The impact is that quota is getting accounted for twice. This patch partially reverts 5a6fe125950676015f5108fb71b2a67441755003. To help prevent this mistake happening again, it improves the documentation of hugetlb_reserve_pages() Reported-by: Andy Whitcroft <apw@canonical.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Andy Whitcroft <apw@canonical.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-02-10Do not account for the address space used by hugetlbfs using VM_ACCOUNTMel Gorman
When overcommit is disabled, the core VM accounts for pages used by anonymous shared, private mappings and special mappings. It keeps track of VMAs that should be accounted for with VM_ACCOUNT and VMAs that never had a reserve with VM_NORESERVE. Overcommit for hugetlbfs is much riskier than overcommit for base pages due to contiguity requirements. It avoids overcommiting on both shared and private mappings using reservation counters that are checked and updated during mmap(). This ensures (within limits) that hugepages exist in the future when faults occurs or it is too easy to applications to be SIGKILLed. As hugetlbfs makes its own reservations of a different unit to the base page size, VM_ACCOUNT should never be set. Even if the units were correct, we would double account for the usage in the core VM and hugetlbfs. VM_NORESERVE may be set because an application can request no reserves be made for hugetlbfs at the risk of getting killed later. With commit fc8744adc870a8d4366908221508bb113d8b72ee, VM_NORESERVE and VM_ACCOUNT are getting unconditionally set for hugetlbfs-backed mappings. This breaks the accounting for both the core VM and hugetlbfs, can trigger an OOM storm when hugepage pools are too small lockups and corrupted counters otherwise are used. This patch brings hugetlbfs more in line with how the core VM treats VM_NORESERVE but prevents VM_ACCOUNT being set. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06mm: hugetlb: remove redundant `if' operationCyrill Gorcunov
At this point we already know that 'addr' is not NULL so get rid of redundant 'if'. Probably gcc eliminate it by optimization pass. [akpm@linux-foundation.org: use __weak, too] Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Reviewed-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06hugetlb: fix sparse warningsHannes Eder
Fix the following sparse warnings: mm/hugetlb.c:375:3: warning: returning void-valued expression mm/hugetlb.c:408:3: warning: returning void-valued expression Signed-off-by: Hannes Eder <hannes@hanneseder.net> Acked-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06mm: report the MMU pagesize in /proc/pid/smapsMel Gorman
The KernelPageSize entry in /proc/pid/smaps is the pagesize used by the kernel to back a VMA. This matches the size used by the MMU in the majority of cases. However, one counter-example occurs on PPC64 kernels whereby a kernel using 64K as a base pagesize may still use 4K pages for the MMU on older processor. To distinguish, this patch reports MMUPageSize as the pagesize used by the MMU in /proc/pid/smaps. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: "KOSAKI Motohiro" <kosaki.motohiro@jp.fujitsu.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06mm: report the pagesize backing a VMA in /proc/pid/smapsMel Gorman
It is useful to verify a hugepage-aware application is using the expected pagesizes for its memory regions. This patch creates an entry called KernelPageSize in /proc/pid/smaps that is the size of page used by the kernel to back a VMA. The entry is not called PageSize as it is possible the MMU uses a different size. This extension should not break any sensible parser that skips lines containing unrecognised information. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: "KOSAKI Motohiro" <kosaki.motohiro@jp.fujitsu.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-11-12hugetlb: make unmap_ref_private multi-size-awareAdam Litke
Oops. Part of the hugetlb private reservation code was not fully converted to use hstates. When a huge page must be unmapped from VMAs due to a failed COW, HPAGE_SIZE is used in the call to unmap_hugepage_range() regardless of the page size being used. This works if the VMA is using the default huge page size. Otherwise we might unmap too much, too little, or trigger a BUG_ON. Rare but serious -- fix it. Signed-off-by: Adam Litke <agl@us.ibm.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-11-06hugetlb: pull gigantic page initialisation out of the default pathAndy Whitcroft
As we can determine exactly when a gigantic page is in use we can optimise the common regular page cases by pulling out gigantic page initialisation into its own function. As gigantic pages are never released to buddy we do not need a destructor. This effectivly reverts the previous change to the main buddy allocator. It also adds a paranoid check to ensure we never release gigantic pages from hugetlbfs to the main buddy. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: <stable@kernel.org> [2.6.27.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-11-06hugetlbfs: handle pages higher order than MAX_ORDERAndy Whitcroft
When working with hugepages, hugetlbfs assumes that those hugepages are smaller than MAX_ORDER. Specifically it assumes that the mem_map is contigious and uses that to optimise access to the elements of the mem_map that represent the hugepage. Gigantic pages (such as 16GB pages on powerpc) by definition are of greater order than MAX_ORDER (larger than MAX_ORDER_NR_PAGES in size). This means that we can no longer make use of the buddy alloctor guarentees for the contiguity of the mem_map, which ensures that the mem_map is at least contigious for maximmally aligned areas of MAX_ORDER_NR_PAGES pages. This patch adds new mem_map accessors and iterator helpers which handle any discontiguity at MAX_ORDER_NR_PAGES boundaries. It then uses these to implement gigantic page versions of copy_huge_page and clear_huge_page, and to allow follow_hugetlb_page handle gigantic pages. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: <stable@kernel.org> [2.6.27.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-23proc: switch /proc/meminfo to seq_fileAlexey Dobriyan
and move it to fs/proc/meminfo.c while I'm at it. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
2008-10-20hugepage: support ZERO_PAGE()KOSAKI Motohiro
Presently hugepage doesn't use zero page at all because zero page is only used for coredumping and hugepage can't core dump. However we have now implemented hugepage coredumping. Therefore we should implement the zero page of hugepage. Implementation note: o Why do we only check VM_SHARED for zero page? normal page checked as .. static inline int use_zero_page(struct vm_area_struct *vma) { if (vma->vm_flags & (VM_LOCKED | VM_SHARED)) return 0; return !vma->vm_ops || !vma->vm_ops->fault; } First, hugepages are never mlock()ed. We aren't concerned with VM_LOCKED. Second, hugetlbfs is a pseudo filesystem, not a real filesystem and it doesn't have any file backing. Thus ops->fault checking is meaningless. o Why don't we use zero page if !pte. !pte indicate {pud, pmd} doesn't exist or some error happened. So we shouldn't return zero page if any error occurred. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Kawai Hidehiro <hidehiro.kawai.ez@hitachi.com> Cc: Mel Gorman <mel@skynet.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20mm: hugetlb.c make functions static, use NULL rather than 0Harvey Harrison
mm/hugetlb.c:265:17: warning: symbol 'resv_map_alloc' was not declared. Should it be static? mm/hugetlb.c:277:6: warning: symbol 'resv_map_release' was not declared. Should it be static? mm/hugetlb.c:292:9: warning: Using plain integer as NULL pointer mm/hugetlb.c:1750:5: warning: symbol 'unmap_ref_private' was not declared. Should it be static? Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Acked-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20vmscan: split LRU lists into anon & file setsRik van Riel
Split the LRU lists in two, one set for pages that are backed by real file systems ("file") and one for pages that are backed by memory and swap ("anon"). The latter includes tmpfs. The advantage of doing this is that the VM will not have to scan over lots of anonymous pages (which we generally do not want to swap out), just to find the page cache pages that it should evict. This patch has the infrastructure and a basic policy to balance how much we scan the anon lists and how much we scan the file lists. The big policy changes are in separate patches. [lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset] [kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru] [kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page] [hugh@veritas.com: memcg swapbacked pages active] [hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED] [akpm@linux-foundation.org: fix /proc/vmstat units] [nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration] [kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo] [kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()] Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-16hugetlb: handle updating of ACCESSED and DIRTY in hugetlb_fault()David Gibson
The page fault path for normal pages, if the fault is neither a no-page fault nor a write-protect fault, will update the DIRTY and ACCESSED bits in the page table appropriately. The hugepage fault path, however, does not do this, handling only no-page or write-protect type faults. It assumes that either the ACCESSED and DIRTY bits are irrelevant for hugepages (usually true, since they are never swapped) or that they are handled by the arch code. This is inconvenient for some software-loaded TLB architectures, where the _PAGE_ACCESSED (_PAGE_DIRTY) bits need to be set to enable read (write) access to the page at the TLB miss. This could be worked around in the arch TLB miss code, but the TLB miss fast path can be made simple more easily if the hugetlb_fault() path handles this, as the normal page fault path does. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Adam Litke <agl@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-08-12allocate structures for reservation tracking in hugetlbfs outside of ↵Andy Whitcroft
spinlocks v2 [Andrew this should replace the previous version which did not check the returns from the region prepare for errors. This has been tested by us and Gerald and it looks good. Bah, while reviewing the locking based on your previous email I spotted that we need to check the return from the vma_needs_reservation call for allocation errors. Here is an updated patch to correct this. This passes testing here.] Signed-off-by: Andy Whitcroft <apw@shadowen.org> Tested-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-08-12hugetlbfs: allocate structures for reservation tracking outside of spinlocksAndy Whitcroft
In the normal case, hugetlbfs reserves hugepages at map time so that the pages exist for future faults. A struct file_region is used to track when reservations have been consumed and where. These file_regions are allocated as necessary with kmalloc() which can sleep with the mm->page_table_lock held. This is wrong and triggers may-sleep warning when PREEMPT is enabled. Updates to the underlying file_region are done in two phases. The first phase prepares the region for the change, allocating any necessary memory, without actually making the change. The second phase actually commits the change. This patch makes use of this by checking the reservations before the page_table_lock is taken; triggering any necessary allocations. This may then be safely repeated within the locks without any allocations being required. Credit to Mel Gorman for diagnosing this failure and initial versions of the patch. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Tested-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-08-12hugetlb: call arch_prepare_hugepage() for surplus pagesGerald Schaefer
The s390 software large page emulation implements shared page tables by using page->index of the first tail page from a compound large page to store page table information. This is set up in arch_prepare_hugepage(), which is called from alloc_fresh_huge_page_node(). A similar call to arch_prepare_hugepage() is missing for surplus large pages that are allocated in alloc_buddy_huge_page(), which breaks the software emulation mode for (surplus) large pages on s390. This patch adds the missing call to arch_prepare_hugepage(). It will have no effect on other architectures where arch_prepare_hugepage() is a nop. Also, use the correct order in the error path in alloc_fresh_huge_page_node(). Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Acked-by: Nick Piggin <npiggin@suse.de> Acked-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-08-06Revert duplicate "mm/hugetlb.c must #include <asm/io.h>"Linus Torvalds
This reverts commit 7cb93181629c613ee2b8f4ffe3446f8003074842, since we did that patch twice, and the problem was already fixed earlier by 78a34ae29bf1c9df62a5bd0f0798b6c62a54d520. Reported-by: Andi Kleen <andi@firstfloor.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-08-01mm/hugetlb: don't crash when HPAGE_SHIFT is 0Benjamin Herrenschmidt
Some platform decide whether they support huge pages at boot time. On these, such as powerpc, HPAGE_SHIFT is a variable, not a constant, and is set to 0 when there is no such support. The patches to introduce multiple huge pages support broke that causing the kernel to crash at boot time on machines such as POWER3 which lack support for multiple page sizes. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-08-01Merge git://git.kernel.org/pub/scm/linux/kernel/git/lethal/sh-2.6Linus Torvalds
* git://git.kernel.org/pub/scm/linux/kernel/git/lethal/sh-2.6: (28 commits) mm/hugetlb.c must #include <asm/io.h> video: Fix up hp6xx driver build regressions. sh: defconfig updates. sh: Kill off stray mach-rsk7203 reference. serial: sh-sci: Fix up SH7760/SH7780/SH7785 early printk regression. sh: Move out individual boards without mach groups. sh: Make sure AT_SYSINFO_EHDR is exposed to userspace in asm/auxvec.h. sh: Allow SH-3 and SH-5 to use common headers. sh: Provide common CPU headers, prune the SH-2 and SH-2A directories. sh/maple: clean maple bus code sh: More header path fixups for mach dir refactoring. sh: Move out the solution engine headers to arch/sh/include/mach-se/ sh: I2C fix for AP325RXA and Migo-R sh: Shuffle the board directories in to mach groups. sh: dma-sh: Fix up dreamcast dma.h mach path. sh: Switch KBUILD_DEFCONFIG to shx3_defconfig. sh: Add ARCH_DEFCONFIG entries for sh and sh64. sh: Fix compile error of Solution Engine sh: Proper __put_user_asm() size mismatch fix. sh: Stub in a dummy ENTRY_OFFSET for uImage offset calculation. ...
2008-07-30mm/hugetlb.c must #include <asm/io.h>Adrian Bunk
This patch fixes the following build error on sh caused by commit aa888a74977a8f2120ae9332376e179c39a6b07d (hugetlb: support larger than MAX_ORDER): <-- snip --> ... CC mm/hugetlb.o /home/bunk/linux/kernel-2.6/git/linux-2.6/mm/hugetlb.c: In function 'alloc_bootmem_huge_page': /home/bunk/linux/kernel-2.6/git/linux-2.6/mm/hugetlb.c:958: error: implicit declaration of function 'virt_to_phys' make[2]: *** [mm/hugetlb.o] Error 1 <-- snip --> Reported-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2008-07-28mm/hugetlb.c must #include <asm/io.h>Adrian Bunk
This patch fixes the following build error on sh caused by commit aa888a74977a8f2120ae9332376e179c39a6b07d ("hugetlb: support larger than MAX_ORDER"): mm/hugetlb.c: In function 'alloc_bootmem_huge_page': mm/hugetlb.c:958: error: implicit declaration of function 'virt_to_phys' Signed-off-by: Adrian Bunk <bunk@kernel.org> Cc: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-28mmu-notifiers: coreAndrea Arcangeli
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26hugetlb: fix CONFIG_SYSCTL=n buildNishanth Aravamudan
Fixes a build failure reported by Alan Cox: mm/hugetlb.c: In function `hugetlb_acct_memory': mm/hugetlb.c:1507: error: implicit declaration of function `cpuset_mems_nr' Also reverts Ingo's commit e44d1b2998d62a1f2f4d7eb17b56ba396535509f Author: Ingo Molnar <mingo@elte.hu> Date: Fri Jul 25 12:57:41 2008 +0200 mm/hugetlb.c: fix build failure with !CONFIG_SYSCTL which fixed the build error but added some unused-static-function warnings. Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25mm/hugetlb.c: fix build failure with !CONFIG_SYSCTLIngo Molnar
on !CONFIG_SYSCTL on x86 with latest -git i get: mm/hugetlb.c: In function 'decrement_hugepage_resv_vma': mm/hugetlb.c:83: error: 'reserve' undeclared (first use in this function) mm/hugetlb.c:83: error: (Each undeclared identifier is reported only once mm/hugetlb.c:83: error: for each function it appears in.) Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb: quota is not freed for unused reserved private huge pagesAdam Litke
With shared reservations (and now also with private reservations), we reserve huge pages at mmap time. We also account for the mapping against fs quota to prevent a reservation from being preempted by quota exhaustion. When testing with the libhugetlbfs test suite, I found a problem with quota accounting. FS quota for allocated pages is handled correctly but we are not releasing quota for private pages that were reserved but never allocated. Do this in hugetlb_vm_op_close() at the same time as unused page reservations are released. Signed-off-by: Adam Litke <agl@us.ibm.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Acked-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb: fix a hugepage reservation check for MAP_SHAREDMel Gorman
When removing a huge page from the hugepage pool for a fault the system checks to see if the mapping requires additional pages to be reserved, and if it does whether there are any unreserved pages remaining. If not, the allocation fails without even attempting to get a page. In order to determine whether to apply this check we call vma_has_private_reserves() which tells us if this vma is MAP_PRIVATE and is the owner. This incorrectly triggers the remaining reservation test for MAP_SHARED mappings which prevents allocation of the final page in the pool even though it is reserved for this mapping. In reality we only want to check this for MAP_PRIVATE mappings where the process is not the original mapper. Replace vma_has_private_reserves() with vma_has_reserves() which indicates whether further reserves are required, and update the caller. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Acked-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb: allow arch overridden hugepage allocationJon Tollefson
Allow alloc_bootmem_huge_page() to be overridden by architectures that can't always use bootmem. This requires huge_boot_pages to be available for use by this function. This is required for powerpc 16G pages, which have to be reserved prior to boot-time. The location of these pages are indicated in the device tree. Acked-by: Adam Litke <agl@us.ibm.com> Signed-off-by: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb: override default huge page sizeNick Piggin
Allow configurations with the default huge page size which is different to the traditional HPAGE_SIZE size. The default huge page size is the one represented in the legacy /proc ABIs, SHM, and which is defaulted to when mounting hugetlbfs filesystems. This is implemented with a new kernel option default_hugepagesz=, which defaults to HPAGE_SIZE if not specified. Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb: introduce pud_hugeAndi Kleen
Straight forward extensions for huge pages located in the PUD instead of PMDs. Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb: printk cleanupAndi Kleen
- Reword sentence to clarify meaning with multiple options - Add support for using GB prefixes for the page size - Add extra printk to delayed > MAX_ORDER allocation code Acked-by: Adam Litke <agl@us.ibm.com> Acked-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb: support boot allocate different sizesAndi Kleen
Make some infrastructure changes to allow boot-time allocation of different hugepage page sizes. - move all basic hstate initialisation into hugetlb_add_hstate - create a new function hugetlb_hstate_alloc_pages() to do the actual initial page allocations. Call this function early in order to allocate giant pages from bootmem. - Check for multiple hugepages= parameters Acked-by: Adam Litke <agl@us.ibm.com> Acked-by: Nishanth Aravamudan <nacc@us.ibm.com> Acked-by: Andrew Hastings <abh@cray.com> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb: support larger than MAX_ORDERAndi Kleen
This is needed on x86-64 to handle GB pages in hugetlbfs, because it is not practical to enlarge MAX_ORDER to 1GB. Instead the 1GB pages are only allocated at boot using the bootmem allocator using the hugepages=... option. These 1G bootmem pages are never freed. In theory it would be possible to implement that with some complications, but since it would be a one-way street (>= MAX_ORDER pages cannot be allocated later) I decided not to currently. The >= MAX_ORDER code is not ifdef'ed per architecture. It is not very big and the ifdef uglyness seemed not be worth it. Known problems: /proc/meminfo and "free" do not display the memory allocated for gb pages in "Total". This is a little confusing for the user. Acked-by: Andrew Hastings <abh@cray.com> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb: abstract numa round robin selectionAndi Kleen
Need this as a separate function for a future patch. No behaviour change. Acked-by: Adam Litke <agl@us.ibm.com> Acked-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb: new sysfs interfaceNishanth Aravamudan
Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlbfs: per mount huge page sizesAndi Kleen
Add the ability to configure the hugetlb hstate used on a per mount basis. - Add a new pagesize= option to the hugetlbfs mount that allows setting the page size - This option causes the mount code to find the hstate corresponding to the specified size, and sets up a pointer to the hstate in the mount's superblock. - Change the hstate accessors to use this information rather than the global_hstate they were using (requires a slight change in mm/memory.c so we don't NULL deref in the error-unmap path -- see comments). [np: take hstate out of hugetlbfs inode and vma->vm_private_data] Acked-by: Adam Litke <agl@us.ibm.com> Acked-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb: multiple hstates for multiple page sizesAndi Kleen
Add basic support for more than one hstate in hugetlbfs. This is the key to supporting multiple hugetlbfs page sizes at once. - Rather than a single hstate, we now have an array, with an iterator - default_hstate continues to be the struct hstate which we use by default - Add functions for architectures to register new hstates [akpm@linux-foundation.org: coding-style fixes] Acked-by: Adam Litke <agl@us.ibm.com> Acked-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb: modular state for hugetlb page sizeAndi Kleen
The goal of this patchset is to support multiple hugetlb page sizes. This is achieved by introducing a new struct hstate structure, which encapsulates the important hugetlb state and constants (eg. huge page size, number of huge pages currently allocated, etc). The hstate structure is then passed around the code which requires these fields, they will do the right thing regardless of the exact hstate they are operating on. This patch adds the hstate structure, with a single global instance of it (default_hstate), and does the basic work of converting hugetlb to use the hstate. Future patches will add more hstate structures to allow for different hugetlbfs mounts to have different page sizes. [akpm@linux-foundation.org: coding-style fixes] Acked-by: Adam Litke <agl@us.ibm.com> Acked-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb: factor out prep_new_huge_pageAndi Kleen
Needed to avoid code duplication in follow up patches. Acked-by: Adam Litke <agl@us.ibm.com> Acked-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24vma_page_offset() has no callees: drop itJohannes Weiner
Hugh adds: vma_pagecache_offset() has a dangerously misleading name, since it's using hugepage units: rename it to vma_hugecache_offset(). [apw@shadowen.org: restack onto fixed MAP_PRIVATE reservations] [akpm@linux-foundation.org: vma_split conversion] Signed-off-by: Johannes Weiner <hannes@saeurebad.de> Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <ak@suse.de> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb reservations: fix hugetlb MAP_PRIVATE reservations across vma splitsAndy Whitcroft
When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb: allow huge page mappings to be created without reservationsAndy Whitcroft
By default all shared mappings and most private mappings now have reservations associated with them. This improves semantics by providing allocation guarentees to the mapper. However a small number of applications may attempt to make very large sparse mappings, with these strict reservations the system will never be able to honour the mapping. This patch set brings MAP_NORESERVE support to hugetlb files. This allows new mappings to be made to hugetlbfs files without an associated reservation, for both shared and private mappings. This allows applications which want to create very sparse mappings to opt-out of the reservation system. Obviously as there is no reservation they are liable to fault at runtime if the huge page pool becomes exhausted; buyer beware. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24hugetlb: move reservation region support earlierAndy Whitcroft
The following patch will require use of the reservation regions support. Move this earlier in the file. No changes have been made to this code. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>