summaryrefslogtreecommitdiff
path: root/mm
AgeCommit message (Collapse)Author
2014-09-08proportions: add @gfp to init functionsTejun Heo
Percpu allocator now supports allocation mask. Add @gfp to [flex_]proportions init functions so that !GFP_KERNEL allocation masks can be used with them too. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Peter Zijlstra <peterz@infradead.org>
2014-09-08percpu_counter: add @gfp to percpu_counter_init()Tejun Heo
Percpu allocator now supports allocation mask. Add @gfp to percpu_counter_init() so that !GFP_KERNEL allocation masks can be used with percpu_counters too. We could have left percpu_counter_init() alone and added percpu_counter_init_gfp(); however, the number of users isn't that high and introducing _gfp variants to all percpu data structures would be quite ugly, so let's just do the conversion. This is the one with the most users. Other percpu data structures are a lot easier to convert. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Jan Kara <jack@suse.cz> Acked-by: "David S. Miller" <davem@davemloft.net> Cc: x86@kernel.org Cc: Jens Axboe <axboe@kernel.dk> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org>
2014-09-02percpu: implement asynchronous chunk populationTejun Heo
The percpu allocator now supports atomic allocations by only allocating from already populated areas but the mechanism to ensure that there's adequate amount of populated areas was missing. This patch expands pcpu_balance_work so that in addition to freeing excess free chunks it also populates chunks to maintain an adequate level of populated areas. pcpu_alloc() schedules pcpu_balance_work if the amount of free populated areas is too low or after an atomic allocation failure. * PERPCU_DYNAMIC_RESERVE is increased by two pages to account for PCPU_EMPTY_POP_PAGES_LOW. * pcpu_async_enabled is added to gate both async jobs - chunk->map_extend_work and pcpu_balance_work - so that we don't end up scheduling them while the needed subsystems aren't up yet. Signed-off-by: Tejun Heo <tj@kernel.org>
2014-09-02percpu: rename pcpu_reclaim_work to pcpu_balance_workTejun Heo
pcpu_reclaim_work will also be used to populate chunks asynchronously. Rename it to pcpu_balance_work in preparation. pcpu_reclaim() is renamed to pcpu_balance_workfn() and some of its local variables are renamed too. This is pure rename. Signed-off-by: Tejun Heo <tj@kernel.org>
2014-09-02percpu: implmeent pcpu_nr_empty_pop_pages and chunk->nr_populatedTejun Heo
pcpu_nr_empty_pop_pages counts the number of empty populated pages across all chunks and chunk->nr_populated counts the number of populated pages in a chunk. Both will be used to implement pre/async population for atomic allocations. pcpu_chunk_[de]populated() are added to update chunk->populated, chunk->nr_populated and pcpu_nr_empty_pop_pages together. All successful chunk [de]populations should be followed by the corresponding pcpu_chunk_[de]populated() calls. Signed-off-by: Tejun Heo <tj@kernel.org>
2014-09-02percpu: make sure chunk->map array has available spaceTejun Heo
An allocation attempt may require extending chunk->map array which requires GFP_KERNEL context which isn't available for atomic allocations. This patch ensures that chunk->map array usually keeps some amount of available space by directly allocating buffer space during GFP_KERNEL allocations and scheduling async extension during atomic ones. This should make atomic allocation failures from map space exhaustion rare. Signed-off-by: Tejun Heo <tj@kernel.org>
2014-09-02percpu: implement [__]alloc_percpu_gfp()Tejun Heo
Now that pcpu_alloc_area() can allocate only from populated areas, it's easy to add atomic allocation support to [__]alloc_percpu(). Update pcpu_alloc() so that it accepts @gfp and skips all the blocking operations and allocates only from the populated areas if @gfp doesn't contain GFP_KERNEL. New interface functions [__]alloc_percpu_gfp() are added. While this means that atomic allocations are possible, this isn't complete yet as there's no mechanism to ensure that certain amount of populated areas is kept available and atomic allocations may keep failing under certain conditions. Signed-off-by: Tejun Heo <tj@kernel.org>
2014-09-02percpu: indent the population block in pcpu_alloc()Tejun Heo
The next patch will conditionalize the population block in pcpu_alloc() which will end up making a rather large indentation change obfuscating the actual logic change. This patch puts the block under "if (true)" so that the next patch can avoid indentation changes. The defintions of the local variables which are used only in the block are moved into the block. This patch is purely cosmetic. Signed-off-by: Tejun Heo <tj@kernel.org>
2014-09-02percpu: make pcpu_alloc_area() capable of allocating only from populated areasTejun Heo
Update pcpu_alloc_area() so that it can skip unpopulated areas if the new parameter @pop_only is true. This is implemented by a new function, pcpu_fit_in_area(), which determines the amount of head padding considering the alignment and populated state. @pop_only is currently always false but this will be used to implement atomic allocation. Signed-off-by: Tejun Heo <tj@kernel.org>
2014-09-02percpu: restructure lockingTejun Heo
At first, the percpu allocator required a sleepable context for both alloc and free paths and used pcpu_alloc_mutex to protect everything. Later, pcpu_lock was introduced to protect the index data structure so that the free path can be invoked from atomic contexts. The conversion only updated what's necessary and left most of the allocation path under pcpu_alloc_mutex. The percpu allocator is planned to add support for atomic allocation and this patch restructures locking so that the coverage of pcpu_alloc_mutex is further reduced. * pcpu_alloc() now grab pcpu_alloc_mutex only while creating a new chunk and populating the allocated area. Everything else is now protected soley by pcpu_lock. After this change, multiple instances of pcpu_extend_area_map() may race but the function already implements sufficient synchronization using pcpu_lock. This also allows multiple allocators to arrive at new chunk creation. To avoid creating multiple empty chunks back-to-back, a new chunk is created iff there is no other empty chunk after grabbing pcpu_alloc_mutex. * pcpu_lock is now held while modifying chunk->populated bitmap. After this, all data structures are protected by pcpu_lock. Signed-off-by: Tejun Heo <tj@kernel.org>
2014-09-02percpu: make percpu-km set chunk->populated bitmap properlyTejun Heo
percpu-km instantiates the whole chunk on creation and doesn't make use of chunk->populated bitmap and leaves it as zero. While this currently doesn't cause any problem, the inconsistency makes it difficult to build further logic on top of chunk->populated. This patch makes percpu-km fill chunk->populated on creation so that the bitmap is always consistent. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Christoph Lameter <cl@linux.com>
2014-09-02percpu: move region iterations out of pcpu_[de]populate_chunk()Tejun Heo
Previously, pcpu_[de]populate_chunk() were called with the range which may contain multiple target regions in it and pcpu_[de]populate_chunk() iterated over the regions. This has the benefit of batching up cache flushes for all the regions; however, we're planning to add more bookkeeping logic around [de]population to support atomic allocations and this delegation of iterations gets in the way. This patch moves the region iterations out of pcpu_[de]populate_chunk() into its callers - pcpu_alloc() and pcpu_reclaim() - so that we can later add logic to track more states around them. This change may make cache and tlb flushes more frequent but multi-region [de]populations are rare anyway and if this actually becomes a problem, it's not difficult to factor out cache flushes as separate callbacks which are directly invoked from percpu.c. Signed-off-by: Tejun Heo <tj@kernel.org>
2014-09-02percpu: move common parts out of pcpu_[de]populate_chunk()Tejun Heo
percpu-vm and percpu-km implement separate versions of pcpu_[de]populate_chunk() and some part which is or should be common are currently in the specific implementations. Make the following changes. * Allocate area clearing is moved from the pcpu_populate_chunk() implementations to pcpu_alloc(). This makes percpu-km's version noop. * Quick exit tests in pcpu_[de]populate_chunk() of percpu-vm are moved to their respective callers so that they are applied to percpu-km too. This doesn't make any meaningful difference as both functions are noop for percpu-km; however, this is more consistent and will help implementing atomic allocation support. Signed-off-by: Tejun Heo <tj@kernel.org>
2014-09-02percpu: remove @may_alloc from pcpu_get_pages()Tejun Heo
pcpu_get_pages() creates the temp pages array if not already allocated and returns the pointer to it. As the function is called from both [de]population paths and depopulation can only happen after at least one successful population, the param doesn't make any difference - the allocation will always happen on the population path anyway. Remove @may_alloc from pcpu_get_pages(). Also, add an lockdep assertion pcpu_alloc_mutex instead of vaguely stating that the exclusion is the caller's responsibility. Signed-off-by: Tejun Heo <tj@kernel.org>
2014-09-02percpu: remove the usage of separate populated bitmap in percpu-vmTejun Heo
percpu-vm uses pcpu_get_pages_and_bitmap() to acquire temp pages array and populated bitmap and uses the two during [de]population. The temp bitmap is used only to build the new bitmap that is copied to chunk->populated after the operation succeeds; however, the new bitmap can be trivially set after success without using the temp bitmap. This patch removes the temp populated bitmap usage from percpu-vm.c. * pcpu_get_pages_and_bitmap() is renamed to pcpu_get_pages() and no longer hands out the temp bitmap. * @populated arugment is dropped from all the related functions. @populated updates in pcpu_[un]map_pages() are dropped. * Two loops in pcpu_map_pages() are merged. * pcpu_[de]populated_chunk() modify chunk->populated bitmap directly from @page_start and @page_end after success. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Christoph Lameter <cl@linux.com>
2014-08-16percpu: free percpu allocation info for uniprocessor systemHonggang Li
Currently, only SMP system free the percpu allocation info. Uniprocessor system should free it too. For example, one x86 UML virtual machine with 256MB memory, UML kernel wastes one page memory. Signed-off-by: Honggang Li <enjoymindful@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org> Cc: stable@vger.kernel.org
2014-08-15percpu: perform tlb flush after pcpu_map_pages() failureTejun Heo
If pcpu_map_pages() fails midway, it unmaps the already mapped pages. Currently, it doesn't flush tlb after the partial unmapping. This may be okay in most cases as the established mapping hasn't been used at that point but it can go wrong and when it goes wrong it'd be extremely difficult to track down. Flush tlb after the partial unmapping. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: stable@vger.kernel.org
2014-08-15percpu: fix pcpu_alloc_pages() failure pathTejun Heo
When pcpu_alloc_pages() fails midway, pcpu_free_pages() is invoked to free what has already been allocated. The invocation is across the whole requested range and pcpu_free_pages() will try to free all non-NULL pages; unfortunately, this is incorrect as pcpu_get_pages_and_bitmap(), unlike what its comment suggests, doesn't clear the pages array and thus the array may have entries from the previous invocations making the partial failure path free incorrect pages. Fix it by open-coding the partial freeing of the already allocated pages. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: stable@vger.kernel.org
2014-08-14Merge branch 'akpm' (fixes from Andrew Morton)Linus Torvalds
Merge leftovers from Andrew Morton: "A few leftovers. I have a bunch of OCFS2 patches which are still out for review and which I might sneak along after -rc1. Partly my fault - I should send my review pokes out earlier" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: mm: fix CROSS_MEMORY_ATTACH help text grammar drivers/mfd/rtsx_usb.c: export device table mm, hugetlb_cgroup: align hugetlb cgroup limit to hugepage size
2014-08-14mm, hugetlb_cgroup: align hugetlb cgroup limit to hugepage sizeDavid Rientjes
Memcg aligns memory.limit_in_bytes to PAGE_SIZE as part of the resource counter since it makes no sense to allow a partial page to be charged. As a result of the hugetlb cgroup using the resource counter, it is also aligned to PAGE_SIZE but makes no sense unless aligned to the size of the hugepage being limited. Align hugetlb cgroup limit to hugepage size. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-11Merge branch 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull vfs updates from Al Viro: "Stuff in here: - acct.c fixes and general rework of mnt_pin mechanism. That allows to go for delayed-mntput stuff, which will permit mntput() on deep stack without worrying about stack overflows - fs shutdown will happen on shallow stack. IOW, we can do Eric's umount-on-rmdir series without introducing tons of stack overflows on new mntput() call chains it introduces. - Bruce's d_splice_alias() patches - more Miklos' rename() stuff. - a couple of regression fixes (stable fodder, in the end of branch) and a fix for API idiocy in iov_iter.c. There definitely will be another pile, maybe even two. I'd like to get Eric's series in this time, but even if we miss it, it'll go right in the beginning of for-next in the next cycle - the tricky part of prereqs is in this pile" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (40 commits) fix copy_tree() regression __generic_file_write_iter(): fix handling of sync error after DIO switch iov_iter_get_pages() to passing maximal number of pages fs: mark __d_obtain_alias static dcache: d_splice_alias should detect loops exportfs: update Exporting documentation dcache: d_find_alias needn't recheck IS_ROOT && DCACHE_DISCONNECTED dcache: remove unused d_find_alias parameter dcache: d_obtain_alias callers don't all want DISCONNECTED dcache: d_splice_alias should ignore DCACHE_DISCONNECTED dcache: d_splice_alias mustn't create directory aliases dcache: close d_move race in d_splice_alias dcache: move d_splice_alias namei: trivial fix to vfs_rename_dir comment VFS: allow ->d_manage() to declare -EISDIR in rcu_walk mode. cifs: support RENAME_NOREPLACE hostfs: support rename flags shmem: support RENAME_EXCHANGE shmem: support RENAME_NOREPLACE btrfs: add RENAME_NOREPLACE ...
2014-08-11__generic_file_write_iter(): fix handling of sync error after DIOAl Viro
If DIO results in short write and sync write fails, we want to bugger off whether the DIO part has written anything or not; the logics on the return will take care of the right return value. Cc: stable@vger.kernel.org [3.16] Reported-by: Anton Altaparmakov <aia21@cam.ac.uk> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-08-08shm: wait for pins to be released when sealingDavid Herrmann
If we set SEAL_WRITE on a file, we must make sure there cannot be any ongoing write-operations on the file. For write() calls, we simply lock the inode mutex, for mmap() we simply verify there're no writable mappings. However, there might be pages pinned by AIO, Direct-IO and similar operations via GUP. We must make sure those do not write to the memfd file after we set SEAL_WRITE. As there is no way to notify GUP users to drop pages or to wait for them to be done, we implement the wait ourself: When setting SEAL_WRITE, we check all pages for their ref-count. If it's bigger than 1, we know there's some user of the page. We then mark the page and wait for up to 150ms for those ref-counts to be dropped. If the ref-counts are not dropped in time, we refuse the seal operation. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Ryan Lortie <desrt@desrt.ca> Cc: Lennart Poettering <lennart@poettering.net> Cc: Daniel Mack <zonque@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08shm: add memfd_create() syscallDavid Herrmann
memfd_create() is similar to mmap(MAP_ANON), but returns a file-descriptor that you can pass to mmap(). It can support sealing and avoids any connection to user-visible mount-points. Thus, it's not subject to quotas on mounted file-systems, but can be used like malloc()'ed memory, but with a file-descriptor to it. memfd_create() returns the raw shmem file, so calls like ftruncate() can be used to modify the underlying inode. Also calls like fstat() will return proper information and mark the file as regular file. If you want sealing, you can specify MFD_ALLOW_SEALING. Otherwise, sealing is not supported (like on all other regular files). Compared to O_TMPFILE, it does not require a tmpfs mount-point and is not subject to a filesystem size limit. It is still properly accounted to memcg limits, though, and to the same overcommit or no-overcommit accounting as all user memory. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Ryan Lortie <desrt@desrt.ca> Cc: Lennart Poettering <lennart@poettering.net> Cc: Daniel Mack <zonque@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08shm: add sealing APIDavid Herrmann
If two processes share a common memory region, they usually want some guarantees to allow safe access. This often includes: - one side cannot overwrite data while the other reads it - one side cannot shrink the buffer while the other accesses it - one side cannot grow the buffer beyond previously set boundaries If there is a trust-relationship between both parties, there is no need for policy enforcement. However, if there's no trust relationship (eg., for general-purpose IPC) sharing memory-regions is highly fragile and often not possible without local copies. Look at the following two use-cases: 1) A graphics client wants to share its rendering-buffer with a graphics-server. The memory-region is allocated by the client for read/write access and a second FD is passed to the server. While scanning out from the memory region, the server has no guarantee that the client doesn't shrink the buffer at any time, requiring rather cumbersome SIGBUS handling. 2) A process wants to perform an RPC on another process. To avoid huge bandwidth consumption, zero-copy is preferred. After a message is assembled in-memory and a FD is passed to the remote side, both sides want to be sure that neither modifies this shared copy, anymore. The source may have put sensible data into the message without a separate copy and the target may want to parse the message inline, to avoid a local copy. While SIGBUS handling, POSIX mandatory locking and MAP_DENYWRITE provide ways to achieve most of this, the first one is unproportionally ugly to use in libraries and the latter two are broken/racy or even disabled due to denial of service attacks. This patch introduces the concept of SEALING. If you seal a file, a specific set of operations is blocked on that file forever. Unlike locks, seals can only be set, never removed. Hence, once you verified a specific set of seals is set, you're guaranteed that no-one can perform the blocked operations on this file, anymore. An initial set of SEALS is introduced by this patch: - SHRINK: If SEAL_SHRINK is set, the file in question cannot be reduced in size. This affects ftruncate() and open(O_TRUNC). - GROW: If SEAL_GROW is set, the file in question cannot be increased in size. This affects ftruncate(), fallocate() and write(). - WRITE: If SEAL_WRITE is set, no write operations (besides resizing) are possible. This affects fallocate(PUNCH_HOLE), mmap() and write(). - SEAL: If SEAL_SEAL is set, no further seals can be added to a file. This basically prevents the F_ADD_SEAL operation on a file and can be set to prevent others from adding further seals that you don't want. The described use-cases can easily use these seals to provide safe use without any trust-relationship: 1) The graphics server can verify that a passed file-descriptor has SEAL_SHRINK set. This allows safe scanout, while the client is allowed to increase buffer size for window-resizing on-the-fly. Concurrent writes are explicitly allowed. 2) For general-purpose IPC, both processes can verify that SEAL_SHRINK, SEAL_GROW and SEAL_WRITE are set. This guarantees that neither process can modify the data while the other side parses it. Furthermore, it guarantees that even with writable FDs passed to the peer, it cannot increase the size to hit memory-limits of the source process (in case the file-storage is accounted to the source). The new API is an extension to fcntl(), adding two new commands: F_GET_SEALS: Return a bitset describing the seals on the file. This can be called on any FD if the underlying file supports sealing. F_ADD_SEALS: Change the seals of a given file. This requires WRITE access to the file and F_SEAL_SEAL may not already be set. Furthermore, the underlying file must support sealing and there may not be any existing shared mapping of that file. Otherwise, EBADF/EPERM is returned. The given seals are _added_ to the existing set of seals on the file. You cannot remove seals again. The fcntl() handler is currently specific to shmem and disabled on all files. A file needs to explicitly support sealing for this interface to work. A separate syscall is added in a follow-up, which creates files that support sealing. There is no intention to support this on other file-systems. Semantics are unclear for non-volatile files and we lack any use-case right now. Therefore, the implementation is specific to shmem. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Ryan Lortie <desrt@desrt.ca> Cc: Lennart Poettering <lennart@poettering.net> Cc: Daniel Mack <zonque@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08mm: allow drivers to prevent new writable mappingsDavid Herrmann
This patch (of 6): The i_mmap_writable field counts existing writable mappings of an address_space. To allow drivers to prevent new writable mappings, make this counter signed and prevent new writable mappings if it is negative. This is modelled after i_writecount and DENYWRITE. This will be required by the shmem-sealing infrastructure to prevent any new writable mappings after the WRITE seal has been set. In case there exists a writable mapping, this operation will fail with EBUSY. Note that we rely on the fact that iff you already own a writable mapping, you can increase the counter without using the helpers. This is the same that we do for i_writecount. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Ryan Lortie <desrt@desrt.ca> Cc: Lennart Poettering <lennart@poettering.net> Cc: Daniel Mack <zonque@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08arm64,ia64,ppc,s390,sh,tile,um,x86,mm: remove default gate areaAndy Lutomirski
The core mm code will provide a default gate area based on FIXADDR_USER_START and FIXADDR_USER_END if !defined(__HAVE_ARCH_GATE_AREA) && defined(AT_SYSINFO_EHDR). This default is only useful for ia64. arm64, ppc, s390, sh, tile, 64-bit UML, and x86_32 have their own code just to disable it. arm, 32-bit UML, and x86_64 have gate areas, but they have their own implementations. This gets rid of the default and moves the code into ia64. This should save some code on architectures without a gate area: it's now possible to inline the gate_area functions in the default case. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Acked-by: Nathan Lynch <nathan_lynch@mentor.com> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> [in principle] Acked-by: Richard Weinberger <richard@nod.at> [for um] Acked-by: Will Deacon <will.deacon@arm.com> [for arm64] Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Nathan Lynch <Nathan_Lynch@mentor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08mm/zswap.c: add __init to zswap_entry_cache_destroy()Fabian Frederick
zswap_entry_cache_destroy() is only called by __init init_zswap(). This patch also fixes function name zswap_entry_cache_ s/destory/destroy Signed-off-by: Fabian Frederick <fabf@skynet.be> Acked-by: Seth Jennings <sjennings@variantweb.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08mm: memcontrol: avoid charge statistics churn during page migrationJohannes Weiner
Charge migration currently disables IRQs twice to update the charge statistics for the old page and then again for the new page. But migration is a seamless transition of a charge from one physical page to another one of the same size, so this should be a non-event from an accounting point of view. Leave the statistics alone. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08mm: memcontrol: use page lists for uncharge batchingJohannes Weiner
Pages are now uncharged at release time, and all sources of batched uncharges operate on lists of pages. Directly use those lists, and get rid of the per-task batching state. This also batches statistics accounting, in addition to the res counter charges, to reduce IRQ-disabling and re-enabling. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08mm: memcontrol: rewrite uncharge APIJohannes Weiner
The memcg uncharging code that is involved towards the end of a page's lifetime - truncation, reclaim, swapout, migration - is impressively complicated and fragile. Because anonymous and file pages were always charged before they had their page->mapping established, uncharges had to happen when the page type could still be known from the context; as in unmap for anonymous, page cache removal for file and shmem pages, and swap cache truncation for swap pages. However, these operations happen well before the page is actually freed, and so a lot of synchronization is necessary: - Charging, uncharging, page migration, and charge migration all need to take a per-page bit spinlock as they could race with uncharging. - Swap cache truncation happens during both swap-in and swap-out, and possibly repeatedly before the page is actually freed. This means that the memcg swapout code is called from many contexts that make no sense and it has to figure out the direction from page state to make sure memory and memory+swap are always correctly charged. - On page migration, the old page might be unmapped but then reused, so memcg code has to prevent untimely uncharging in that case. Because this code - which should be a simple charge transfer - is so special-cased, it is not reusable for replace_page_cache(). But now that charged pages always have a page->mapping, introduce mem_cgroup_uncharge(), which is called after the final put_page(), when we know for sure that nobody is looking at the page anymore. For page migration, introduce mem_cgroup_migrate(), which is called after the migration is successful and the new page is fully rmapped. Because the old page is no longer uncharged after migration, prevent double charges by decoupling the page's memcg association (PCG_USED and pc->mem_cgroup) from the page holding an actual charge. The new bits PCG_MEM and PCG_MEMSW represent the respective charges and are transferred to the new page during migration. mem_cgroup_migrate() is suitable for replace_page_cache() as well, which gets rid of mem_cgroup_replace_page_cache(). However, care needs to be taken because both the source and the target page can already be charged and on the LRU when fuse is splicing: grab the page lock on the charge moving side to prevent changing pc->mem_cgroup of a page under migration. Also, the lruvecs of both pages change as we uncharge the old and charge the new during migration, and putback may race with us, so grab the lru lock and isolate the pages iff on LRU to prevent races and ensure the pages are on the right lruvec afterward. Swap accounting is massively simplified: because the page is no longer uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry before the final put_page() in page reclaim. Finally, page_cgroup changes are now protected by whatever protection the page itself offers: anonymous pages are charged under the page table lock, whereas page cache insertions, swapin, and migration hold the page lock. Uncharging happens under full exclusion with no outstanding references. Charging and uncharging also ensure that the page is off-LRU, which serializes against charge migration. Remove the very costly page_cgroup lock and set pc->flags non-atomically. [mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable] [vdavydov@parallels.com: fix flags definition] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Tested-by: Jet Chen <jet.chen@intel.com> Acked-by: Michal Hocko <mhocko@suse.cz> Tested-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08mm: memcontrol: rewrite charge APIJohannes Weiner
These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08vm_is_stack: use for_each_thread() rather then buggy while_each_thread()Oleg Nesterov
Aleksei hit the soft lockup during reading /proc/PID/smaps. David investigated the problem and suggested the right fix. while_each_thread() is racy and should die, this patch updates vm_is_stack(). Signed-off-by: Oleg Nesterov <oleg@redhat.com> Reported-by: Aleksei Besogonov <alex.besogonov@gmail.com> Tested-by: Aleksei Besogonov <alex.besogonov@gmail.com> Suggested-by: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08Revert "slab: remove BAD_ALIEN_MAGIC"Joonsoo Kim
This reverts commit a640616822b2 ("slab: remove BAD_ALIEN_MAGIC"). commit a640616822b2 ("slab: remove BAD_ALIEN_MAGIC") assumes that the system with !CONFIG_NUMA has only one memory node. But, it turns out to be false by the report from Geert. His system, m68k, has many memory nodes and is configured in !CONFIG_NUMA. So it couldn't boot with above change. Here goes his failure report. With latest mainline, I'm getting a crash during bootup on m68k/ARAnyM: enable_cpucache failed for radix_tree_node, error 12. kernel BUG at /scratch/geert/linux/linux-m68k/mm/slab.c:1522! *** TRAP #7 *** FORMAT=0 Current process id is 0 BAD KERNEL TRAP: 00000000 Modules linked in: PC: [<0039c92c>] kmem_cache_init_late+0x70/0x8c SR: 2200 SP: 00345f90 a2: 0034c2e8 d0: 0000003d d1: 00000000 d2: 00000000 d3: 003ac942 d4: 00000000 d5: 00000000 a0: 0034f686 a1: 0034f682 Process swapper (pid: 0, task=0034c2e8) Frame format=0 Stack from 00345fc4: 002f69ef 002ff7e5 000005f2 000360fa 0017d806 003921d4 00000000 00000000 00000000 00000000 00000000 00000000 003ac942 00000000 003912d6 Call Trace: [<000360fa>] parse_args+0x0/0x2ca [<0017d806>] strlen+0x0/0x1a [<003921d4>] start_kernel+0x23c/0x428 [<003912d6>] _sinittext+0x2d6/0x95e Code: f7e5 4879 002f 69ef 61ff ffca 462a 4e47 <4879> 0035 4b1c 61ff fff0 0cc4 7005 23c0 0037 fd20 588f 265f 285f 4e75 48e7 301c Disabling lock debugging due to kernel taint Kernel panic - not syncing: Attempted to kill the idle task! Although there is a alternative way to fix this issue such as disabling use of alien cache on !CONFIG_NUMA, but, reverting issued commit is better to me in this time. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reported-by: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07switch iov_iter_get_pages() to passing maximal number of pagesAl Viro
... instead of maximal size. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-08-07shmem: support RENAME_EXCHANGEMiklos Szeredi
This is really simple in tmpfs since the VFS already takes care of shuffling the dentries. Just adjust nlink on parent directories and touch c & mtimes. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-08-07shmem: support RENAME_NOREPLACEMiklos Szeredi
Implement ->rename2 instead of ->rename. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-08-06mm/zpool: update zswap to use zpoolDan Streetman
Change zswap to use the zpool api instead of directly using zbud. Add a boot-time param to allow selecting which zpool implementation to use, with zbud as the default. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Tested-by: Seth Jennings <sjennings@variantweb.net> Cc: Weijie Yang <weijie.yang@samsung.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm/zpool: zbud/zsmalloc implement zpoolDan Streetman
Update zbud and zsmalloc to implement the zpool api. [fengguang.wu@intel.com: make functions static] Signed-off-by: Dan Streetman <ddstreet@ieee.org> Tested-by: Seth Jennings <sjennings@variantweb.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm/zpool: implement common zpool api to zbud/zsmallocDan Streetman
Add zpool api. zpool provides an interface for memory storage, typically of compressed memory. Users can select what backend to use; currently the only implementations are zbud, a low density implementation with up to two compressed pages per storage page, and zsmalloc, a higher density implementation with multiple compressed pages per storage page. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Tested-by: Seth Jennings <sjennings@variantweb.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Weijie Yang <weijie.yang@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm/zbud: change zbud_alloc size type to size_tDan Streetman
Change the type of the zbud_alloc() size param from unsigned int to size_t. Technically, this should not make any difference, as the zbud implementation already restricts the size to well within either type's limits; but as zsmalloc (and kmalloc) use size_t, and zpool will use size_t, this brings the size parameter type in line with zsmalloc/zpool. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Acked-by: Seth Jennings <sjennings@variantweb.net> Tested-by: Seth Jennings <sjennings@variantweb.net> Cc: Weijie Yang <weijie.yang@samsung.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm/highmem: make kmap cache coloring awareMax Filippov
User-visible effect: Architectures that choose this method of maintaining cache coherency (MIPS and xtensa currently) are able to use high memory on cores with aliasing data cache. Without this fix such architectures can not use high memory (in case of xtensa it means that at most 128 MBytes of physical memory is available). The problem: VIPT cache with way size larger than MMU page size may suffer from aliasing problem: a single physical address accessed via different virtual addresses may end up in multiple locations in the cache. Virtual mappings of a physical address that always get cached in different cache locations are said to have different colors. L1 caching hardware usually doesn't handle this situation leaving it up to software. Software must avoid this situation as it leads to data corruption. What can be done: One way to handle this is to flush and invalidate data cache every time page mapping changes color. The other way is to always map physical page at a virtual address with the same color. Low memory pages already have this property. Giving architecture a way to control color of high memory page mapping allows reusing of existing low memory cache alias handling code. How this is done with this patch: Provide hooks that allow architectures with aliasing cache to align mapping address of high pages according to their color. Such architectures may enforce similar coloring of low- and high-memory page mappings and reuse existing cache management functions to support highmem. This code is based on the implementation of similar feature for MIPS by Leonid Yegoshin. Signed-off-by: Max Filippov <jcmvbkbc@gmail.com> Cc: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com> Cc: Chris Zankel <chris@zankel.net> Cc: Marc Gauthier <marc@cadence.com> Cc: David Rientjes <rientjes@google.com> Cc: Steven Hill <Steven.Hill@imgtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mmu_notifier: add call_srcu and sync function for listener to delay call and ↵Peter Zijlstra
sync When kernel device drivers or subsystems want to bind their lifespan to t= he lifespan of the mm_struct, they usually use one of the following methods: 1. Manually calling a function in the interested kernel module. The funct= ion call needs to be placed in mmput. This method was rejected by several ker= nel maintainers. 2. Registering to the mmu notifier release mechanism. The problem with the latter approach is that the mmu_notifier_release cal= lback is called from__mmu_notifier_release (called from exit_mmap). That functi= on iterates over the list of mmu notifiers and don't expect the release call= back function to remove itself from the list. Therefore, the callback function= in the kernel module can't release the mmu_notifier_object, which is actuall= y the kernel module's object itself. As a result, the destruction of the kernel module's object must to be done in a delayed fashion. This patch adds support for this delayed callback, by adding a new mmu_notifier_call_srcu function that receives a function ptr and calls th= at function with call_srcu. In that function, the kernel module releases its object. To use mmu_notifier_call_srcu, the calling module needs to call b= efore that a new function called mmu_notifier_unregister_no_release that as its= name implies, unregisters a notifier without calling its notifier release call= back. This patch also adds a function that will call barrier_srcu so those kern= el modules can sync with mmu_notifier. Signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Oded Gabbay <oded.gabbay@amd.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm: memcontrol: clean up reclaim size variable use in try_charge()Johannes Weiner
Charge reclaim and OOM currently use the charge batch variable, but batching is already disabled at that point. To simplify the charge logic, the batch variable is reset to the original request size when reclaim is entered, so it's functionally equal, but it's misleading. Switch reclaim/OOM to nr_pages, which is the original request size. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm: change confusing #ifdef use in __access_remote_vmRik van Riel
This patch changes confusing #ifdef use in __access_remote_vm into merely ugly #ifdef use. Addresses bug https://bugzilla.kernel.org/show_bug.cgi?id=81651 Signed-off-by: Rik van Riel <riel@redhat.com> Reported-by: David Binderman <dcb314@hotmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm: mark fault_around_bytes __read_mostlyKirill A. Shutemov
fault_around_bytes can only be changed via debugfs. Let's mark it read-mostly. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: David Rientjes <rientjes@google.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm: close race between do_fault_around() and fault_around_bytes_set()Kirill A. Shutemov
Things can go wrong if fault_around_bytes will be changed under do_fault_around(): between fault_around_mask() and fault_around_pages(). Let's read fault_around_bytes only once during do_fault_around() and calculate mask based on the reading. Note: fault_around_bytes can only be updated via debug interface. Also I've tried but was not able to trigger a bad behaviour without the patch. So I would not consider this patch as urgent. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06memcg, vmscan: Fix forced scan of anonymous pagesJerome Marchand
When memory cgoups are enabled, the code that decides to force to scan anonymous pages in get_scan_count() compares global values (free, high_watermark) to a value that is restricted to a memory cgroup (file). It make the code over-eager to force anon scan. For instance, it will force anon scan when scanning a memcg that is mainly populated by anonymous page, even when there is plenty of file pages to get rid of in others memcgs, even when swappiness == 0. It breaks user's expectation about swappiness and hurts performance. This patch makes sure that forced anon scan only happens when there not enough file pages for the all zone, not just in one random memcg. [hannes@cmpxchg.org: cleanups] Signed-off-by: Jerome Marchand <jmarchan@redhat.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm, vmscan: fix an outdated comment still mentioning get_scan_ratioJerome Marchand
Quite a while ago, get_scan_ratio() has been renamed get_scan_count(), however a comment in shrink_active_list() still mention it. This patch fixes the outdated comment. Signed-off-by: Jerome Marchand <jmarchan@redhat.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm, oom: remove unnecessary exit_state checkDavid Rientjes
The oom killer scans each process and determines whether it is eligible for oom kill or whether the oom killer should abort because of concurrent memory freeing. It will abort when an eligible process is found to have TIF_MEMDIE set, meaning it has already been oom killed and we're waiting for it to exit. Processes with task->mm == NULL should not be considered because they are either kthreads or have already detached their memory and killing them would not lead to memory freeing. That memory is only freed after exit_mm() has returned, however, and not when task->mm is first set to NULL. Clear TIF_MEMDIE after exit_mm()'s mmput() so that an oom killed process is no longer considered for oom kill, but only until exit_mm() has returned. This was fragile in the past because it relied on exit_notify() to be reached before no longer considering TIF_MEMDIE processes. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>