summaryrefslogtreecommitdiff
path: root/mm/page-writeback.c
AgeCommit message (Collapse)Author
2011-11-07writeback: fix uninitialized task_ratelimitWu Fengguang
In balance_dirty_pages() task_ratelimit may be not initialized (initialization skiped by goto pause), and then used when calling tracing hook. Fix it by moving the task_ratelimit assignment before goto pause. Reported-by: Witold Baryluk <baryluk@smp.if.uj.edu.pl> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-11-06Merge branch 'modsplit-Oct31_2011' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux * 'modsplit-Oct31_2011' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux: (230 commits) Revert "tracing: Include module.h in define_trace.h" irq: don't put module.h into irq.h for tracking irqgen modules. bluetooth: macroize two small inlines to avoid module.h ip_vs.h: fix implicit use of module_get/module_put from module.h nf_conntrack.h: fix up fallout from implicit moduleparam.h presence include: replace linux/module.h with "struct module" wherever possible include: convert various register fcns to macros to avoid include chaining crypto.h: remove unused crypto_tfm_alg_modname() inline uwb.h: fix implicit use of asm/page.h for PAGE_SIZE pm_runtime.h: explicitly requires notifier.h linux/dmaengine.h: fix implicit use of bitmap.h and asm/page.h miscdevice.h: fix up implicit use of lists and types stop_machine.h: fix implicit use of smp.h for smp_processor_id of: fix implicit use of errno.h in include/linux/of.h of_platform.h: delete needless include <linux/module.h> acpi: remove module.h include from platform/aclinux.h miscdevice.h: delete unnecessary inclusion of module.h device_cgroup.h: delete needless include <linux/module.h> net: sch_generic remove redundant use of <linux/module.h> net: inet_timewait_sock doesnt need <linux/module.h> ... Fix up trivial conflicts (other header files, and removal of the ab3550 mfd driver) in - drivers/media/dvb/frontends/dibx000_common.c - drivers/media/video/{mt9m111.c,ov6650.c} - drivers/mfd/ab3550-core.c - include/linux/dmaengine.h
2011-11-06Merge branch 'writeback-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux * 'writeback-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux: writeback: Add a 'reason' to wb_writeback_work writeback: send work item to queue_io, move_expired_inodes writeback: trace event balance_dirty_pages writeback: trace event bdi_dirty_ratelimit writeback: fix ppc compile warnings on do_div(long long, unsigned long) writeback: per-bdi background threshold writeback: dirty position control - bdi reserve area writeback: control dirty pause time writeback: limit max dirty pause time writeback: IO-less balance_dirty_pages() writeback: per task dirty rate limit writeback: stabilize bdi->dirty_ratelimit writeback: dirty rate control writeback: add bg_threshold parameter to __bdi_update_bandwidth() writeback: dirty position control writeback: account per-bdi accumulated dirtied pages
2011-10-31mm/page-writeback.c: document bdi_min_ratioJohannes Weiner
Looks like someone got distracted after adding the comment characters. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31mm: Map most files to use export.h instead of module.hPaul Gortmaker
The files changed within are only using the EXPORT_SYMBOL macro variants. They are not using core modular infrastructure and hence don't need module.h but only the export.h header. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2011-10-31writeback: Add a 'reason' to wb_writeback_workCurt Wohlgemuth
This creates a new 'reason' field in a wb_writeback_work structure, which unambiguously identifies who initiates writeback activity. A 'wb_reason' enumeration has been added to writeback.h, to enumerate the possible reasons. The 'writeback_work_class' and tracepoint event class and 'writeback_queue_io' tracepoints are updated to include the symbolic 'reason' in all trace events. And the 'writeback_inodes_sbXXX' family of routines has had a wb_stats parameter added to them, so callers can specify why writeback is being started. Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Curt Wohlgemuth <curtw@google.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-31writeback: trace event balance_dirty_pagesWu Fengguang
Useful for analyzing the dynamics of the throttling algorithms and debugging user reported problems. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-31writeback: trace event bdi_dirty_ratelimitWu Fengguang
It helps understand how various throttle bandwidths are updated. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-11writeback: fix ppc compile warnings on do_div(long long, unsigned long)Wu Fengguang
Fix powerpc compile warnings mm/page-writeback.c: In function 'bdi_position_ratio': mm/page-writeback.c:622:3: warning: comparison of distinct pointer types lacks a cast [enabled by default] page-writeback.c:635:4: warning: comparison of distinct pointer types lacks a cast [enabled by default] Also fix gcc "uninitialized var" warnings. Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: dirty position control - bdi reserve areaWu Fengguang
Keep a minimal pool of dirty pages for each bdi, so that the disk IO queues won't underrun. Also gently increase a small bdi_thresh to avoid it stuck in 0 for some light dirtied bdi. It's particularly useful for JBOD and small memory system. It may result in (pos_ratio > 1) at the setpoint and push the dirty pages high. This is more or less intended because the bdi is in the danger of IO queue underflow. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: control dirty pause timeWu Fengguang
The dirty pause time shall ultimately be controlled by adjusting nr_dirtied_pause, since there is relationship pause = pages_dirtied / task_ratelimit Assuming pages_dirtied ~= nr_dirtied_pause task_ratelimit ~= dirty_ratelimit We get nr_dirtied_pause ~= dirty_ratelimit * desired_pause Here dirty_ratelimit is preferred over task_ratelimit because it's more stable. It's also important to limit possible large transitional errors: - bw is changing quickly - pages_dirtied << nr_dirtied_pause on entering dirty exceeded area - pages_dirtied >> nr_dirtied_pause on btrfs (to be improved by a separate fix, but still expect non-trivial errors) So we end up using the above formula inside clamp_val(). The best test case for this code is to run 100 "dd bs=4M" tasks on btrfs and check its pause time distribution. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: limit max dirty pause timeWu Fengguang
Apply two policies to scale down the max pause time for 1) small number of concurrent dirtiers 2) small memory system (comparing to storage bandwidth) MAX_PAUSE=200ms may only be suitable for high end servers with lots of concurrent dirtiers, where the large pause time can reduce much overheads. Otherwise, smaller pause time is desirable whenever possible, so as to get good responsiveness and smooth user experiences. It's actually required for good disk utilization in the case when all the dirty pages can be synced to disk within MAX_PAUSE=200ms. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: IO-less balance_dirty_pages()Wu Fengguang
As proposed by Chris, Dave and Jan, don't start foreground writeback IO inside balance_dirty_pages(). Instead, simply let it idle sleep for some time to throttle the dirtying task. In the mean while, kick off the per-bdi flusher thread to do background writeback IO. RATIONALS ========= - disk seeks on concurrent writeback of multiple inodes (Dave Chinner) If every thread doing writes and being throttled start foreground writeback, it leads to N IO submitters from at least N different inodes at the same time, end up with N different sets of IO being issued with potentially zero locality to each other, resulting in much lower elevator sort/merge efficiency and hence we seek the disk all over the place to service the different sets of IO. OTOH, if there is only one submission thread, it doesn't jump between inodes in the same way when congestion clears - it keeps writing to the same inode, resulting in large related chunks of sequential IOs being issued to the disk. This is more efficient than the above foreground writeback because the elevator works better and the disk seeks less. - lock contention and cache bouncing on concurrent IO submitters (Dave Chinner) With this patchset, the fs_mark benchmark on a 12-drive software RAID0 goes from CPU bound to IO bound, freeing "3-4 CPUs worth of spinlock contention". * "CPU usage has dropped by ~55%", "it certainly appears that most of the CPU time saving comes from the removal of contention on the inode_wb_list_lock" (IMHO at least 10% comes from the reduction of cacheline bouncing, because the new code is able to call much less frequently into balance_dirty_pages() and hence access the global page states) * the user space "App overhead" is reduced by 20%, by avoiding the cacheline pollution by the complex writeback code path * "for a ~5% throughput reduction", "the number of write IOs have dropped by ~25%", and the elapsed time reduced from 41:42.17 to 40:53.23. * On a simple test of 100 dd, it reduces the CPU %system time from 30% to 3%, and improves IO throughput from 38MB/s to 42MB/s. - IO size too small for fast arrays and too large for slow USB sticks The write_chunk used by current balance_dirty_pages() cannot be directly set to some large value (eg. 128MB) for better IO efficiency. Because it could lead to more than 1 second user perceivable stalls. Even the current 4MB write size may be too large for slow USB sticks. The fact that balance_dirty_pages() starts IO on itself couples the IO size to wait time, which makes it hard to do suitable IO size while keeping the wait time under control. Now it's possible to increase writeback chunk size proportional to the disk bandwidth. In a simple test of 50 dd's on XFS, 1-HDD, 3GB ram, the larger writeback size dramatically reduces the seek count to 1/10 (far beyond my expectation) and improves the write throughput by 24%. - long block time in balance_dirty_pages() hurts desktop responsiveness Many of us may have the experience: it often takes a couple of seconds or even long time to stop a heavy writing dd/cp/tar command with Ctrl-C or "kill -9". - IO pipeline broken by bumpy write() progress There are a broad class of "loop {read(buf); write(buf);}" applications whose read() pipeline will be under-utilized or even come to a stop if the write()s have long latencies _or_ don't progress in a constant rate. The current threshold based throttling inherently transfers the large low level IO completion fluctuations to bumpy application write()s, and further deteriorates with increasing number of dirtiers and/or bdi's. For example, when doing 50 dd's + 1 remote rsync to an XFS partition, the rsync progresses very bumpy in legacy kernel, and throughput is improved by 67% by this patchset. (plus the larger write chunk size, it will be 93% speedup). The new rate based throttling can support 1000+ dd's with excellent smoothness, low latency and low overheads. For the above reasons, it's much better to do IO-less and low latency pauses in balance_dirty_pages(). Jan Kara, Dave Chinner and me explored the scheme to let balance_dirty_pages() wait for enough writeback IO completions to safeguard the dirty limit. However it's found to have two problems: - in large NUMA systems, the per-cpu counters may have big accounting errors, leading to big throttle wait time and jitters. - NFS may kill large amount of unstable pages with one single COMMIT. Because NFS server serves COMMIT with expensive fsync() IOs, it is desirable to delay and reduce the number of COMMITs. So it's not likely to optimize away such kind of bursty IO completions, and the resulted large (and tiny) stall times in IO completion based throttling. So here is a pause time oriented approach, which tries to control the pause time in each balance_dirty_pages() invocations, by controlling the number of pages dirtied before calling balance_dirty_pages(), for smooth and efficient dirty throttling: - avoid useless (eg. zero pause time) balance_dirty_pages() calls - avoid too small pause time (less than 4ms, which burns CPU power) - avoid too large pause time (more than 200ms, which hurts responsiveness) - avoid big fluctuations of pause times It can control pause times at will. The default policy (in a followup patch) will be to do ~10ms pauses in 1-dd case, and increase to ~100ms in 1000-dd case. BEHAVIOR CHANGE =============== (1) dirty threshold Users will notice that the applications will get throttled once crossing the global (background + dirty)/2=15% threshold, and then balanced around 17.5%. Before patch, the behavior is to just throttle it at 20% dirtyable memory in 1-dd case. Since the task will be soft throttled earlier than before, it may be perceived by end users as performance "slow down" if his application happens to dirty more than 15% dirtyable memory. (2) smoothness/responsiveness Users will notice a more responsive system during heavy writeback. "killall dd" will take effect instantly. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: per task dirty rate limitWu Fengguang
Add two fields to task_struct. 1) account dirtied pages in the individual tasks, for accuracy 2) per-task balance_dirty_pages() call intervals, for flexibility The balance_dirty_pages() call interval (ie. nr_dirtied_pause) will scale near-sqrt to the safety gap between dirty pages and threshold. The main problem of per-task nr_dirtied is, if 1k+ tasks start dirtying pages at exactly the same time, each task will be assigned a large initial nr_dirtied_pause, so that the dirty threshold will be exceeded long before each task reached its nr_dirtied_pause and hence call balance_dirty_pages(). The solution is to watch for the number of pages dirtied on each CPU in between the calls into balance_dirty_pages(). If it exceeds ratelimit_pages (3% dirty threshold), force call balance_dirty_pages() for a chance to set bdi->dirty_exceeded. In normal situations, this safeguarding condition is not expected to trigger at all. On the sqrt in dirty_poll_interval(): It will serve as an initial guess when dirty pages are still in the freerun area. When dirty pages are floating inside the dirty control scope [freerun, limit], a followup patch will use some refined dirty poll interval to get the desired pause time. thresh-dirty (MB) sqrt 1 16 2 22 4 32 8 45 16 64 32 90 64 128 128 181 256 256 512 362 1024 512 The above table means, given 1MB (or 1GB) gap and the dd tasks polling balance_dirty_pages() on every 16 (or 512) pages, the dirty limit won't be exceeded as long as there are less than 16 (or 512) concurrent dd's. So sqrt naturally leads to less overheads and more safe concurrent tasks for large memory servers, which have large (thresh-freerun) gaps. peter: keep the per-CPU ratelimit for safeguarding the 1k+ tasks case CC: Peter Zijlstra <a.p.zijlstra@chello.nl> Reviewed-by: Andrea Righi <andrea@betterlinux.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: stabilize bdi->dirty_ratelimitWu Fengguang
There are some imperfections in balanced_dirty_ratelimit. 1) large fluctuations The dirty_rate used for computing balanced_dirty_ratelimit is merely averaged in the past 200ms (very small comparing to the 3s estimation period for write_bw), which makes rather dispersed distribution of balanced_dirty_ratelimit. It's pretty hard to average out the singular points by increasing the estimation period. Considering that the averaging technique will introduce very undesirable time lags, I give it up totally. (btw, the 3s write_bw averaging time lag is much more acceptable because its impact is one-way and therefore won't lead to oscillations.) The more practical way is filtering -- most singular balanced_dirty_ratelimit points can be filtered out by remembering some prev_balanced_rate and prev_prev_balanced_rate. However the more reliable way is to guard balanced_dirty_ratelimit with task_ratelimit. 2) due to truncates and fs redirties, the (write_bw <=> dirty_rate) match could become unbalanced, which may lead to large systematical errors in balanced_dirty_ratelimit. The truncates, due to its possibly bumpy nature, can hardly be compensated smoothly. So let's face it. When some over-estimated balanced_dirty_ratelimit brings dirty_ratelimit high, dirty pages will go higher than the setpoint. task_ratelimit will in turn become lower than dirty_ratelimit. So if we consider both balanced_dirty_ratelimit and task_ratelimit and update dirty_ratelimit only when they are on the same side of dirty_ratelimit, the systematical errors in balanced_dirty_ratelimit won't be able to bring dirty_ratelimit far away. The balanced_dirty_ratelimit estimation may also be inaccurate near @limit or @freerun, however is less an issue. 3) since we ultimately want to - keep the fluctuations of task ratelimit as small as possible - keep the dirty pages around the setpoint as long time as possible the update policy used for (2) also serves the above goals nicely: if for some reason the dirty pages are high (task_ratelimit < dirty_ratelimit), and dirty_ratelimit is low (dirty_ratelimit < balanced_dirty_ratelimit), there is no point to bring up dirty_ratelimit in a hurry only to hurt both the above two goals. So, we make use of task_ratelimit to limit the update of dirty_ratelimit in two ways: 1) avoid changing dirty rate when it's against the position control target (the adjusted rate will slow down the progress of dirty pages going back to setpoint). 2) limit the step size. task_ratelimit is changing values step by step, leaving a consistent trace comparing to the randomly jumping balanced_dirty_ratelimit. task_ratelimit also has the nice smaller errors in stable state and typically larger errors when there are big errors in rate. So it's a pretty good limiting factor for the step size of dirty_ratelimit. Note that bdi->dirty_ratelimit is always tracking balanced_dirty_ratelimit. task_ratelimit is merely used as a limiting factor. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: dirty rate controlWu Fengguang
It's all about bdi->dirty_ratelimit, which aims to be (write_bw / N) when there are N dd tasks. On write() syscall, use bdi->dirty_ratelimit ============================================ balance_dirty_pages(pages_dirtied) { task_ratelimit = bdi->dirty_ratelimit * bdi_position_ratio(); pause = pages_dirtied / task_ratelimit; sleep(pause); } On every 200ms, update bdi->dirty_ratelimit =========================================== bdi_update_dirty_ratelimit() { task_ratelimit = bdi->dirty_ratelimit * bdi_position_ratio(); balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate; bdi->dirty_ratelimit = balanced_dirty_ratelimit } Estimation of balanced bdi->dirty_ratelimit =========================================== balanced task_ratelimit ----------------------- balance_dirty_pages() needs to throttle tasks dirtying pages such that the total amount of dirty pages stays below the specified dirty limit in order to avoid memory deadlocks. Furthermore we desire fairness in that tasks get throttled proportionally to the amount of pages they dirty. IOW we want to throttle tasks such that we match the dirty rate to the writeout bandwidth, this yields a stable amount of dirty pages: dirty_rate == write_bw (1) The fairness requirement gives us: task_ratelimit = balanced_dirty_ratelimit == write_bw / N (2) where N is the number of dd tasks. We don't know N beforehand, but still can estimate balanced_dirty_ratelimit within 200ms. Start by throttling each dd task at rate task_ratelimit = task_ratelimit_0 (3) (any non-zero initial value is OK) After 200ms, we measured dirty_rate = # of pages dirtied by all dd's / 200ms write_bw = # of pages written to the disk / 200ms For the aggressive dd dirtiers, the equality holds dirty_rate == N * task_rate == N * task_ratelimit_0 (4) Or task_ratelimit_0 == dirty_rate / N (5) Now we conclude that the balanced task ratelimit can be estimated by write_bw balanced_dirty_ratelimit = task_ratelimit_0 * ---------- (6) dirty_rate Because with (4) and (5) we can get the desired equality (1): write_bw balanced_dirty_ratelimit == (dirty_rate / N) * ---------- dirty_rate == write_bw / N Then using the balanced task ratelimit we can compute task pause times like: task_pause = task->nr_dirtied / task_ratelimit task_ratelimit with position control ------------------------------------ However, while the above gives us means of matching the dirty rate to the writeout bandwidth, it at best provides us with a stable dirty page count (assuming a static system). In order to control the dirty page count such that it is high enough to provide performance, but does not exceed the specified limit we need another control. The dirty position control works by extending (2) to task_ratelimit = balanced_dirty_ratelimit * pos_ratio (7) where pos_ratio is a negative feedback function that subjects to 1) f(setpoint) = 1.0 2) df/dx < 0 That is, if the dirty pages are ABOVE the setpoint, we throttle each task a bit more HEAVY than balanced_dirty_ratelimit, so that the dirty pages are created less fast than they are cleaned, thus DROP to the setpoints (and the reverse). Based on (7) and the assumption that both dirty_ratelimit and pos_ratio remains CONSTANT for the past 200ms, we get task_ratelimit_0 = balanced_dirty_ratelimit * pos_ratio (8) Putting (8) into (6), we get the formula used in bdi_update_dirty_ratelimit(): write_bw balanced_dirty_ratelimit *= pos_ratio * ---------- (9) dirty_rate Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: add bg_threshold parameter to __bdi_update_bandwidth()Wu Fengguang
No behavior change. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: dirty position controlWu Fengguang
bdi_position_ratio() provides a scale factor to bdi->dirty_ratelimit, so that the resulted task rate limit can drive the dirty pages back to the global/bdi setpoints. Old scheme is, | free run area | throttle area ----------------------------------------+----------------------------> thresh^ dirty pages New scheme is, ^ task rate limit | | * | * | * |[free run] * [smooth throttled] | * | * | * ..bdi->dirty_ratelimit..........* | . * | . * | . * | . * | . * +-------------------------------.-----------------------*------------> setpoint^ limit^ dirty pages The slope of the bdi control line should be 1) large enough to pull the dirty pages to setpoint reasonably fast 2) small enough to avoid big fluctuations in the resulted pos_ratio and hence task ratelimit Since the fluctuation range of the bdi dirty pages is typically observed to be within 1-second worth of data, the bdi control line's slope is selected to be a linear function of bdi write bandwidth, so that it can adapt to slow/fast storage devices well. Assume the bdi control line pos_ratio = 1.0 + k * (dirty - bdi_setpoint) where k is the negative slope. If targeting for 12.5% fluctuation range in pos_ratio when dirty pages are fluctuating in range [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2], we get slope k = - 1 / (8 * write_bw) Let pos_ratio(x_intercept) = 0, we get the parameter used in code: x_intercept = bdi_setpoint + 8 * write_bw The global/bdi slopes are nicely complementing each other when the system has only one major bdi (indicated by bdi_thresh ~= thresh): 1) slope of global control line => scaling to the control scope size 2) slope of main bdi control line => scaling to the writeout bandwidth so that - in memory tight systems, (1) becomes strong enough to squeeze dirty pages inside the control scope - in large memory systems where the "gravity" of (1) for pulling the dirty pages to setpoint is too weak, (2) can back (1) up and drive dirty pages to bdi_setpoint ~= setpoint reasonably fast. Unfortunately in JBOD setups, the fluctuation range of bdi threshold is related to memory size due to the interferences between disks. In this case, the bdi slope will be weighted sum of write_bw and bdi_thresh. Given equations span = x_intercept - bdi_setpoint k = df/dx = - 1 / span and the extremum values span = bdi_thresh dx = bdi_thresh we get df = - dx / span = - 1.0 That means, when bdi_dirty deviates bdi_thresh up, pos_ratio and hence task ratelimit will fluctuate by -100%. peter: use 3rd order polynomial for the global control line CC: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-10-03writeback: account per-bdi accumulated dirtied pagesWu Fengguang
Introduce the BDI_DIRTIED counter. It will be used for estimating the bdi's dirty bandwidth. CC: Jan Kara <jack@suse.cz> CC: Michael Rubin <mrubin@google.com> CC: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-08-19squeeze max-pause area and drop pass-good areaWu Fengguang
Revert the pass-good area introduced in ffd1f609ab10 ("writeback: introduce max-pause and pass-good dirty limits") and make the max-pause area smaller and safe. This fixes ~30% performance regression in the ext3 data=writeback fio_mmap_randwrite_64k/fio_mmap_randrw_64k test cases, where there are 12 JBOD disks, on each disk runs 8 concurrent tasks doing reads+writes. Using deadline scheduler also has a regression, but not that big as CFQ, so this suggests we have some write starvation. The test logs show that - the disks are sometimes under utilized - global dirty pages sometimes rush high to the pass-good area for several hundred seconds, while in the mean time some bdi dirty pages drop to very low value (bdi_dirty << bdi_thresh). Then suddenly the global dirty pages dropped under global dirty threshold and bdi_dirty rush very high (for example, 2 times higher than bdi_thresh). During which time balance_dirty_pages() is not called at all. So the problems are 1) The random writes progress so slow that they break the assumption of the max-pause logic that "8 pages per 200ms is typically more than enough to curb heavy dirtiers". 2) The max-pause logic ignored task_bdi_thresh and thus opens the possibility for some bdi's to over dirty pages, leading to (bdi_dirty >> bdi_thresh) and then (bdi_thresh >> bdi_dirty) for others. 3) The higher max-pause/pass-good thresholds somehow leads to the bad swing of dirty pages. The fix is to allow the task to slightly dirty over task_bdi_thresh, but no way to exceed bdi_dirty and/or global dirty_thresh. Tests show that it fixed the JBOD regression completely (both behavior and performance), while still being able to cut down large pause times in balance_dirty_pages() for single-disk cases. Reported-by: Li Shaohua <shaohua.li@intel.com> Tested-by: Li Shaohua <shaohua.li@intel.com> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-07-26Merge branch 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/wfg/writeback * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/writeback: (27 commits) mm: properly reflect task dirty limits in dirty_exceeded logic writeback: don't busy retry writeback on new/freeing inodes writeback: scale IO chunk size up to half device bandwidth writeback: trace global_dirty_state writeback: introduce max-pause and pass-good dirty limits writeback: introduce smoothed global dirty limit writeback: consolidate variable names in balance_dirty_pages() writeback: show bdi write bandwidth in debugfs writeback: bdi write bandwidth estimation writeback: account per-bdi accumulated written pages writeback: make writeback_control.nr_to_write straight writeback: skip tmpfs early in balance_dirty_pages_ratelimited_nr() writeback: trace event writeback_queue_io writeback: trace event writeback_single_inode writeback: remove .nonblocking and .encountered_congestion writeback: remove writeback_control.more_io writeback: skip balance_dirty_pages() for in-memory fs writeback: add bdi_dirty_limit() kernel-doc writeback: avoid extra sync work at enqueue time writeback: elevate queue_io() into wb_writeback() ... Fix up trivial conflicts in fs/fs-writeback.c and mm/filemap.c
2011-07-25writeback: account NR_WRITTEN at IO completion timeWu Fengguang
NR_WRITTEN is now accounted at block IO enqueue time, which is not very accurate as to common understanding. This moves NR_WRITTEN accounting to the IO completion time and makes it more consistent with BDI_WRITTEN, which is used for bandwidth estimation. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Cc: Michael Rubin <mrubin@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-25mm: remove useless rcu lock-unlock from mapping_tagged()Konstantin Khlebnikov
radix_tree_tagged() is lockless - it reads from a member of the raid-tree root node. It does not require any protection. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-24mm: properly reflect task dirty limits in dirty_exceeded logicJan Kara
We set bdi->dirty_exceeded (and thus ratelimiting code starts to call balance_dirty_pages() every 8 pages) when a per-bdi limit is exceeded or global limit is exceeded. But per-bdi limit also depends on the task. Thus different tasks reach the limit on that bdi at different levels of dirty pages. The result is that with current code bdi->dirty_exceeded ping-ponged between 1 and 0 depending on which task just got into balance_dirty_pages(). We fix the issue by clearing bdi->dirty_exceeded only when per-bdi amount of dirty pages drops below the threshold (7/8 * bdi_dirty_limit) where task limits already do not have any influence. Impact: The end result is, the dirty pages are kept more tightly under control, with the average number slightly lowered than before. This reduces the risk to throttle light dirtiers and hence more responsive. However it may add overheads by enforcing balance_dirty_pages() calls on every 8 pages when there are 2+ heavy dirtiers. CC: Andrew Morton <akpm@linux-foundation.org> CC: Christoph Hellwig <hch@infradead.org> CC: Dave Chinner <david@fromorbit.com> CC: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-07-09writeback: trace global_dirty_stateWu Fengguang
Add trace event balance_dirty_state for showing the global dirty page counts and thresholds at each global_dirty_limits() invocation. This will cover the callers throttle_vm_writeout(), over_bground_thresh() and each balance_dirty_pages() loop. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-07-09writeback: introduce max-pause and pass-good dirty limitsWu Fengguang
The max-pause limit helps to keep the sleep time inside balance_dirty_pages() within MAX_PAUSE=200ms. The 200ms max sleep means per task rate limit of 8pages/200ms=160KB/s when dirty exceeded, which normally is enough to stop dirtiers from continue pushing the dirty pages high, unless there are a sufficient large number of slow dirtiers (eg. 500 tasks doing 160KB/s will still sum up to 80MB/s, exceeding the write bandwidth of a slow disk and hence accumulating more and more dirty pages). The pass-good limit helps to let go of the good bdi's in the presence of a blocked bdi (ie. NFS server not responding) or slow USB disk which for some reason build up a large number of initial dirty pages that refuse to go away anytime soon. For example, given two bdi's A and B and the initial state bdi_thresh_A = dirty_thresh / 2 bdi_thresh_B = dirty_thresh / 2 bdi_dirty_A = dirty_thresh / 2 bdi_dirty_B = dirty_thresh / 2 Then A get blocked, after a dozen seconds bdi_thresh_A = 0 bdi_thresh_B = dirty_thresh bdi_dirty_A = dirty_thresh / 2 bdi_dirty_B = dirty_thresh / 2 The (bdi_dirty_B < bdi_thresh_B) test is now useless and the dirty pages will be effectively throttled by condition (nr_dirty < dirty_thresh). This has two problems: (1) we lose the protections for light dirtiers (2) balance_dirty_pages() effectively becomes IO-less because the (bdi_nr_reclaimable > bdi_thresh) test won't be true. This is good for IO, but balance_dirty_pages() loses an important way to break out of the loop which leads to more spread out throttle delays. DIRTY_PASSGOOD_AREA can eliminate the above issues. The only problem is, DIRTY_PASSGOOD_AREA needs to be defined as 2 to fully cover the above example while this patch uses the more conservative value 8 so as not to surprise people with too many dirty pages than expected. The max-pause limit won't noticeably impact the speed dirty pages are knocked down when there is a sudden drop of global/bdi dirty thresholds. Because the heavy dirties will be throttled below 160KB/s which is slow enough. It does help to avoid long dirty throttle delays and especially will make light dirtiers more responsive. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-07-09writeback: introduce smoothed global dirty limitWu Fengguang
The start of a heavy weight application (ie. KVM) may instantly knock down determine_dirtyable_memory() if the swap is not enabled or full. global_dirty_limits() and bdi_dirty_limit() will in turn get global/bdi dirty thresholds that are _much_ lower than the global/bdi dirty pages. balance_dirty_pages() will then heavily throttle all dirtiers including the light ones, until the dirty pages drop below the new dirty thresholds. During this _deep_ dirty-exceeded state, the system may appear rather unresponsive to the users. About "deep" dirty-exceeded: task_dirty_limit() assigns 1/8 lower dirty threshold to heavy dirtiers than light ones, and the dirty pages will be throttled around the heavy dirtiers' dirty threshold and reasonably below the light dirtiers' dirty threshold. In this state, only the heavy dirtiers will be throttled and the dirty pages are carefully controlled to not exceed the light dirtiers' dirty threshold. However if the threshold itself suddenly drops below the number of dirty pages, the light dirtiers will get heavily throttled. So introduce global_dirty_limit for tracking the global dirty threshold with policies - follow downwards slowly - follow up in one shot global_dirty_limit can effectively mask out the impact of sudden drop of dirtyable memory. It will be used in the next patch for two new type of dirty limits. Note that the new dirty limits are not going to avoid throttling the light dirtiers, but could limit their sleep time to 200ms. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-07-09writeback: consolidate variable names in balance_dirty_pages()Wu Fengguang
Introduce nr_dirty = NR_FILE_DIRTY + NR_WRITEBACK + NR_UNSTABLE_NFS in order to simplify many tests in the following patches. balance_dirty_pages() will eventually care only about the dirty sums besides nr_writeback. Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-07-09writeback: bdi write bandwidth estimationWu Fengguang
The estimation value will start from 100MB/s and adapt to the real bandwidth in seconds. It tries to update the bandwidth only when disk is fully utilized. Any inactive period of more than one second will be skipped. The estimated bandwidth will be reflecting how fast the device can writeout when _fully utilized_, and won't drop to 0 when it goes idle. The value will remain constant at disk idle time. At busy write time, if not considering fluctuations, it will also remain high unless be knocked down by possible concurrent reads that compete for the disk time and bandwidth with async writes. The estimation is not done purely in the flusher because there is no guarantee for write_cache_pages() to return timely to update bandwidth. The bdi->avg_write_bandwidth smoothing is very effective for filtering out sudden spikes, however may be a little biased in long term. The overheads are low because the bdi bandwidth update only occurs at 200ms intervals. The 200ms update interval is suitable, because it's not possible to get the real bandwidth for the instance at all, due to large fluctuations. The NFS commits can be as large as seconds worth of data. One XFS completion may be as large as half second worth of data if we are going to increase the write chunk to half second worth of data. In ext4, fluctuations with time period of around 5 seconds is observed. And there is another pattern of irregular periods of up to 20 seconds on SSD tests. That's why we are not only doing the estimation at 200ms intervals, but also averaging them over a period of 3 seconds and then go further to do another level of smoothing in avg_write_bandwidth. CC: Li Shaohua <shaohua.li@intel.com> CC: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-07-09writeback: account per-bdi accumulated written pagesJan Kara
Introduce the BDI_WRITTEN counter. It will be used for estimating the bdi's write bandwidth. Peter Zijlstra <a.p.zijlstra@chello.nl>: Move BDI_WRITTEN accounting into __bdi_writeout_inc(). This will cover and fix fuse, which only calls bdi_writeout_inc(). CC: Michael Rubin <mrubin@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-07-09writeback: make writeback_control.nr_to_write straightWu Fengguang
Pass struct wb_writeback_work all the way down to writeback_sb_inodes(), and initialize the struct writeback_control there. struct writeback_control is basically designed to control writeback of a single file, but we keep abuse it for writing multiple files in writeback_sb_inodes() and its callers. It immediately clean things up, e.g. suddenly wbc.nr_to_write vs work->nr_pages starts to make sense, and instead of saving and restoring pages_skipped in writeback_sb_inodes it can always start with a clean zero value. It also makes a neat IO pattern change: large dirty files are now written in the full 4MB writeback chunk size, rather than whatever remained quota in wbc->nr_to_write. Acked-by: Jan Kara <jack@suse.cz> Proposed-by: Christoph Hellwig <hch@infradead.org> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-06-20writeback: skip tmpfs early in balance_dirty_pages_ratelimited_nr()Wu Fengguang
This helps prevent tmpfs dirtiers from skewing the per-cpu bdp_ratelimits. Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-06-08writeback: skip balance_dirty_pages() for in-memory fsWu Fengguang
This avoids unnecessary checks and dirty throttling on tmpfs/ramfs. Notes about the tmpfs/ramfs behavior changes: As for 2.6.36 and older kernels, the tmpfs writes will sleep inside balance_dirty_pages() as long as we are over the (dirty+background)/2 global throttle threshold. This is because both the dirty pages and threshold will be 0 for tmpfs/ramfs. Hence this test will always evaluate to TRUE: dirty_exceeded = (bdi_nr_reclaimable + bdi_nr_writeback >= bdi_thresh) || (nr_reclaimable + nr_writeback >= dirty_thresh); For 2.6.37, someone complained that the current logic does not allow the users to set vm.dirty_ratio=0. So commit 4cbec4c8b9 changed the test to dirty_exceeded = (bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh) || (nr_reclaimable + nr_writeback > dirty_thresh); So 2.6.37 will behave differently for tmpfs/ramfs: it will never get throttled unless the global dirty threshold is exceeded (which is very unlikely to happen; once happen, will block many tasks). I'd say that the 2.6.36 behavior is very bad for tmpfs/ramfs. It means for a busy writing server, tmpfs write()s may get livelocked! The "inadvertent" throttling can hardly bring help to any workload because of its "either no throttling, or get throttled to death" property. So based on 2.6.37, this patch won't bring more noticeable changes. CC: Hugh Dickins <hughd@google.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-06-08writeback: add bdi_dirty_limit() kernel-docWu Fengguang
Clarify the bdi_dirty_limit() comment. Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-06-08writeback: introduce .tagged_writepages for the WB_SYNC_NONE sync stageWu Fengguang
sync(2) is performed in two stages: the WB_SYNC_NONE sync and the WB_SYNC_ALL sync. Identify the first stage with .tagged_writepages and do livelock prevention for it, too. Jan's commit f446daaea9 ("mm: implement writeback livelock avoidance using page tagging") is a partial fix in that it only fixed the WB_SYNC_ALL phase livelock. Although ext4 is tested to no longer livelock with commit f446daaea9, it may due to some "redirty_tail() after pages_skipped" effect which is by no means a guarantee for _all_ the file systems. Note that writeback_inodes_sb() is called by not only sync(), they are treated the same because the other callers also need livelock prevention. Impact: It changes the order in which pages/inodes are synced to disk. Now in the WB_SYNC_NONE stage, it won't proceed to write the next inode until finished with the current inode. Acked-by: Jan Kara <jack@suse.cz> CC: Dave Chinner <david@fromorbit.com> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
2011-03-24Merge branch 'for-2.6.39/core' of git://git.kernel.dk/linux-2.6-blockLinus Torvalds
* 'for-2.6.39/core' of git://git.kernel.dk/linux-2.6-block: (65 commits) Documentation/iostats.txt: bit-size reference etc. cfq-iosched: removing unnecessary think time checking cfq-iosched: Don't clear queue stats when preempt. blk-throttle: Reset group slice when limits are changed blk-cgroup: Only give unaccounted_time under debug cfq-iosched: Don't set active queue in preempt block: fix non-atomic access to genhd inflight structures block: attempt to merge with existing requests on plug flush block: NULL dereference on error path in __blkdev_get() cfq-iosched: Don't update group weights when on service tree fs: assign sb->s_bdi to default_backing_dev_info if the bdi is going away block: Require subsystems to explicitly allocate bio_set integrity mempool jbd2: finish conversion from WRITE_SYNC_PLUG to WRITE_SYNC and explicit plugging jbd: finish conversion from WRITE_SYNC_PLUG to WRITE_SYNC and explicit plugging fs: make fsync_buffers_list() plug mm: make generic_writepages() use plugging blk-cgroup: Add unaccounted time to timeslice_used. block: fixup plugging stubs for !CONFIG_BLOCK block: remove obsolete comments for blkdev_issue_zeroout. blktrace: Use rq->cmd_flags directly in blk_add_trace_rq. ... Fix up conflicts in fs/{aio.c,super.c}
2011-03-22writeback: make mapping->writeback_index to point to the last written pageJun'ichi Nomura
For range-cyclic writeback (e.g. kupdate), the writeback code sets a continuation point of the next writeback to mapping->writeback_index which is set the page after the last written page. This happens so that we evenly write the whole file even if pages in it get continuously redirtied. However, in some cases, sequential writer is writing in the middle of the page and it just redirties the last written page by continuing from that. For example with an application which uses a file as a big ring buffer we see: [1st writeback session] ... flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898514 + 8 flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898522 + 8 flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898530 + 8 flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898538 + 8 flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898546 + 8 kworker/0:1-11 4571: block_rq_issue: 8,0 W 0 () 94898514 + 40 >> flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898554 + 8 >> flush-8:0-2743 4571: block_rq_issue: 8,0 W 0 () 94898554 + 8 [2nd writeback session after 35sec] flush-8:0-2743 4606: block_bio_queue: 8,0 W 94898562 + 8 flush-8:0-2743 4606: block_bio_queue: 8,0 W 94898570 + 8 flush-8:0-2743 4606: block_bio_queue: 8,0 W 94898578 + 8 ... kworker/0:1-11 4606: block_rq_issue: 8,0 W 0 () 94898562 + 640 kworker/0:1-11 4606: block_rq_issue: 8,0 W 0 () 94899202 + 72 ... flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899962 + 8 flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899970 + 8 flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899978 + 8 flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899986 + 8 flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899994 + 8 kworker/0:1-11 4606: block_rq_issue: 8,0 W 0 () 94899962 + 40 >> flush-8:0-2743 4606: block_bio_queue: 8,0 W 94898554 + 8 >> flush-8:0-2743 4606: block_rq_issue: 8,0 W 0 () 94898554 + 8 So we seeked back to 94898554 after we wrote all the pages at the end of the file. This extra seek seems unnecessary. If we continue writeback from the last written page, we can avoid it and do not cause harm to other cases. The original intent of even writeout over the whole file is preserved and if the page does not get redirtied pagevec_lookup_tag() just skips it. As an exceptional case, when I/O error happens, set done_index to the next page as the comment in the code suggests. Tested-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-22mm: reclaim invalidated page ASAPMinchan Kim
invalidate_mapping_pages is very big hint to reclaimer. It means user doesn't want to use the page any more. So in order to prevent working set page eviction, this patch move the page into tail of inactive list by PG_reclaim. Please, remember that pages in inactive list are working set as well as active list. If we don't move pages into inactive list's tail, pages near by tail of inactive list can be evicted although we have a big clue about useless pages. It's totally bad. Now PG_readahead/PG_reclaim is shared. fe3cba17 added ClearPageReclaim into clear_page_dirty_for_io for preventing fast reclaiming readahead marker page. In this series, PG_reclaim is used by invalidated page, too. If VM find the page is invalidated and it's dirty, it sets PG_reclaim to reclaim asap. Then, when the dirty page will be writeback, clear_page_dirty_for_io will clear PG_reclaim unconditionally. It disturbs this serie's goal. I think it's okay to clear PG_readahead when the page is dirty, not writeback time. So this patch moves ClearPageReadahead. In v4, ClearPageReadahead in set_page_dirty has a problem which is reported by Steven Barrett. It's due to compound page. Some driver(ex, audio) calls set_page_dirty with compound page which isn't on LRU. but my patch does ClearPageRelcaim on compound page. In non-CONFIG_PAGEFLAGS_EXTENDED, it breaks PageTail flag. I think it doesn't affect THP and pass my test with THP enabling but Cced Andrea for double check. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Reported-by: Steven Barrett <damentz@liquorix.net> Reviewed-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-17mm: make generic_writepages() use pluggingShaohua Li
This recovers a performance regression caused by the removal of the per-device plugging. Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-03-10block: remove per-queue pluggingJens Axboe
Code has been converted over to the new explicit on-stack plugging, and delay users have been converted to use the new API for that. So lets kill off the old plugging along with aops->sync_page(). Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
2011-01-13writeback: avoid unnecessary determine_dirtyable_memory callMinchan Kim
I think determine_dirtyable_memory() is a rather costly function since it need many atomic reads for gathering zone/global page state. But when we use vm_dirty_bytes && dirty_background_bytes, we don't need that costly calculation. This patch eliminates such unnecessary overhead. NOTE : newly added if condition might add overhead in normal path. But it should be _really_ small because anyway we need the access both vm_dirty_bytes and dirty_background_bytes so it is likely to hit the cache. [akpm@linux-foundation.org: fix used-uninitialised warning] Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13mm/page-writeback.c: fix __set_page_dirty_no_writeback() return valueBob Liu
__set_page_dirty_no_writeback() should return true if it actually transitioned the page from a clean to dirty state although it seems nobody uses its return value at present. Signed-off-by: Bob Liu <lliubbo@gmail.com> Acked-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13Merge branch 'for-next' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (43 commits) Documentation/trace/events.txt: Remove obsolete sched_signal_send. writeback: fix global_dirty_limits comment runtime -> real-time ppc: fix comment typo singal -> signal drivers: fix comment typo diable -> disable. m68k: fix comment typo diable -> disable. wireless: comment typo fix diable -> disable. media: comment typo fix diable -> disable. remove doc for obsolete dynamic-printk kernel-parameter remove extraneous 'is' from Documentation/iostats.txt Fix spelling milisec -> ms in snd_ps3 module parameter description Fix spelling mistakes in comments Revert conflicting V4L changes i7core_edac: fix typos in comments mm/rmap.c: fix comment sound, ca0106: Fix assignment to 'channel'. hrtimer: fix a typo in comment init/Kconfig: fix typo anon_inodes: fix wrong function name in comment fix comment typos concerning "consistent" poll: fix a typo in comment ... Fix up trivial conflicts in: - drivers/net/wireless/iwlwifi/iwl-core.c (moved to iwl-legacy.c) - fs/ext4/ext4.h Also fix missed 'diabled' typo in drivers/net/bnx2x/bnx2x.h while at it.
2011-01-04writeback: fix global_dirty_limits comment runtime -> real-timeMinchan Kim
Change runtime with real-time Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2010-12-22writeback: do uninterruptible sleep in balance_dirty_pages()Wu Fengguang
Using TASK_INTERRUPTIBLE in balance_dirty_pages() seems wrong. If it's going to do that then it must break out if signal_pending(), otherwise it's pretty much guaranteed to degenerate into a busywait loop. Plus we *do* want these processes to appear in D state and to contribute to load average. So it should be TASK_UNINTERRUPTIBLE. -- Andrew Morton Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26writeback: remove the internal 5% low bound on dirty_ratioWu Fengguang
The dirty_ratio was silently limited in global_dirty_limits() to >= 5%. This is not a user expected behavior. And it's inconsistent with calc_period_shift(), which uses the plain vm_dirty_ratio value. Let's remove the internal bound. At the same time, fix balance_dirty_pages() to work with the dirty_thresh=0 case. This allows applications to proceed when dirty+writeback pages are all cleaned. And ">" fits with the name "exceeded" better than ">=" does. Neil thinks it is an aesthetic improvement as well as a functional one :) Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Cc: Jan Kara <jack@suse.cz> Proposed-by: Con Kolivas <kernel@kolivas.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Neil Brown <neilb@suse.de> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michael Rubin <mrubin@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26writeback: add nr_dirtied and nr_written to /proc/vmstatMichael Rubin
To help developers and applications gain visibility into writeback behaviour adding two entries to vm_stat_items and /proc/vmstat. This will allow us to track the "written" and "dirtied" counts. # grep nr_dirtied /proc/vmstat nr_dirtied 3747 # grep nr_written /proc/vmstat nr_written 3618 Signed-off-by: Michael Rubin <mrubin@google.com> Reviewed-by: Wu Fengguang <fengguang.wu@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26mm: add account_page_writeback()Michael Rubin
To help developers and applications gain visibility into writeback behaviour this patch adds two counters to /proc/vmstat. # grep nr_dirtied /proc/vmstat nr_dirtied 3747 # grep nr_written /proc/vmstat nr_written 3618 These entries allow user apps to understand writeback behaviour over time and learn how it is impacting their performance. Currently there is no way to inspect dirty and writeback speed over time. It's not possible for nr_dirty/nr_writeback. These entries are necessary to give visibility into writeback behaviour. We have /proc/diskstats which lets us understand the io in the block layer. We have blktrace for more in depth understanding. We have e2fsprogs and debugsfs to give insight into the file systems behaviour, but we don't offer our users the ability understand what writeback is doing. There is no way to know how active it is over the whole system, if it's falling behind or to quantify it's efforts. With these values exported users can easily see how much data applications are sending through writeback and also at what rates writeback is processing this data. Comparing the rates of change between the two allow developers to see when writeback is not able to keep up with incoming traffic and the rate of dirty memory being sent to the IO back end. This allows folks to understand their io workloads and track kernel issues. Non kernel engineers at Google often use these counters to solve puzzling performance problems. Patch #4 adds a pernode vmstat file with nr_dirtied and nr_written Patch #5 add writeback thresholds to /proc/vmstat Currently these values are in debugfs. But they should be promoted to /proc since they are useful for developers who are writing databases and file servers and are not debugging the kernel. The output is as below: # grep threshold /proc/vmstat nr_pages_dirty_threshold 409111 nr_pages_dirty_background_threshold 818223 This patch: This allows code outside of the mm core to safely manipulate page writeback state and not worry about the other accounting. Not using these routines means that some code will lose track of the accounting and we get bugs. Modify nilfs2 to use interface. Signed-off-by: Michael Rubin <mrubin@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Wu Fengguang <fengguang.wu@intel.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Jiro SEKIBA <jir@unicus.jp> Cc: Dave Chinner <david@fromorbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-28Merge branch 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client: ceph: fix get_ticket_handler() error handling ceph: don't BUG on ENOMEM during mds reconnect ceph: ceph_mdsc_build_path() returns an ERR_PTR ceph: Fix warnings ceph: ceph_get_inode() returns an ERR_PTR ceph: initialize fields on new dentry_infos ceph: maintain i_head_snapc when any caps are dirty, not just for data ceph: fix osd request lru adjustment when sending request ceph: don't improperly set dir complete when holding EXCL cap mm: exporting account_page_dirty ceph: direct requests in snapped namespace based on nonsnap parent ceph: queue cap snap writeback for realm children on snap update ceph: include dirty xattrs state in snapped caps ceph: fix xattr cap writeback ceph: fix multiple mds session shutdown
2010-08-24writeback: write_cache_pages doesn't terminate at nr_to_write <= 0Dave Chinner
I noticed XFS writeback in 2.6.36-rc1 was much slower than it should have been. Enabling writeback tracing showed: flush-253:16-8516 [007] 1342952.351608: wbc_writepage: bdi 253:16: towrt=1024 skip=0 mode=0 kupd=0 bgrd=1 reclm=0 cyclic=1 more=0 older=0x0 start=0x0 end=0x0 flush-253:16-8516 [007] 1342952.351654: wbc_writepage: bdi 253:16: towrt=1023 skip=0 mode=0 kupd=0 bgrd=1 reclm=0 cyclic=1 more=0 older=0x0 start=0x0 end=0x0 flush-253:16-8516 [000] 1342952.369520: wbc_writepage: bdi 253:16: towrt=0 skip=0 mode=0 kupd=0 bgrd=1 reclm=0 cyclic=1 more=0 older=0x0 start=0x0 end=0x0 flush-253:16-8516 [000] 1342952.369542: wbc_writepage: bdi 253:16: towrt=-1 skip=0 mode=0 kupd=0 bgrd=1 reclm=0 cyclic=1 more=0 older=0x0 start=0x0 end=0x0 flush-253:16-8516 [000] 1342952.369549: wbc_writepage: bdi 253:16: towrt=-2 skip=0 mode=0 kupd=0 bgrd=1 reclm=0 cyclic=1 more=0 older=0x0 start=0x0 end=0x0 Writeback is not terminating in background writeback if ->writepage is returning with wbc->nr_to_write == 0, resulting in sub-optimal single page writeback on XFS. Fix the write_cache_pages loop to terminate correctly when this situation occurs and so prevent this sub-optimal background writeback pattern. This improves sustained sequential buffered write performance from around 250MB/s to 750MB/s for a 100GB file on an XFS filesystem on my 8p test VM. Cc:<stable@kernel.org> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Wu Fengguang <fengguang.wu@intel.com> Reviewed-by: Christoph Hellwig <hch@lst.de>