Age | Commit message (Collapse) | Author |
|
commit 6ade20327dbb808882888ed8ccded71e93067cf9 upstream.
find_vmap_area() can return a NULL pointer and we're going to
dereference it without checking it first. Use the existing
find_vm_area() function which does exactly what we want and checks for
the NULL pointer.
Link: http://lkml.kernel.org/r/20181228171009.22269-1-liviu@dudau.co.uk
Fixes: f3c01d2f3ade ("mm: vmalloc: avoid racy handling of debugobjects in vunmap")
Signed-off-by: Liviu Dudau <liviu@dudau.co.uk>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit d6d8c8a48291b929b2e039f220f0b62958cccfea ]
When mainline introduced commit a96dfddbcc04 ("base/memory, hotplug: fix
a kernel oops in show_valid_zones()"), it obtained the valid start and
end pfn from the given pfn range. The valid start pfn can fix the
actual issue, but it introduced another issue. The valid end pfn will
may exceed the given end_pfn.
Although the incorrect overflow will not result in actual problem at
present, but I think it need to be fixed.
[toshi.kani@hpe.com: remove assumption that end_pfn is aligned by MAX_ORDER_NR_PAGES]
Fixes: a96dfddbcc04 ("base/memory, hotplug: fix a kernel oops in show_valid_zones()")
Link: http://lkml.kernel.org/r/1486467299-22648-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit aa9f7d5172fac9bf1f09e678c35e287a40a7b7dd upstream.
Using an empty (malformed) nodelist that is not caught during mount option
parsing leads to a stack-out-of-bounds access.
The option string that was used was: "mpol=prefer:,". However,
MPOL_PREFERRED requires a single node number, which is not being provided
here.
Add a check that 'nodes' is not empty after parsing for MPOL_PREFERRED's
nodeid.
Fixes: 095f1fc4ebf3 ("mempolicy: rework shmem mpol parsing and display")
Reported-by: Entropy Moe <3ntr0py1337@gmail.com>
Reported-by: syzbot+b055b1a6b2b958707a21@syzkaller.appspotmail.com
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: syzbot+b055b1a6b2b958707a21@syzkaller.appspotmail.com
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Link: http://lkml.kernel.org/r/89526377-7eb6-b662-e1d8-4430928abde9@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 763802b53a427ed3cbd419dbba255c414fdd9e7c upstream.
Commit 3f8fd02b1bf1 ("mm/vmalloc: Sync unmappings in
__purge_vmap_area_lazy()") introduced a call to vmalloc_sync_all() in
the vunmap() code-path. While this change was necessary to maintain
correctness on x86-32-pae kernels, it also adds additional cycles for
architectures that don't need it.
Specifically on x86-64 with CONFIG_VMAP_STACK=y some people reported
severe performance regressions in micro-benchmarks because it now also
calls the x86-64 implementation of vmalloc_sync_all() on vunmap(). But
the vmalloc_sync_all() implementation on x86-64 is only needed for newly
created mappings.
To avoid the unnecessary work on x86-64 and to gain the performance
back, split up vmalloc_sync_all() into two functions:
* vmalloc_sync_mappings(), and
* vmalloc_sync_unmappings()
Most call-sites to vmalloc_sync_all() only care about new mappings being
synchronized. The only exception is the new call-site added in the
above mentioned commit.
Shile Zhang directed us to a report of an 80% regression in reaim
throughput.
Fixes: 3f8fd02b1bf1 ("mm/vmalloc: Sync unmappings in __purge_vmap_area_lazy()")
Reported-by: kernel test robot <oliver.sang@intel.com>
Reported-by: Shile Zhang <shile.zhang@linux.alibaba.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Borislav Petkov <bp@suse.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [GHES]
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20191009124418.8286-1-joro@8bytes.org
Link: https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/4D3JPPHBNOSPFK2KEPC6KGKS6J25AIDB/
Link: http://lkml.kernel.org/r/20191113095530.228959-1-shile.zhang@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0715e6c516f106ed553828a671d30ad9a3431536 upstream.
Sachin reports [1] a crash in SLUB __slab_alloc():
BUG: Kernel NULL pointer dereference on read at 0x000073b0
Faulting instruction address: 0xc0000000003d55f4
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
Modules linked in:
CPU: 19 PID: 1 Comm: systemd Not tainted 5.6.0-rc2-next-20200218-autotest #1
NIP: c0000000003d55f4 LR: c0000000003d5b94 CTR: 0000000000000000
REGS: c0000008b37836d0 TRAP: 0300 Not tainted (5.6.0-rc2-next-20200218-autotest)
MSR: 8000000000009033 <SF,EE,ME,IR,DR,RI,LE> CR: 24004844 XER: 00000000
CFAR: c00000000000dec4 DAR: 00000000000073b0 DSISR: 40000000 IRQMASK: 1
GPR00: c0000000003d5b94 c0000008b3783960 c00000000155d400 c0000008b301f500
GPR04: 0000000000000dc0 0000000000000002 c0000000003443d8 c0000008bb398620
GPR08: 00000008ba2f0000 0000000000000001 0000000000000000 0000000000000000
GPR12: 0000000024004844 c00000001ec52a00 0000000000000000 0000000000000000
GPR16: c0000008a1b20048 c000000001595898 c000000001750c18 0000000000000002
GPR20: c000000001750c28 c000000001624470 0000000fffffffe0 5deadbeef0000122
GPR24: 0000000000000001 0000000000000dc0 0000000000000002 c0000000003443d8
GPR28: c0000008b301f500 c0000008bb398620 0000000000000000 c00c000002287180
NIP ___slab_alloc+0x1f4/0x760
LR __slab_alloc+0x34/0x60
Call Trace:
___slab_alloc+0x334/0x760 (unreliable)
__slab_alloc+0x34/0x60
__kmalloc_node+0x110/0x490
kvmalloc_node+0x58/0x110
mem_cgroup_css_online+0x108/0x270
online_css+0x48/0xd0
cgroup_apply_control_enable+0x2ec/0x4d0
cgroup_mkdir+0x228/0x5f0
kernfs_iop_mkdir+0x90/0xf0
vfs_mkdir+0x110/0x230
do_mkdirat+0xb0/0x1a0
system_call+0x5c/0x68
This is a PowerPC platform with following NUMA topology:
available: 2 nodes (0-1)
node 0 cpus:
node 0 size: 0 MB
node 0 free: 0 MB
node 1 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
node 1 size: 35247 MB
node 1 free: 30907 MB
node distances:
node 0 1
0: 10 40
1: 40 10
possible numa nodes: 0-31
This only happens with a mmotm patch "mm/memcontrol.c: allocate
shrinker_map on appropriate NUMA node" [2] which effectively calls
kmalloc_node for each possible node. SLUB however only allocates
kmem_cache_node on online N_NORMAL_MEMORY nodes, and relies on
node_to_mem_node to return such valid node for other nodes since commit
a561ce00b09e ("slub: fall back to node_to_mem_node() node if allocating
on memoryless node"). This is however not true in this configuration
where the _node_numa_mem_ array is not initialized for nodes 0 and 2-31,
thus it contains zeroes and get_partial() ends up accessing
non-allocated kmem_cache_node.
A related issue was reported by Bharata (originally by Ramachandran) [3]
where a similar PowerPC configuration, but with mainline kernel without
patch [2] ends up allocating large amounts of pages by kmalloc-1k
kmalloc-512. This seems to have the same underlying issue with
node_to_mem_node() not behaving as expected, and might probably also
lead to an infinite loop with CONFIG_SLUB_CPU_PARTIAL [4].
This patch should fix both issues by not relying on node_to_mem_node()
anymore and instead simply falling back to NUMA_NO_NODE, when
kmalloc_node(node) is attempted for a node that's not online, or has no
usable memory. The "usable memory" condition is also changed from
node_present_pages() to N_NORMAL_MEMORY node state, as that is exactly
the condition that SLUB uses to allocate kmem_cache_node structures.
The check in get_partial() is removed completely, as the checks in
___slab_alloc() are now sufficient to prevent get_partial() being
reached with an invalid node.
[1] https://lore.kernel.org/linux-next/3381CD91-AB3D-4773-BA04-E7A072A63968@linux.vnet.ibm.com/
[2] https://lore.kernel.org/linux-mm/fff0e636-4c36-ed10-281c-8cdb0687c839@virtuozzo.com/
[3] https://lore.kernel.org/linux-mm/20200317092624.GB22538@in.ibm.com/
[4] https://lore.kernel.org/linux-mm/088b5996-faae-8a56-ef9c-5b567125ae54@suse.cz/
Fixes: a561ce00b09e ("slub: fall back to node_to_mem_node() node if allocating on memoryless node")
Reported-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Reported-by: PUVICHAKRAVARTHY RAMACHANDRAN <puvichakravarthy@in.ibm.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Tested-by: Bharata B Rao <bharata@linux.ibm.com>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christopher Lameter <cl@linux.com>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200320115533.9604-1-vbabka@suse.cz
Debugged-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5076190daded2197f62fe92cf69674488be44175 upstream.
This is just a cleanup addition to Jann's fix to properly update the
transaction ID for the slub slowpath in commit fd4d9c7d0c71 ("mm: slub:
add missing TID bump..").
The transaction ID is what protects us against any concurrent accesses,
but we should really also make sure to make the 'freelist' comparison
itself always use the same freelist value that we then used as the new
next free pointer.
Jann points out that if we do all of this carefully, we could skip the
transaction ID update for all the paths that only remove entries from
the lists, and only update the TID when adding entries (to avoid the ABA
issue with cmpxchg and list handling re-adding a previously seen value).
But this patch just does the "make sure to cmpxchg the same value we
used" rather than then try to be clever.
Acked-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7d36665a5886c27ca4c4d0afd3ecc50b400f3587 upstream.
An eventfd monitors multiple memory thresholds of the cgroup, closes them,
the kernel deletes all events related to this eventfd. Before all events
are deleted, another eventfd monitors the memory threshold of this cgroup,
leading to a crash:
BUG: kernel NULL pointer dereference, address: 0000000000000004
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 800000033058e067 P4D 800000033058e067 PUD 3355ce067 PMD 0
Oops: 0002 [#1] SMP PTI
CPU: 2 PID: 14012 Comm: kworker/2:6 Kdump: loaded Not tainted 5.6.0-rc4 #3
Hardware name: LENOVO 20AWS01K00/20AWS01K00, BIOS GLET70WW (2.24 ) 05/21/2014
Workqueue: events memcg_event_remove
RIP: 0010:__mem_cgroup_usage_unregister_event+0xb3/0x190
RSP: 0018:ffffb47e01c4fe18 EFLAGS: 00010202
RAX: 0000000000000001 RBX: ffff8bb223a8a000 RCX: 0000000000000001
RDX: 0000000000000001 RSI: ffff8bb22fb83540 RDI: 0000000000000001
RBP: ffffb47e01c4fe48 R08: 0000000000000000 R09: 0000000000000010
R10: 000000000000000c R11: 071c71c71c71c71c R12: ffff8bb226aba880
R13: ffff8bb223a8a480 R14: 0000000000000000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff8bb242680000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000004 CR3: 000000032c29c003 CR4: 00000000001606e0
Call Trace:
memcg_event_remove+0x32/0x90
process_one_work+0x172/0x380
worker_thread+0x49/0x3f0
kthread+0xf8/0x130
ret_from_fork+0x35/0x40
CR2: 0000000000000004
We can reproduce this problem in the following ways:
1. We create a new cgroup subdirectory and a new eventfd, and then we
monitor multiple memory thresholds of the cgroup through this eventfd.
2. closing this eventfd, and __mem_cgroup_usage_unregister_event ()
will be called multiple times to delete all events related to this
eventfd.
The first time __mem_cgroup_usage_unregister_event() is called, the
kernel will clear all items related to this eventfd in thresholds->
primary.
Since there is currently only one eventfd, thresholds-> primary becomes
empty, so the kernel will set thresholds-> primary and hresholds-> spare
to NULL. If at this time, the user creates a new eventfd and monitor
the memory threshold of this cgroup, kernel will re-initialize
thresholds-> primary.
Then when __mem_cgroup_usage_unregister_event () is called for the
second time, because thresholds-> primary is not empty, the system will
access thresholds-> spare, but thresholds-> spare is NULL, which will
trigger a crash.
In general, the longer it takes to delete all events related to this
eventfd, the easier it is to trigger this problem.
The solution is to check whether the thresholds associated with the
eventfd has been cleared when deleting the event. If so, we do nothing.
[akpm@linux-foundation.org: fix comment, per Kirill]
Fixes: 907860ed381a ("cgroups: make cftype.unregister_event() void-returning")
Signed-off-by: Chunguang Xu <brookxu@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/077a6f67-aefa-4591-efec-f2f3af2b0b02@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fd4d9c7d0c71866ec0c2825189ebd2ce35bd95b8 upstream.
When kmem_cache_alloc_bulk() attempts to allocate N objects from a percpu
freelist of length M, and N > M > 0, it will first remove the M elements
from the percpu freelist, then call ___slab_alloc() to allocate the next
element and repopulate the percpu freelist. ___slab_alloc() can re-enable
IRQs via allocate_slab(), so the TID must be bumped before ___slab_alloc()
to properly commit the freelist head change.
Fix it by unconditionally bumping c->tid when entering the slowpath.
Cc: stable@vger.kernel.org
Fixes: ebe909e0fdb3 ("slub: improve bulk alloc strategy")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8fde12ca79aff9b5ba951fce1a2641901b8d8e64 upstream.
If the page refcount wraps around past zero, it will be freed while
there are still four billion references to it. One of the possible
avenues for an attacker to try to make this happen is by doing direct IO
on a page multiple times. This patch makes get_user_pages() refuse to
take a new page reference if there are already more than two billion
references to the page.
Reported-by: Jann Horn <jannh@google.com>
Acked-by: Matthew Wilcox <willy@infradead.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[ 4.4.y backport notes:
Ajay: - Added local variable 'err' with-in follow_hugetlb_page()
from 2be7cfed995e, to resolve compilation error
- Added page_ref_count()
- Added missing refcount overflow checks on x86 and s390
(Vlastimil, thanks for this change)
Srivatsa: - Replaced call to get_page_foll() with try_get_page_foll() ]
Signed-off-by: Srivatsa S. Bhat (VMware) <srivatsa@csail.mit.edu>
Signed-off-by: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d63206ee32b6e64b0e12d46e5d6004afd9913713 upstream.
When speculatively taking references to a hugepage using
page_cache_add_speculative() in gup_huge_pmd(), it is assumed that the
page returned by pmd_page() is the head page. Although normally true,
this assumption doesn't hold when the hugepage comprises of successive
page table entries such as when using contiguous bit on arm64 at PTE or
PMD levels.
This can be addressed by ensuring that the page passed to
page_cache_add_speculative() is the real head or by de-referencing the
head page within the function.
We take the first approach to keep the usage pattern aligned with
page_cache_get_speculative() where users already pass the appropriate
page, i.e., the de-referenced head.
Apply the same logic to fix gup_huge_[pud|pgd]() as well.
[punit.agrawal@arm.com: fix arm64 ltp failure]
Link: http://lkml.kernel.org/r/20170619170145.25577-5-punit.agrawal@arm.com
Link: http://lkml.kernel.org/r/20170522133604.11392-3-punit.agrawal@arm.com
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a3e328556d41bb61c55f9dfcc62d6a826ea97b85 upstream.
When operating on hugepages with DEBUG_VM enabled, the GUP code checks
the compound head for each tail page prior to calling
page_cache_add_speculative. This is broken, because on the fast-GUP
path (where we don't hold any page table locks) we can be racing with a
concurrent invocation of split_huge_page_to_list.
split_huge_page_to_list deals with this race by using page_ref_freeze to
freeze the page and force concurrent GUPs to fail whilst the component
pages are modified. This modification includes clearing the
compound_head field for the tail pages, so checking this prior to a
successful call to page_cache_add_speculative can lead to false
positives: In fact, page_cache_add_speculative *already* has this check
once the page refcount has been successfully updated, so we can simply
remove the broken calls to VM_BUG_ON_PAGE.
Link: http://lkml.kernel.org/r/20170522133604.11392-2-punit.agrawal@arm.com
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Srivatsa S. Bhat (VMware) <srivatsa@csail.mit.edu>
Signed-off-by: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 88b1a17dfc3ed7728316478fae0f5ad508f50397 upsteam.
This is the same as the traditional 'get_page()' function, but instead
of unconditionally incrementing the reference count of the page, it only
does so if the count was "safe". It returns whether the reference count
was incremented (and is marked __must_check, since the caller obviously
has to be aware of it).
Also like 'get_page()', you can't use this function unless you already
had a reference to the page. The intent is that you can use this
exactly like get_page(), but in situations where you want to limit the
maximum reference count.
The code currently does an unconditional WARN_ON_ONCE() if we ever hit
the reference count issues (either zero or negative), as a notification
that the conditional non-increment actually happened.
NOTE! The count access for the "safety" check is inherently racy, but
that doesn't matter since the buffer we use is basically half the range
of the reference count (ie we look at the sign of the count).
Acked-by: Matthew Wilcox <willy@infradead.org>
Cc: Jann Horn <jannh@google.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[ 4.4.y backport notes:
Srivatsa:
- Adapted try_get_page() to match the get_page()
implementation in 4.4.y, except for the refcount check.
- Added try_get_page_foll() which will be needed
in a subsequent patch. ]
Signed-off-by: Srivatsa S. Bhat (VMware) <srivatsa@csail.mit.edu>
Signed-off-by: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f958d7b528b1b40c44cfda5eabe2d82760d868c3 upsteam.
We have a VM_BUG_ON() to check that the page reference count doesn't
underflow (or get close to overflow) by checking the sign of the count.
That's all fine, but we actually want to allow people to use a "get page
ref unless it's already very high" helper function, and we want that one
to use the sign of the page ref (without triggering this VM_BUG_ON).
Change the VM_BUG_ON to only check for small underflows (or _very_ close
to overflowing), and ignore overflows which have strayed into negative
territory.
Acked-by: Matthew Wilcox <willy@infradead.org>
Cc: Jann Horn <jannh@google.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[ 4.4.y backport notes:
Ajay: Open-coded atomic refcount access due to missing
page_ref_count() helper in 4.4.y
Srivatsa: Added overflow check to get_page_foll() and related code. ]
Signed-off-by: Srivatsa S. Bhat (VMware) <srivatsa@csail.mit.edu>
Signed-off-by: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c7a91bc7c2e17e0a9c8b9745a2cb118891218fd1 upstream.
What we are trying to do is change the '=' character to a NUL terminator
and then at the end of the function we restore it back to an '='. The
problem is there are two error paths where we jump to the end of the
function before we have replaced the '=' with NUL.
We end up putting the '=' in the wrong place (possibly one element
before the start of the buffer).
Link: http://lkml.kernel.org/r/20200115055426.vdjwvry44nfug7yy@kili.mountain
Reported-by: syzbot+e64a13c5369a194d67df@syzkaller.appspotmail.com
Fixes: 095f1fc4ebf3 ("mempolicy: rework shmem mpol parsing and display")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Dmitry Vyukov <dvyukov@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6d9e8c651dd979aa666bee15f086745f3ea9c4b3 upstream.
Patch series "use div64_ul() instead of div_u64() if the divisor is
unsigned long".
We were first inspired by commit b0ab99e7736a ("sched: Fix possible divide
by zero in avg_atom () calculation"), then refer to the recently analyzed
mm code, we found this suspicious place.
201 if (min) {
202 min *= this_bw;
203 do_div(min, tot_bw);
204 }
And we also disassembled and confirmed it:
/usr/src/debug/kernel-4.9.168-016.ali3000/linux-4.9.168-016.ali3000.alios7.x86_64/mm/page-writeback.c: 201
0xffffffff811c37da <__wb_calc_thresh+234>: xor %r10d,%r10d
0xffffffff811c37dd <__wb_calc_thresh+237>: test %rax,%rax
0xffffffff811c37e0 <__wb_calc_thresh+240>: je 0xffffffff811c3800 <__wb_calc_thresh+272>
/usr/src/debug/kernel-4.9.168-016.ali3000/linux-4.9.168-016.ali3000.alios7.x86_64/mm/page-writeback.c: 202
0xffffffff811c37e2 <__wb_calc_thresh+242>: imul %r8,%rax
/usr/src/debug/kernel-4.9.168-016.ali3000/linux-4.9.168-016.ali3000.alios7.x86_64/mm/page-writeback.c: 203
0xffffffff811c37e6 <__wb_calc_thresh+246>: mov %r9d,%r10d ---> truncates it to 32 bits here
0xffffffff811c37e9 <__wb_calc_thresh+249>: xor %edx,%edx
0xffffffff811c37eb <__wb_calc_thresh+251>: div %r10
0xffffffff811c37ee <__wb_calc_thresh+254>: imul %rbx,%rax
0xffffffff811c37f2 <__wb_calc_thresh+258>: shr $0x2,%rax
0xffffffff811c37f6 <__wb_calc_thresh+262>: mul %rcx
0xffffffff811c37f9 <__wb_calc_thresh+265>: shr $0x2,%rdx
0xffffffff811c37fd <__wb_calc_thresh+269>: mov %rdx,%r10
This series uses div64_ul() instead of div_u64() if the divisor is
unsigned long, to avoid truncation to 32-bit on 64-bit platforms.
This patch (of 3):
The variables 'min' and 'max' are unsigned long and do_div truncates
them to 32 bits, which means it can test non-zero and be truncated to
zero for division. Fix this issue by using div64_ul() instead.
Link: http://lkml.kernel.org/r/20200102081442.8273-2-wenyang@linux.alibaba.com
Fixes: 693108a8a667 ("writeback: make bdi->min/max_ratio handling cgroup writeback aware")
Signed-off-by: Wen Yang <wenyang@linux.alibaba.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d02bd27bd33dd7e8d22594cd568b81be0cb584cd upstream.
Add a new field, VIRTIO_BALLOON_S_AVAIL, to virtio_balloon memory
statistics protocol, corresponding to 'Available' in /proc/meminfo.
It indicates to the hypervisor how big the balloon can be inflated
without pushing the guest system to swap. This metric would be very
useful in VM orchestration software to improve memory management of
different VMs under overcommit.
This patch (of 2):
Factor out calculation of the available memory counter into a separate
exportable function, in order to be able to use it in other parts of the
kernel.
In particular, it appears a relevant metric to report to the hypervisor
via virtio-balloon statistics interface (in a followup patch).
Signed-off-by: Igor Redko <redkoi@virtuozzo.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 4.4 as dependency of commit a1078e821b60
"xen: let alloc_xenballooned_pages() fail if not enough memory free"]
Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit aa71ecd8d86500da6081a72da6b0b524007e0627 upstream.
In 64bit system. sb->s_maxbytes of shmem filesystem is MAX_LFS_FILESIZE,
which equal LLONG_MAX.
If offset > LLONG_MAX - PAGE_SIZE, offset + len < LLONG_MAX in
shmem_fallocate, which will pass the checking in vfs_fallocate.
/* Check for wrap through zero too */
if (((offset + len) > inode->i_sb->s_maxbytes) || ((offset + len) < 0))
return -EFBIG;
loff_t unmap_start = round_up(offset, PAGE_SIZE) in shmem_fallocate
causes a overflow.
Syzkaller reports a overflow problem in mm/shmem:
UBSAN: Undefined behaviour in mm/shmem.c:2014:10
signed integer overflow: '9223372036854775807 + 1' cannot be represented in type 'long long int'
CPU: 0 PID:17076 Comm: syz-executor0 Not tainted 4.1.46+ #1
Hardware name: linux, dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x2c8 arch/arm64/kernel/traps.c:100
show_stack+0x20/0x30 arch/arm64/kernel/traps.c:238
__dump_stack lib/dump_stack.c:15 [inline]
ubsan_epilogue+0x18/0x70 lib/ubsan.c:164
handle_overflow+0x158/0x1b0 lib/ubsan.c:195
shmem_fallocate+0x6d0/0x820 mm/shmem.c:2104
vfs_fallocate+0x238/0x428 fs/open.c:312
SYSC_fallocate fs/open.c:335 [inline]
SyS_fallocate+0x54/0xc8 fs/open.c:239
The highest bit of unmap_start will be appended with sign bit 1
(overflow) when calculate shmem_falloc.start:
shmem_falloc.start = unmap_start >> PAGE_SHIFT.
Fix it by casting the type of unmap_start to u64, when right shifted.
This bug is found in LTS Linux 4.1. It also seems to exist in mainline.
Link: http://lkml.kernel.org/r/1573867464-5107-1-git-send-email-chenjun102@huawei.com
Signed-off-by: Chen Jun <chenjun102@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 64081362e8ff4587b4554087f3cfc73d3e0a4cd7 ]
We've recently seen a workload on XFS filesystems with a repeatable
deadlock between background writeback and a multi-process application
doing concurrent writes and fsyncs to a small range of a file.
range_cyclic
writeback Process 1 Process 2
xfs_vm_writepages
write_cache_pages
writeback_index = 2
cycled = 0
....
find page 2 dirty
lock Page 2
->writepage
page 2 writeback
page 2 clean
page 2 added to bio
no more pages
write()
locks page 1
dirties page 1
locks page 2
dirties page 1
fsync()
....
xfs_vm_writepages
write_cache_pages
start index 0
find page 1 towrite
lock Page 1
->writepage
page 1 writeback
page 1 clean
page 1 added to bio
find page 2 towrite
lock Page 2
page 2 is writeback
<blocks>
write()
locks page 1
dirties page 1
fsync()
....
xfs_vm_writepages
write_cache_pages
start index 0
!done && !cycled
sets index to 0, restarts lookup
find page 1 dirty
find page 1 towrite
lock Page 1
page 1 is writeback
<blocks>
lock Page 1
<blocks>
DEADLOCK because:
- process 1 needs page 2 writeback to complete to make
enough progress to issue IO pending for page 1
- writeback needs page 1 writeback to complete so process 2
can progress and unlock the page it is blocked on, then it
can issue the IO pending for page 2
- process 2 can't make progress until process 1 issues IO
for page 1
The underlying cause of the problem here is that range_cyclic writeback is
processing pages in descending index order as we hold higher index pages
in a structure controlled from above write_cache_pages(). The
write_cache_pages() caller needs to be able to submit these pages for IO
before write_cache_pages restarts writeback at mapping index 0 to avoid
wcp inverting the page lock/writeback wait order.
generic_writepages() is not susceptible to this bug as it has no private
context held across write_cache_pages() - filesystems using this
infrastructure always submit pages in ->writepage immediately and so there
is no problem with range_cyclic going back to mapping index 0.
However:
mpage_writepages() has a private bio context,
exofs_writepages() has page_collect
fuse_writepages() has fuse_fill_wb_data
nfs_writepages() has nfs_pageio_descriptor
xfs_vm_writepages() has xfs_writepage_ctx
All of these ->writepages implementations can hold pages under writeback
in their private structures until write_cache_pages() returns, and hence
they are all susceptible to this deadlock.
Also worth noting is that ext4 has it's own bastardised version of
write_cache_pages() and so it /may/ have an equivalent deadlock. I looked
at the code long enough to understand that it has a similar retry loop for
range_cyclic writeback reaching the end of the file and then promptly ran
away before my eyes bled too much. I'll leave it for the ext4 developers
to determine if their code is actually has this deadlock and how to fix it
if it has.
There's a few ways I can see avoid this deadlock. There's probably more,
but these are the first I've though of:
1. get rid of range_cyclic altogether
2. range_cyclic always stops at EOF, and we start again from
writeback index 0 on the next call into write_cache_pages()
2a. wcp also returns EAGAIN to ->writepages implementations to
indicate range cyclic has hit EOF. writepages implementations can
then flush the current context and call wpc again to continue. i.e.
lift the retry into the ->writepages implementation
3. range_cyclic uses trylock_page() rather than lock_page(), and it
skips pages it can't lock without blocking. It will already do this
for pages under writeback, so this seems like a no-brainer
3a. all non-WB_SYNC_ALL writeback uses trylock_page() to avoid
blocking as per pages under writeback.
I don't think #1 is an option - range_cyclic prevents frequently
dirtied lower file offset from starving background writeback of
rarely touched higher file offsets.
#2 is simple, and I don't think it will have any impact on
performance as going back to the start of the file implies an
immediate seek. We'll have exactly the same number of seeks if we
switch writeback to another inode, and then come back to this one
later and restart from index 0.
#2a is pretty much "status quo without the deadlock". Moving the
retry loop up into the wcp caller means we can issue IO on the
pending pages before calling wcp again, and so avoid locking or
waiting on pages in the wrong order. I'm not convinced we need to do
this given that we get the same thing from #2 on the next writeback
call from the writeback infrastructure.
#3 is really just a band-aid - it doesn't fix the access/wait
inversion problem, just prevents it from becoming a deadlock
situation. I'd prefer we fix the inversion, not sweep it under the
carpet like this.
#3a is really an optimisation that just so happens to include the
band-aid fix of #3.
So it seems that the simplest way to fix this issue is to implement
solution #2
Link: http://lkml.kernel.org/r/20181005054526.21507-1-david@fromorbit.com
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Jan Kara <jack@suse.de>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 9a63236f1ad82d71a98aa80320b6cb618fb32f44 upstream.
It's possible to hit the WARN_ON_ONCE(page_mapped(page)) in
remove_stable_node() when it races with __mmput() and squeezes in
between ksm_exit() and exit_mmap().
WARNING: CPU: 0 PID: 3295 at mm/ksm.c:888 remove_stable_node+0x10c/0x150
Call Trace:
remove_all_stable_nodes+0x12b/0x330
run_store+0x4ef/0x7b0
kernfs_fop_write+0x200/0x420
vfs_write+0x154/0x450
ksys_write+0xf9/0x1d0
do_syscall_64+0x99/0x510
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Remove the warning as there is nothing scary going on.
Link: http://lkml.kernel.org/r/20191119131850.5675-1-aryabinin@virtuozzo.com
Fixes: cbf86cfe04a6 ("ksm: remove old stable nodes more thoroughly")
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The commit eb4058d8daf8 ("memfd: Fix locking when tagging pins")
introduces the following warning messages.
*WARNING: suspicious RCU usage in memfd_wait_for_pins*
It is because we still use radix_tree_deref_slot without read_rcu_lock.
We should use radix_tree_deref_slot_protected instead in the case.
Cc: stable@vger.kernel.org
Fixes: eb4058d8daf8 ("memfd: Fix locking when tagging pins")
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0362f326d86c645b5e96b7dbc3ee515986ed019d upstream.
An exiting task might belong to an offline cgroup. In this case an
attempt to grab a cgroup reference from the task can end up with an
infinite loop in hugetlb_cgroup_charge_cgroup(), because neither the
cgroup will become online, neither the task will be migrated to a live
cgroup.
Fix this by switching over to css_tryget(). As css_tryget_online()
can't guarantee that the cgroup won't go offline, in most cases the
check doesn't make sense. In this particular case users of
hugetlb_cgroup_charge_cgroup() are not affected by this change.
A similar problem is described by commit 18fa84a2db0e ("cgroup: Use
css_tryget() instead of css_tryget_online() in task_get_css()").
Link: http://lkml.kernel.org/r/20191106225131.3543616-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 00d484f354d85845991b40141d40ba9e5eb60faf upstream.
We've encountered a rcu stall in get_mem_cgroup_from_mm():
rcu: INFO: rcu_sched self-detected stall on CPU
rcu: 33-....: (21000 ticks this GP) idle=6c6/1/0x4000000000000002 softirq=35441/35441 fqs=5017
(t=21031 jiffies g=324821 q=95837) NMI backtrace for cpu 33
<...>
RIP: 0010:get_mem_cgroup_from_mm+0x2f/0x90
<...>
__memcg_kmem_charge+0x55/0x140
__alloc_pages_nodemask+0x267/0x320
pipe_write+0x1ad/0x400
new_sync_write+0x127/0x1c0
__kernel_write+0x4f/0xf0
dump_emit+0x91/0xc0
writenote+0xa0/0xc0
elf_core_dump+0x11af/0x1430
do_coredump+0xc65/0xee0
get_signal+0x132/0x7c0
do_signal+0x36/0x640
exit_to_usermode_loop+0x61/0xd0
do_syscall_64+0xd4/0x100
entry_SYSCALL_64_after_hwframe+0x44/0xa9
The problem is caused by an exiting task which is associated with an
offline memcg. We're iterating over and over in the do {} while
(!css_tryget_online()) loop, but obviously the memcg won't become online
and the exiting task won't be migrated to a live memcg.
Let's fix it by switching from css_tryget_online() to css_tryget().
As css_tryget_online() cannot guarantee that the memcg won't go offline,
the check is usually useless, except some rare cases when for example it
determines if something should be presented to a user.
A similar problem is described by commit 18fa84a2db0e ("cgroup: Use
css_tryget() instead of css_tryget_online() in task_get_css()").
Johannes:
: The bug aside, it doesn't matter whether the cgroup is online for the
: callers. It used to matter when offlining needed to evacuate all charges
: from the memcg, and so needed to prevent new ones from showing up, but we
: don't care now.
Link: http://lkml.kernel.org/r/20191106225131.3543616-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Shakeel Butt <shakeeb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c3aab9a0bd91b696a852169479b7db1ece6cbf8c upstream.
Functions like filemap_write_and_wait_range() should do nothing if inode
has no dirty pages or pages currently under writeback. But they anyway
construct struct writeback_control and this does some atomic operations if
CONFIG_CGROUP_WRITEBACK=y - on fast path it locks inode->i_lock and
updates state of writeback ownership, on slow path might be more work.
Current this path is safely avoided only when inode mapping has no pages.
For example generic_file_read_iter() calls filemap_write_and_wait_range()
at each O_DIRECT read - pretty hot path.
This patch skips starting new writeback if mapping has no dirty tags set.
If writeback is already in progress filemap_write_and_wait_range() will
wait for it.
Link: http://lkml.kernel.org/r/156378816804.1087.8607636317907921438.stgit@buzz
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit abaed0112c1db08be15a784a2c5c8a8b3063cdd3 upstream.
/proc/pagetypeinfo is a debugging tool to examine internal page
allocator state wrt to fragmentation. It is not very useful for any
other use so normal users really do not need to read this file.
Waiman Long has noticed that reading this file can have negative side
effects because zone->lock is necessary for gathering data and that a)
interferes with the page allocator and its users and b) can lead to hard
lockups on large machines which have very long free_list.
Reduce both issues by simply not exporting the file to regular users.
Link: http://lkml.kernel.org/r/20191025072610.18526-2-mhocko@kernel.org
Fixes: 467c996c1e19 ("Print out statistics in relation to fragmentation avoidance to /proc/pagetypeinfo")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Waiman Long <longman@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Waiman Long <longman@redhat.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Jann Horn <jannh@google.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e4f8e513c3d353c134ad4eef9fd0bba12406c7c8 upstream.
A long time ago we fixed a similar deadlock in show_slab_objects() [1].
However, it is apparently due to the commits like 01fb58bcba63 ("slab:
remove synchronous synchronize_sched() from memcg cache deactivation
path") and 03afc0e25f7f ("slab: get_online_mems for
kmem_cache_{create,destroy,shrink}"), this kind of deadlock is back by
just reading files in /sys/kernel/slab which will generate a lockdep
splat below.
Since the "mem_hotplug_lock" here is only to obtain a stable online node
mask while racing with NUMA node hotplug, in the worst case, the results
may me miscalculated while doing NUMA node hotplug, but they shall be
corrected by later reads of the same files.
WARNING: possible circular locking dependency detected
------------------------------------------------------
cat/5224 is trying to acquire lock:
ffff900012ac3120 (mem_hotplug_lock.rw_sem){++++}, at:
show_slab_objects+0x94/0x3a8
but task is already holding lock:
b8ff009693eee398 (kn->count#45){++++}, at: kernfs_seq_start+0x44/0xf0
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (kn->count#45){++++}:
lock_acquire+0x31c/0x360
__kernfs_remove+0x290/0x490
kernfs_remove+0x30/0x44
sysfs_remove_dir+0x70/0x88
kobject_del+0x50/0xb0
sysfs_slab_unlink+0x2c/0x38
shutdown_cache+0xa0/0xf0
kmemcg_cache_shutdown_fn+0x1c/0x34
kmemcg_workfn+0x44/0x64
process_one_work+0x4f4/0x950
worker_thread+0x390/0x4bc
kthread+0x1cc/0x1e8
ret_from_fork+0x10/0x18
-> #1 (slab_mutex){+.+.}:
lock_acquire+0x31c/0x360
__mutex_lock_common+0x16c/0xf78
mutex_lock_nested+0x40/0x50
memcg_create_kmem_cache+0x38/0x16c
memcg_kmem_cache_create_func+0x3c/0x70
process_one_work+0x4f4/0x950
worker_thread+0x390/0x4bc
kthread+0x1cc/0x1e8
ret_from_fork+0x10/0x18
-> #0 (mem_hotplug_lock.rw_sem){++++}:
validate_chain+0xd10/0x2bcc
__lock_acquire+0x7f4/0xb8c
lock_acquire+0x31c/0x360
get_online_mems+0x54/0x150
show_slab_objects+0x94/0x3a8
total_objects_show+0x28/0x34
slab_attr_show+0x38/0x54
sysfs_kf_seq_show+0x198/0x2d4
kernfs_seq_show+0xa4/0xcc
seq_read+0x30c/0x8a8
kernfs_fop_read+0xa8/0x314
__vfs_read+0x88/0x20c
vfs_read+0xd8/0x10c
ksys_read+0xb0/0x120
__arm64_sys_read+0x54/0x88
el0_svc_handler+0x170/0x240
el0_svc+0x8/0xc
other info that might help us debug this:
Chain exists of:
mem_hotplug_lock.rw_sem --> slab_mutex --> kn->count#45
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(kn->count#45);
lock(slab_mutex);
lock(kn->count#45);
lock(mem_hotplug_lock.rw_sem);
*** DEADLOCK ***
3 locks held by cat/5224:
#0: 9eff00095b14b2a0 (&p->lock){+.+.}, at: seq_read+0x4c/0x8a8
#1: 0eff008997041480 (&of->mutex){+.+.}, at: kernfs_seq_start+0x34/0xf0
#2: b8ff009693eee398 (kn->count#45){++++}, at:
kernfs_seq_start+0x44/0xf0
stack backtrace:
Call trace:
dump_backtrace+0x0/0x248
show_stack+0x20/0x2c
dump_stack+0xd0/0x140
print_circular_bug+0x368/0x380
check_noncircular+0x248/0x250
validate_chain+0xd10/0x2bcc
__lock_acquire+0x7f4/0xb8c
lock_acquire+0x31c/0x360
get_online_mems+0x54/0x150
show_slab_objects+0x94/0x3a8
total_objects_show+0x28/0x34
slab_attr_show+0x38/0x54
sysfs_kf_seq_show+0x198/0x2d4
kernfs_seq_show+0xa4/0xcc
seq_read+0x30c/0x8a8
kernfs_fop_read+0xa8/0x314
__vfs_read+0x88/0x20c
vfs_read+0xd8/0x10c
ksys_read+0xb0/0x120
__arm64_sys_read+0x54/0x88
el0_svc_handler+0x170/0x240
el0_svc+0x8/0xc
I think it is important to mention that this doesn't expose the
show_slab_objects to use-after-free. There is only a single path that
might really race here and that is the slab hotplug notifier callback
__kmem_cache_shrink (via slab_mem_going_offline_callback) but that path
doesn't really destroy kmem_cache_node data structures.
[1] http://lkml.iu.edu/hypermail/linux/kernel/1101.0/02850.html
[akpm@linux-foundation.org: add comment explaining why we don't need mem_hotplug_lock]
Link: http://lkml.kernel.org/r/1570192309-10132-1-git-send-email-cai@lca.pw
Fixes: 01fb58bcba63 ("slab: remove synchronous synchronize_sched() from memcg cache deactivation path")
Fixes: 03afc0e25f7f ("slab: get_online_mems for kmem_cache_{create,destroy,shrink}")
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The RCU lock is insufficient to protect the radix tree iteration as
a deletion from the tree can occur before we take the spinlock to
tag the entry. In 4.19, this has manifested as a bug with the following
trace:
kernel BUG at lib/radix-tree.c:1429!
invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 7 PID: 6935 Comm: syz-executor.2 Not tainted 4.19.36 #25
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
RIP: 0010:radix_tree_tag_set+0x200/0x2f0 lib/radix-tree.c:1429
Code: 00 00 5b 5d 41 5c 41 5d 41 5e 41 5f c3 48 89 44 24 10 e8 a3 29 7e fe 48 8b 44 24 10 48 0f ab 03 e9 d2 fe ff ff e8 90 29 7e fe <0f> 0b 48 c7 c7 e0 5a 87 84 e8 f0 e7 08 ff 4c 89 ef e8 4a ff ac fe
RSP: 0018:ffff88837b13fb60 EFLAGS: 00010016
RAX: 0000000000040000 RBX: ffff8883c5515d58 RCX: ffffffff82cb2ef0
RDX: 0000000000000b72 RSI: ffffc90004cf2000 RDI: ffff8883c5515d98
RBP: ffff88837b13fb98 R08: ffffed106f627f7e R09: ffffed106f627f7e
R10: 0000000000000001 R11: ffffed106f627f7d R12: 0000000000000004
R13: ffffea000d7fea80 R14: 1ffff1106f627f6f R15: 0000000000000002
FS: 00007fa1b8df2700(0000) GS:ffff8883e2fc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa1b8df1db8 CR3: 000000037d4d2001 CR4: 0000000000160ee0
Call Trace:
memfd_tag_pins mm/memfd.c:51 [inline]
memfd_wait_for_pins+0x2c5/0x12d0 mm/memfd.c:81
memfd_add_seals mm/memfd.c:215 [inline]
memfd_fcntl+0x33d/0x4a0 mm/memfd.c:247
do_fcntl+0x589/0xeb0 fs/fcntl.c:421
__do_sys_fcntl fs/fcntl.c:463 [inline]
__se_sys_fcntl fs/fcntl.c:448 [inline]
__x64_sys_fcntl+0x12d/0x180 fs/fcntl.c:448
do_syscall_64+0xc8/0x580 arch/x86/entry/common.c:293
The problem does not occur in mainline due to the XArray rewrite which
changed the locking to exclude modification of the tree during iteration.
At the time, nobody realised this was a bugfix. Backport the locking
changes to stable.
Cc: stable@vger.kernel.org
Reported-by: zhong jiang <zhongjiang@huawei.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 54a83d6bcbf8f4700013766b974bf9190d40b689 upstream.
This patch is sent to report an use after free in mem_cgroup_iter()
after merging commit be2657752e9e ("mm: memcg: fix use after free in
mem_cgroup_iter()").
I work with android kernel tree (4.9 & 4.14), and commit be2657752e9e
("mm: memcg: fix use after free in mem_cgroup_iter()") has been merged
to the trees. However, I can still observe use after free issues
addressed in the commit be2657752e9e. (on low-end devices, a few times
this month)
backtrace:
css_tryget <- crash here
mem_cgroup_iter
shrink_node
shrink_zones
do_try_to_free_pages
try_to_free_pages
__perform_reclaim
__alloc_pages_direct_reclaim
__alloc_pages_slowpath
__alloc_pages_nodemask
To debug, I poisoned mem_cgroup before freeing it:
static void __mem_cgroup_free(struct mem_cgroup *memcg)
for_each_node(node)
free_mem_cgroup_per_node_info(memcg, node);
free_percpu(memcg->stat);
+ /* poison memcg before freeing it */
+ memset(memcg, 0x78, sizeof(struct mem_cgroup));
kfree(memcg);
}
The coredump shows the position=0xdbbc2a00 is freed.
(gdb) p/x ((struct mem_cgroup_per_node *)0xe5009e00)->iter[8]
$13 = {position = 0xdbbc2a00, generation = 0x2efd}
0xdbbc2a00: 0xdbbc2e00 0x00000000 0xdbbc2800 0x00000100
0xdbbc2a10: 0x00000200 0x78787878 0x00026218 0x00000000
0xdbbc2a20: 0xdcad6000 0x00000001 0x78787800 0x00000000
0xdbbc2a30: 0x78780000 0x00000000 0x0068fb84 0x78787878
0xdbbc2a40: 0x78787878 0x78787878 0x78787878 0xe3fa5cc0
0xdbbc2a50: 0x78787878 0x78787878 0x00000000 0x00000000
0xdbbc2a60: 0x00000000 0x00000000 0x00000000 0x00000000
0xdbbc2a70: 0x00000000 0x00000000 0x00000000 0x00000000
0xdbbc2a80: 0x00000000 0x00000000 0x00000000 0x00000000
0xdbbc2a90: 0x00000001 0x00000000 0x00000000 0x00100000
0xdbbc2aa0: 0x00000001 0xdbbc2ac8 0x00000000 0x00000000
0xdbbc2ab0: 0x00000000 0x00000000 0x00000000 0x00000000
0xdbbc2ac0: 0x00000000 0x00000000 0xe5b02618 0x00001000
0xdbbc2ad0: 0x00000000 0x78787878 0x78787878 0x78787878
0xdbbc2ae0: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2af0: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b00: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b10: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b20: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b30: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b40: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b50: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b60: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b70: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2b80: 0x78787878 0x78787878 0x00000000 0x78787878
0xdbbc2b90: 0x78787878 0x78787878 0x78787878 0x78787878
0xdbbc2ba0: 0x78787878 0x78787878 0x78787878 0x78787878
In the reclaim path, try_to_free_pages() does not setup
sc.target_mem_cgroup and sc is passed to do_try_to_free_pages(), ...,
shrink_node().
In mem_cgroup_iter(), root is set to root_mem_cgroup because
sc->target_mem_cgroup is NULL. It is possible to assign a memcg to
root_mem_cgroup.nodeinfo.iter in mem_cgroup_iter().
try_to_free_pages
struct scan_control sc = {...}, target_mem_cgroup is 0x0;
do_try_to_free_pages
shrink_zones
shrink_node
mem_cgroup *root = sc->target_mem_cgroup;
memcg = mem_cgroup_iter(root, NULL, &reclaim);
mem_cgroup_iter()
if (!root)
root = root_mem_cgroup;
...
css = css_next_descendant_pre(css, &root->css);
memcg = mem_cgroup_from_css(css);
cmpxchg(&iter->position, pos, memcg);
My device uses memcg non-hierarchical mode. When we release a memcg:
invalidate_reclaim_iterators() reaches only dead_memcg and its parents.
If non-hierarchical mode is used, invalidate_reclaim_iterators() never
reaches root_mem_cgroup.
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
struct mem_cgroup *memcg = dead_memcg;
for (; memcg; memcg = parent_mem_cgroup(memcg)
...
}
So the use after free scenario looks like:
CPU1 CPU2
try_to_free_pages
do_try_to_free_pages
shrink_zones
shrink_node
mem_cgroup_iter()
if (!root)
root = root_mem_cgroup;
...
css = css_next_descendant_pre(css, &root->css);
memcg = mem_cgroup_from_css(css);
cmpxchg(&iter->position, pos, memcg);
invalidate_reclaim_iterators(memcg);
...
__mem_cgroup_free()
kfree(memcg);
try_to_free_pages
do_try_to_free_pages
shrink_zones
shrink_node
mem_cgroup_iter()
if (!root)
root = root_mem_cgroup;
...
mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
iter = &mz->iter[reclaim->priority];
pos = READ_ONCE(iter->position);
css_tryget(&pos->css) <- use after free
To avoid this, we should also invalidate root_mem_cgroup.nodeinfo.iter
in invalidate_reclaim_iterators().
[cai@lca.pw: fix -Wparentheses compilation warning]
Link: http://lkml.kernel.org/r/1564580753-17531-1-git-send-email-cai@lca.pw
Link: http://lkml.kernel.org/r/20190730015729.4406-1-miles.chen@mediatek.com
Fixes: 5ac8fb31ad2e ("mm: memcontrol: convert reclaim iterator to simple css refcounting")
Signed-off-by: Miles Chen <miles.chen@mediatek.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3f8fd02b1bf1d7ba964485a56f2f4b53ae88c167 upstream.
On x86-32 with PTI enabled, parts of the kernel page-tables are not shared
between processes. This can cause mappings in the vmalloc/ioremap area to
persist in some page-tables after the region is unmapped and released.
When the region is re-used the processes with the old mappings do not fault
in the new mappings but still access the old ones.
This causes undefined behavior, in reality often data corruption, kernel
oopses and panics and even spontaneous reboots.
Fix this problem by activly syncing unmaps in the vmalloc/ioremap area to
all page-tables in the system before the regions can be re-used.
References: https://bugzilla.suse.com/show_bug.cgi?id=1118689
Fixes: 5d72b4fba40ef ('x86, mm: support huge I/O mapping capability I/F')
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20190719184652.11391-4-joro@8bytes.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit c633324e311243586675e732249339685e5d6faa ]
The description of cma_declare_contiguous() indicates that if the
'fixed' argument is true the reserved contiguous area must be exactly at
the address of the 'base' argument.
However, the function currently allows the 'base', 'size', and 'limit'
arguments to be silently adjusted to meet alignment constraints. This
commit enforces the documented behavior through explicit checks that
return an error if the region does not fit within a specified region.
Link: http://lkml.kernel.org/r/1561422051-16142-1-git-send-email-opendmb@gmail.com
Fixes: 5ea3b1b2f8ad ("cma: add placement specifier for "cma=" kernel parameter")
Signed-off-by: Doug Berger <opendmb@gmail.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Yue Hu <huyue2@yulong.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Peng Fan <peng.fan@nxp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit f01f17d3705bb6081c9e5728078f64067982be36 upstream.
Mike has reported a considerable overhead of refresh_cpu_vm_stats from
the idle entry during pipe test:
12.89% [kernel] [k] refresh_cpu_vm_stats.isra.12
4.75% [kernel] [k] __schedule
4.70% [kernel] [k] mutex_unlock
3.14% [kernel] [k] __switch_to
This is caused by commit 0eb77e988032 ("vmstat: make vmstat_updater
deferrable again and shut down on idle") which has placed quiet_vmstat
into cpu_idle_loop. The main reason here seems to be that the idle
entry has to get over all zones and perform atomic operations for each
vmstat entry even though there might be no per cpu diffs. This is a
pointless overhead for _each_ idle entry.
Make sure that quiet_vmstat is as light as possible.
First of all it doesn't make any sense to do any local sync if the
current cpu is already set in oncpu_stat_off because vmstat_update puts
itself there only if there is nothing to do.
Then we can check need_update which should be a cheap way to check for
potential per-cpu diffs and only then do refresh_cpu_vm_stats.
The original patch also did cancel_delayed_work which we are not doing
here. There are two reasons for that. Firstly cancel_delayed_work from
idle context will blow up on RT kernels (reported by Mike):
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 4.5.0-rt3 #7
Hardware name: MEDION MS-7848/MS-7848, BIOS M7848W08.20C 09/23/2013
Call Trace:
dump_stack+0x49/0x67
___might_sleep+0xf5/0x180
rt_spin_lock+0x20/0x50
try_to_grab_pending+0x69/0x240
cancel_delayed_work+0x26/0xe0
quiet_vmstat+0x75/0xa0
cpu_idle_loop+0x38/0x3e0
cpu_startup_entry+0x13/0x20
start_secondary+0x114/0x140
And secondly, even on !RT kernels it might add some non trivial overhead
which is not necessary. Even if the vmstat worker wakes up and preempts
idle then it will be most likely a single shot noop because the stats
were already synced and so it would end up on the oncpu_stat_off anyway.
We just need to teach both vmstat_shepherd and vmstat_update to stop
scheduling the worker if there is nothing to do.
[mgalbraith@suse.de: cancel pending work of the cpu_stat_off CPU]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Mike Galbraith <mgalbraith@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Daniel Wagner <wagi@monom.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 587198ba5206cdf0d30855f7361af950a4172cd6 upstream.
If we detect that there is nothing to do just set the flag and do not
check if it was already set before. Races really do not matter. If the
flag is set by any code then the shepherd will start dealing with the
situation and reenable the vmstat workers when necessary again.
Since commit 0eb77e988032 ("vmstat: make vmstat_updater deferrable again
and shut down on idle") quiet_vmstat might update cpu_stat_off and mark
a particular cpu to be handled by vmstat_shepherd. This might trigger a
VM_BUG_ON in vmstat_update because the work item might have been
sleeping during the idle period and see the cpu_stat_off updated after
the wake up. The VM_BUG_ON is therefore misleading and no more
appropriate. Moreover it doesn't really suite any protection from real
bugs because vmstat_shepherd will simply reschedule the vmstat_work
anytime it sees a particular cpu set or vmstat_update would do the same
from the worker context directly. Even when the two would race the
result wouldn't be incorrect as the counters update is fully idempotent.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Daniel Wagner <wagi@monom.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 543bdb2d825fe2400d6e951f1786d92139a16931 ]
Make mmu_notifier_register() safer by issuing a memory barrier before
registering a new notifier. This fixes a theoretical bug on weakly
ordered CPUs. For example, take this simplified use of notifiers by a
driver:
my_struct->mn.ops = &my_ops; /* (1) */
mmu_notifier_register(&my_struct->mn, mm)
...
hlist_add_head(&mn->hlist, &mm->mmu_notifiers); /* (2) */
...
Once mmu_notifier_register() releases the mm locks, another thread can
invalidate a range:
mmu_notifier_invalidate_range()
...
hlist_for_each_entry_rcu(mn, &mm->mmu_notifiers, hlist) {
if (mn->ops->invalidate_range)
The read side relies on the data dependency between mn and ops to ensure
that the pointer is properly initialized. But the write side doesn't have
any dependency between (1) and (2), so they could be reordered and the
readers could dereference an invalid mn->ops. mmu_notifier_register()
does take all the mm locks before adding to the hlist, but those have
acquire semantics which isn't sufficient.
By calling hlist_add_head_rcu() instead of hlist_add_head() we update the
hlist using a store-release, ensuring that readers see prior
initialization of my_struct. This situation is better illustated by
litmus test MP+onceassign+derefonce.
Link: http://lkml.kernel.org/r/20190502133532.24981-1-jean-philippe.brucker@arm.com
Fixes: cddb8a5c14aa ("mmu-notifiers: core")
Signed-off-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 6ef9056952532c3b746de46aa10d45b4d7797bd8 ]
in_softirq() is a wrong predicate to check if we are in a softirq
context. It also returns true if we have BH disabled, so objects are
falsely stamped with "softirq" comm. The correct predicate is
in_serving_softirq().
If user does cat from /sys/kernel/debug/kmemleak previously they would
see this, which is clearly wrong, this is system call context (see the
comm):
unreferenced object 0xffff88805bd661c0 (size 64):
comm "softirq", pid 0, jiffies 4294942959 (age 12.400s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 ff ff ff ff 00 00 00 00 ................
00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 ................
backtrace:
[<0000000007dcb30c>] kmemleak_alloc_recursive include/linux/kmemleak.h:55 [inline]
[<0000000007dcb30c>] slab_post_alloc_hook mm/slab.h:439 [inline]
[<0000000007dcb30c>] slab_alloc mm/slab.c:3326 [inline]
[<0000000007dcb30c>] kmem_cache_alloc_trace+0x13d/0x280 mm/slab.c:3553
[<00000000969722b7>] kmalloc include/linux/slab.h:547 [inline]
[<00000000969722b7>] kzalloc include/linux/slab.h:742 [inline]
[<00000000969722b7>] ip_mc_add1_src net/ipv4/igmp.c:1961 [inline]
[<00000000969722b7>] ip_mc_add_src+0x36b/0x400 net/ipv4/igmp.c:2085
[<00000000a4134b5f>] ip_mc_msfilter+0x22d/0x310 net/ipv4/igmp.c:2475
[<00000000d20248ad>] do_ip_setsockopt.isra.0+0x19fe/0x1c00 net/ipv4/ip_sockglue.c:957
[<000000003d367be7>] ip_setsockopt+0x3b/0xb0 net/ipv4/ip_sockglue.c:1246
[<000000003c7c76af>] udp_setsockopt+0x4e/0x90 net/ipv4/udp.c:2616
[<000000000c1aeb23>] sock_common_setsockopt+0x3e/0x50 net/core/sock.c:3130
[<000000000157b92b>] __sys_setsockopt+0x9e/0x120 net/socket.c:2078
[<00000000a9f3d058>] __do_sys_setsockopt net/socket.c:2089 [inline]
[<00000000a9f3d058>] __se_sys_setsockopt net/socket.c:2086 [inline]
[<00000000a9f3d058>] __x64_sys_setsockopt+0x26/0x30 net/socket.c:2086
[<000000001b8da885>] do_syscall_64+0x7c/0x1a0 arch/x86/entry/common.c:301
[<00000000ba770c62>] entry_SYSCALL_64_after_hwframe+0x44/0xa9
now they will see this:
unreferenced object 0xffff88805413c800 (size 64):
comm "syz-executor.4", pid 8960, jiffies 4294994003 (age 14.350s)
hex dump (first 32 bytes):
00 7a 8a 57 80 88 ff ff e0 00 00 01 00 00 00 00 .z.W............
00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 ................
backtrace:
[<00000000c5d3be64>] kmemleak_alloc_recursive include/linux/kmemleak.h:55 [inline]
[<00000000c5d3be64>] slab_post_alloc_hook mm/slab.h:439 [inline]
[<00000000c5d3be64>] slab_alloc mm/slab.c:3326 [inline]
[<00000000c5d3be64>] kmem_cache_alloc_trace+0x13d/0x280 mm/slab.c:3553
[<0000000023865be2>] kmalloc include/linux/slab.h:547 [inline]
[<0000000023865be2>] kzalloc include/linux/slab.h:742 [inline]
[<0000000023865be2>] ip_mc_add1_src net/ipv4/igmp.c:1961 [inline]
[<0000000023865be2>] ip_mc_add_src+0x36b/0x400 net/ipv4/igmp.c:2085
[<000000003029a9d4>] ip_mc_msfilter+0x22d/0x310 net/ipv4/igmp.c:2475
[<00000000ccd0a87c>] do_ip_setsockopt.isra.0+0x19fe/0x1c00 net/ipv4/ip_sockglue.c:957
[<00000000a85a3785>] ip_setsockopt+0x3b/0xb0 net/ipv4/ip_sockglue.c:1246
[<00000000ec13c18d>] udp_setsockopt+0x4e/0x90 net/ipv4/udp.c:2616
[<0000000052d748e3>] sock_common_setsockopt+0x3e/0x50 net/core/sock.c:3130
[<00000000512f1014>] __sys_setsockopt+0x9e/0x120 net/socket.c:2078
[<00000000181758bc>] __do_sys_setsockopt net/socket.c:2089 [inline]
[<00000000181758bc>] __se_sys_setsockopt net/socket.c:2086 [inline]
[<00000000181758bc>] __x64_sys_setsockopt+0x26/0x30 net/socket.c:2086
[<00000000d4b73623>] do_syscall_64+0x7c/0x1a0 arch/x86/entry/common.c:301
[<00000000c1098bec>] entry_SYSCALL_64_after_hwframe+0x44/0xa9
Link: http://lkml.kernel.org/r/20190517171507.96046-1-dvyukov@gmail.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 7298e3b0a149c91323b3205d325e942c3b3b9ef6 upstream.
Currently the calcuation of end_pfn can round up the pfn number to more
than the actual maximum number of pfns, causing an Oops. Fix this by
ensuring end_pfn is never more than max_pfn.
This can be easily triggered when on systems where the end_pfn gets
rounded up to more than max_pfn using the idle-page stress-ng stress test:
sudo stress-ng --idle-page 0
BUG: unable to handle kernel paging request at 00000000000020d8
#PF error: [normal kernel read fault]
PGD 0 P4D 0
Oops: 0000 [#1] SMP PTI
CPU: 1 PID: 11039 Comm: stress-ng-idle- Not tainted 5.0.0-5-generic #6-Ubuntu
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
RIP: 0010:page_idle_get_page+0xc8/0x1a0
Code: 0f b1 0a 75 7d 48 8b 03 48 89 c2 48 c1 e8 33 83 e0 07 48 c1 ea 36 48 8d 0c 40 4c 8d 24 88 49 c1 e4 07 4c 03 24 d5 00 89 c3 be <49> 8b 44 24 58 48 8d b8 80 a1 02 00 e8 07 d5 77 00 48 8b 53 08 48
RSP: 0018:ffffafd7c672fde8 EFLAGS: 00010202
RAX: 0000000000000005 RBX: ffffe36341fff700 RCX: 000000000000000f
RDX: 0000000000000284 RSI: 0000000000000275 RDI: 0000000001fff700
RBP: ffffafd7c672fe00 R08: ffffa0bc34056410 R09: 0000000000000276
R10: ffffa0bc754e9b40 R11: ffffa0bc330f6400 R12: 0000000000002080
R13: ffffe36341fff700 R14: 0000000000080000 R15: ffffa0bc330f6400
FS: 00007f0ec1ea5740(0000) GS:ffffa0bc7db00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000000020d8 CR3: 0000000077d68000 CR4: 00000000000006e0
Call Trace:
page_idle_bitmap_write+0x8c/0x140
sysfs_kf_bin_write+0x5c/0x70
kernfs_fop_write+0x12e/0x1b0
__vfs_write+0x1b/0x40
vfs_write+0xab/0x1b0
ksys_write+0x55/0xc0
__x64_sys_write+0x1a/0x20
do_syscall_64+0x5a/0x110
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Link: http://lkml.kernel.org/r/20190618124352.28307-1-colin.king@canonical.com
Fixes: 33c3fc71c8cf ("mm: introduce idle page tracking")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
dumping
commit 04f5866e41fb70690e28397487d8bd8eea7d712a upstream.
The core dumping code has always run without holding the mmap_sem for
writing, despite that is the only way to ensure that the entire vma
layout will not change from under it. Only using some signal
serialization on the processes belonging to the mm is not nearly enough.
This was pointed out earlier. For example in Hugh's post from Jul 2017:
https://lkml.kernel.org/r/alpine.LSU.2.11.1707191716030.2055@eggly.anvils
"Not strictly relevant here, but a related note: I was very surprised
to discover, only quite recently, how handle_mm_fault() may be called
without down_read(mmap_sem) - when core dumping. That seems a
misguided optimization to me, which would also be nice to correct"
In particular because the growsdown and growsup can move the
vm_start/vm_end the various loops the core dump does around the vma will
not be consistent if page faults can happen concurrently.
Pretty much all users calling mmget_not_zero()/get_task_mm() and then
taking the mmap_sem had the potential to introduce unexpected side
effects in the core dumping code.
Adding mmap_sem for writing around the ->core_dump invocation is a
viable long term fix, but it requires removing all copy user and page
faults and to replace them with get_dump_page() for all binary formats
which is not suitable as a short term fix.
For the time being this solution manually covers the places that can
confuse the core dump either by altering the vma layout or the vma flags
while it runs. Once ->core_dump runs under mmap_sem for writing the
function mmget_still_valid() can be dropped.
Allowing mmap_sem protected sections to run in parallel with the
coredump provides some minor parallelism advantage to the swapoff code
(which seems to be safe enough by never mangling any vma field and can
keep doing swapins in parallel to the core dumping) and to some other
corner case.
In order to facilitate the backporting I added "Fixes: 86039bd3b4e6"
however the side effect of this same race condition in /proc/pid/mem
should be reproducible since before 2.6.12-rc2 so I couldn't add any
other "Fixes:" because there's no hash beyond the git genesis commit.
Because find_extend_vma() is the only location outside of the process
context that could modify the "mm" structures under mmap_sem for
reading, by adding the mmget_still_valid() check to it, all other cases
that take the mmap_sem for reading don't need the new check after
mmget_not_zero()/get_task_mm(). The expand_stack() in page fault
context also doesn't need the new check, because all tasks under core
dumping are frozen.
Link: http://lkml.kernel.org/r/20190325224949.11068-1-aarcange@redhat.com
Fixes: 86039bd3b4e6 ("userfaultfd: add new syscall to provide memory externalization")
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Jann Horn <jannh@google.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Jann Horn <jannh@google.com>
Acked-by: Jason Gunthorpe <jgg@mellanox.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
[mhocko@suse.com: stable 4.4 backport
- drop infiniband part because of missing 5f9794dc94f59
- drop userfaultfd_event_wait_completion hunk because of
missing 9cd75c3cd4c3d]
- handle binder_update_page_range because of missing 720c241924046
- handle mlx5_ib_disassociate_ucontext - akaher@vmware.com
]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3510955b327176fd4cbab5baa75b449f077722a2 upstream.
Syzbot reported following memory leak:
ffffffffda RBX: 0000000000000003 RCX: 0000000000441f79
BUG: memory leak
unreferenced object 0xffff888114f26040 (size 32):
comm "syz-executor626", pid 7056, jiffies 4294948701 (age 39.410s)
hex dump (first 32 bytes):
40 60 f2 14 81 88 ff ff 40 60 f2 14 81 88 ff ff @`......@`......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
slab_post_alloc_hook mm/slab.h:439 [inline]
slab_alloc mm/slab.c:3326 [inline]
kmem_cache_alloc_trace+0x13d/0x280 mm/slab.c:3553
kmalloc include/linux/slab.h:547 [inline]
__memcg_init_list_lru_node+0x58/0xf0 mm/list_lru.c:352
memcg_init_list_lru_node mm/list_lru.c:375 [inline]
memcg_init_list_lru mm/list_lru.c:459 [inline]
__list_lru_init+0x193/0x2a0 mm/list_lru.c:626
alloc_super+0x2e0/0x310 fs/super.c:269
sget_userns+0x94/0x2a0 fs/super.c:609
sget+0x8d/0xb0 fs/super.c:660
mount_nodev+0x31/0xb0 fs/super.c:1387
fuse_mount+0x2d/0x40 fs/fuse/inode.c:1236
legacy_get_tree+0x27/0x80 fs/fs_context.c:661
vfs_get_tree+0x2e/0x120 fs/super.c:1476
do_new_mount fs/namespace.c:2790 [inline]
do_mount+0x932/0xc50 fs/namespace.c:3110
ksys_mount+0xab/0x120 fs/namespace.c:3319
__do_sys_mount fs/namespace.c:3333 [inline]
__se_sys_mount fs/namespace.c:3330 [inline]
__x64_sys_mount+0x26/0x30 fs/namespace.c:3330
do_syscall_64+0x76/0x1a0 arch/x86/entry/common.c:301
entry_SYSCALL_64_after_hwframe+0x44/0xa9
This is a simple off by one bug on the error path.
Link: http://lkml.kernel.org/r/20190528043202.99980-1-shakeelb@google.com
Fixes: 60d3fd32a7a9 ("list_lru: introduce per-memcg lists")
Reported-by: syzbot+f90a420dfe2b1b03cb2c@syzkaller.appspotmail.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: <stable@vger.kernel.org> [4.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit f0fd50504a54f5548eb666dc16ddf8394e44e4b7 ]
If not find zero bit in find_next_zero_bit(), it will return the size
parameter passed in, so the start bit should be compared with bitmap_maxno
rather than cma->count. Although getting maxchunk is working fine due to
zero value of order_per_bit currently, the operation will be stuck if
order_per_bit is set as non-zero.
Link: http://lkml.kernel.org/r/20190319092734.276-1-zbestahu@gmail.com
Signed-off-by: Yue Hu <huyue2@yulong.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Joe Perches <joe@perches.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Safonov <d.safonov@partner.samsung.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 1df3a339074e31db95c4790ea9236874b13ccd87 ]
f022d8cb7ec7 ("mm: cma: Don't crash on allocation if CMA area can't be
activated") fixes the crash issue when activation fails via setting
cma->count as 0, same logic exists if bitmap allocation fails.
Link: http://lkml.kernel.org/r/20190325081309.6004-1-zbestahu@gmail.com
Signed-off-by: Yue Hu <huyue2@yulong.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 0919e1b69ab459e06df45d3ba6658d281962db80 ]
When a huge page is allocated, PagePrivate() is set if the allocation
consumed a reservation. When freeing a huge page, PagePrivate is checked.
If set, it indicates the reservation should be restored. PagePrivate
being set at free huge page time mostly happens on error paths.
When huge page reservations are created, a check is made to determine if
the mapping is associated with an explicitly mounted filesystem. If so,
pages are also reserved within the filesystem. The default action when
freeing a huge page is to decrement the usage count in any associated
explicitly mounted filesystem. However, if the reservation is to be
restored the reservation/use count within the filesystem should not be
decrementd. Otherwise, a subsequent page allocation and free for the same
mapping location will cause the file filesystem usage to go 'negative'.
Filesystem Size Used Avail Use% Mounted on
nodev 4.0G -4.0M 4.1G - /opt/hugepool
To fix, when freeing a huge page do not adjust filesystem usage if
PagePrivate() is set to indicate the reservation should be restored.
I did not cc stable as the problem has been around since reserves were
added to hugetlbfs and nobody has noticed.
Link: http://lkml.kernel.org/r/20190328234704.27083-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 3e8589963773a5c23e2f1fe4bcad0e9a90b7f471 upstream.
We have a single node system with node 0 disabled:
Scanning NUMA topology in Northbridge 24
Number of physical nodes 2
Skipping disabled node 0
Node 1 MemBase 0000000000000000 Limit 00000000fbff0000
NODE_DATA(1) allocated [mem 0xfbfda000-0xfbfeffff]
This causes crashes in memcg when system boots:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000008
#PF error: [normal kernel read fault]
...
RIP: 0010:list_lru_add+0x94/0x170
...
Call Trace:
d_lru_add+0x44/0x50
dput.part.34+0xfc/0x110
__fput+0x108/0x230
task_work_run+0x9f/0xc0
exit_to_usermode_loop+0xf5/0x100
It is reproducible as far as 4.12. I did not try older kernels. You have
to have a new enough systemd, e.g. 241 (the reason is unknown -- was not
investigated). Cannot be reproduced with systemd 234.
The system crashes because the size of lru array is never updated in
memcg_update_all_list_lrus and the reads are past the zero-sized array,
causing dereferences of random memory.
The root cause are list_lru_memcg_aware checks in the list_lru code. The
test in list_lru_memcg_aware is broken: it assumes node 0 is always
present, but it is not true on some systems as can be seen above.
So fix this by avoiding checks on node 0. Remember the memcg-awareness by
a bool flag in struct list_lru.
Link: http://lkml.kernel.org/r/20190522091940.3615-1-jslaby@suse.cz
Fixes: 60d3fd32a7a9 ("list_lru: introduce per-memcg lists")
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1b426bac66e6cc83c9f2d92b96e4e72acf43419a upstream.
hugetlb uses a fault mutex hash table to prevent page faults of the
same pages concurrently. The key for shared and private mappings is
different. Shared keys off address_space and file index. Private keys
off mm and virtual address. Consider a private mappings of a populated
hugetlbfs file. A fault will map the page from the file and if needed
do a COW to map a writable page.
Hugetlbfs hole punch uses the fault mutex to prevent mappings of file
pages. It uses the address_space file index key. However, private
mappings will use a different key and could race with this code to map
the file page. This causes problems (BUG) for the page cache remove
code as it expects the page to be unmapped. A sample stack is:
page dumped because: VM_BUG_ON_PAGE(page_mapped(page))
kernel BUG at mm/filemap.c:169!
...
RIP: 0010:unaccount_page_cache_page+0x1b8/0x200
...
Call Trace:
__delete_from_page_cache+0x39/0x220
delete_from_page_cache+0x45/0x70
remove_inode_hugepages+0x13c/0x380
? __add_to_page_cache_locked+0x162/0x380
hugetlbfs_fallocate+0x403/0x540
? _cond_resched+0x15/0x30
? __inode_security_revalidate+0x5d/0x70
? selinux_file_permission+0x100/0x130
vfs_fallocate+0x13f/0x270
ksys_fallocate+0x3c/0x80
__x64_sys_fallocate+0x1a/0x20
do_syscall_64+0x5b/0x180
entry_SYSCALL_64_after_hwframe+0x44/0xa9
There seems to be another potential COW issue/race with this approach
of different private and shared keys as noted in commit 8382d914ebf7
("mm, hugetlb: improve page-fault scalability").
Since every hugetlb mapping (even anon and private) is actually a file
mapping, just use the address_space index key for all mappings. This
results in potentially more hash collisions. However, this should not
be the common case.
Link: http://lkml.kernel.org/r/20190328234704.27083-3-mike.kravetz@oracle.com
Link: http://lkml.kernel.org/r/20190412165235.t4sscoujczfhuiyt@linux-r8p5
Fixes: b5cec28d36f5 ("hugetlbfs: truncate_hugepages() takes a range of pages")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7fc5854f8c6efae9e7624970ab49a1eac2faefb1 upstream.
sync_inodes_sb() can race against cgwb (cgroup writeback) membership
switches and fail to writeback some inodes. For example, if an inode
switches to another wb while sync_inodes_sb() is in progress, the new
wb might not be visible to bdi_split_work_to_wbs() at all or the inode
might jump from a wb which hasn't issued writebacks yet to one which
already has.
This patch adds backing_dev_info->wb_switch_rwsem to synchronize cgwb
switch path against sync_inodes_sb() so that sync_inodes_sb() is
guaranteed to see all the target wbs and inodes can't jump wbs to
escape syncing.
v2: Fixed misplaced rwsem init. Spotted by Jiufei.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jiufei Xue <xuejiufei@gmail.com>
Link: http://lkml.kernel.org/r/dc694ae2-f07f-61e1-7097-7c8411cee12d@gmail.com
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 134fca9063ad4851de767d1768180e5dede9a881 upstream.
The semantics of what mincore() considers to be resident is not
completely clear, but Linux has always (since 2.3.52, which is when
mincore() was initially done) treated it as "page is available in page
cache".
That's potentially a problem, as that [in]directly exposes
meta-information about pagecache / memory mapping state even about
memory not strictly belonging to the process executing the syscall,
opening possibilities for sidechannel attacks.
Change the semantics of mincore() so that it only reveals pagecache
information for non-anonymous mappings that belog to files that the
calling process could (if it tried to) successfully open for writing;
otherwise we'd be including shared non-exclusive mappings, which
- is the sidechannel
- is not the usecase for mincore(), as that's primarily used for data,
not (shared) text
[jkosina@suse.cz: v2]
Link: http://lkml.kernel.org/r/20190312141708.6652-2-vbabka@suse.cz
[mhocko@suse.com: restructure can_do_mincore() conditions]
Link: http://lkml.kernel.org/r/nycvar.YFH.7.76.1903062342020.19912@cbobk.fhfr.pm
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Josh Snyder <joshs@netflix.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Originally-by: Linus Torvalds <torvalds@linux-foundation.org>
Originally-by: Dominique Martinet <asmadeus@codewreck.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Kevin Easton <kevin@guarana.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Cyril Hrubis <chrubis@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daniel Gruss <daniel@gruss.cc>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e8277b3b52240ec1caad8e6df278863e4bf42eac upstream.
Commit 58bc4c34d249 ("mm/vmstat.c: skip NR_TLB_REMOTE_FLUSH* properly")
depends on skipping vmstat entries with empty name introduced in
7aaf77272358 ("mm: don't show nr_indirectly_reclaimable in
/proc/vmstat") but reverted in b29940c1abd7 ("mm: rename and change
semantics of nr_indirectly_reclaimable_bytes").
So skipping no longer works and /proc/vmstat has misformatted lines " 0".
This patch simply shows debug counters "nr_tlb_remote_*" for UP.
Link: http://lkml.kernel.org/r/155481488468.467.4295519102880913454.stgit@buzz
Fixes: 58bc4c34d249 ("mm/vmstat.c: skip NR_TLB_REMOTE_FLUSH* properly")
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Roman Gushchin <guro@fb.com>
Cc: Jann Horn <jannh@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 92d1d07daad65c300c7d0b68bbef8867e9895d54 ]
Kmemleak throws endless warnings during boot due to in
__alloc_alien_cache(),
alc = kmalloc_node(memsize, gfp, node);
init_arraycache(&alc->ac, entries, batch);
kmemleak_no_scan(ac);
Kmemleak does not track the array cache (alc->ac) but the alien cache
(alc) instead, so let it track the latter by lifting kmemleak_no_scan()
out of init_arraycache().
There is another place that calls init_arraycache(), but
alloc_kmem_cache_cpus() uses the percpu allocation where will never be
considered as a leak.
kmemleak: Found object by alias at 0xffff8007b9aa7e38
CPU: 190 PID: 1 Comm: swapper/0 Not tainted 5.0.0-rc2+ #2
Call trace:
dump_backtrace+0x0/0x168
show_stack+0x24/0x30
dump_stack+0x88/0xb0
lookup_object+0x84/0xac
find_and_get_object+0x84/0xe4
kmemleak_no_scan+0x74/0xf4
setup_kmem_cache_node+0x2b4/0x35c
__do_tune_cpucache+0x250/0x2d4
do_tune_cpucache+0x4c/0xe4
enable_cpucache+0xc8/0x110
setup_cpu_cache+0x40/0x1b8
__kmem_cache_create+0x240/0x358
create_cache+0xc0/0x198
kmem_cache_create_usercopy+0x158/0x20c
kmem_cache_create+0x50/0x64
fsnotify_init+0x58/0x6c
do_one_initcall+0x194/0x388
kernel_init_freeable+0x668/0x688
kernel_init+0x18/0x124
ret_from_fork+0x10/0x18
kmemleak: Object 0xffff8007b9aa7e00 (size 256):
kmemleak: comm "swapper/0", pid 1, jiffies 4294697137
kmemleak: min_count = 1
kmemleak: count = 0
kmemleak: flags = 0x1
kmemleak: checksum = 0
kmemleak: backtrace:
kmemleak_alloc+0x84/0xb8
kmem_cache_alloc_node_trace+0x31c/0x3a0
__kmalloc_node+0x58/0x78
setup_kmem_cache_node+0x26c/0x35c
__do_tune_cpucache+0x250/0x2d4
do_tune_cpucache+0x4c/0xe4
enable_cpucache+0xc8/0x110
setup_cpu_cache+0x40/0x1b8
__kmem_cache_create+0x240/0x358
create_cache+0xc0/0x198
kmem_cache_create_usercopy+0x158/0x20c
kmem_cache_create+0x50/0x64
fsnotify_init+0x58/0x6c
do_one_initcall+0x194/0x388
kernel_init_freeable+0x668/0x688
kernel_init+0x18/0x124
kmemleak: Not scanning unknown object at 0xffff8007b9aa7e38
CPU: 190 PID: 1 Comm: swapper/0 Not tainted 5.0.0-rc2+ #2
Call trace:
dump_backtrace+0x0/0x168
show_stack+0x24/0x30
dump_stack+0x88/0xb0
kmemleak_no_scan+0x90/0xf4
setup_kmem_cache_node+0x2b4/0x35c
__do_tune_cpucache+0x250/0x2d4
do_tune_cpucache+0x4c/0xe4
enable_cpucache+0xc8/0x110
setup_cpu_cache+0x40/0x1b8
__kmem_cache_create+0x240/0x358
create_cache+0xc0/0x198
kmem_cache_create_usercopy+0x158/0x20c
kmem_cache_create+0x50/0x64
fsnotify_init+0x58/0x6c
do_one_initcall+0x194/0x388
kernel_init_freeable+0x668/0x688
kernel_init+0x18/0x124
ret_from_fork+0x10/0x18
Link: http://lkml.kernel.org/r/20190129184518.39808-1-cai@lca.pw
Fixes: 1fe00d50a9e8 ("slab: factor out initialization of array cache")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit afd07389d3f4933c7f7817a92fb5e053d59a3182 ]
One of the vmalloc stress test case triggers the kernel BUG():
<snip>
[60.562151] ------------[ cut here ]------------
[60.562154] kernel BUG at mm/vmalloc.c:512!
[60.562206] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[60.562247] CPU: 0 PID: 430 Comm: vmalloc_test/0 Not tainted 4.20.0+ #161
[60.562293] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014
[60.562351] RIP: 0010:alloc_vmap_area+0x36f/0x390
<snip>
it can happen due to big align request resulting in overflowing of
calculated address, i.e. it becomes 0 after ALIGN()'s fixup.
Fix it by checking if calculated address is within vstart/vend range.
Link: http://lkml.kernel.org/r/20190124115648.9433-2-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 0c81585499601acd1d0e1cbf424cabfaee60628c ]
After offlining a memory block, kmemleak scan will trigger a crash, as
it encounters a page ext address that has already been freed during
memory offlining. At the beginning in alloc_page_ext(), it calls
kmemleak_alloc(), but it does not call kmemleak_free() in
free_page_ext().
BUG: unable to handle kernel paging request at ffff888453d00000
PGD 128a01067 P4D 128a01067 PUD 128a04067 PMD 47e09e067 PTE 800ffffbac2ff060
Oops: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN PTI
CPU: 1 PID: 1594 Comm: bash Not tainted 5.0.0-rc8+ #15
Hardware name: HP ProLiant DL180 Gen9/ProLiant DL180 Gen9, BIOS U20 10/25/2017
RIP: 0010:scan_block+0xb5/0x290
Code: 85 6e 01 00 00 48 b8 00 00 30 f5 81 88 ff ff 48 39 c3 0f 84 5b 01 00 00 48 89 d8 48 c1 e8 03 42 80 3c 20 00 0f 85 87 01 00 00 <4c> 8b 3b e8 f3 0c fa ff 4c 39 3d 0c 6b 4c 01 0f 87 08 01 00 00 4c
RSP: 0018:ffff8881ec57f8e0 EFLAGS: 00010082
RAX: 0000000000000000 RBX: ffff888453d00000 RCX: ffffffffa61e5a54
RDX: 0000000000000000 RSI: 0000000000000008 RDI: ffff888453d00000
RBP: ffff8881ec57f920 R08: fffffbfff4ed588d R09: fffffbfff4ed588c
R10: fffffbfff4ed588c R11: ffffffffa76ac463 R12: dffffc0000000000
R13: ffff888453d00ff9 R14: ffff8881f80cef48 R15: ffff8881f80cef48
FS: 00007f6c0e3f8740(0000) GS:ffff8881f7680000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffff888453d00000 CR3: 00000001c4244003 CR4: 00000000001606a0
Call Trace:
scan_gray_list+0x269/0x430
kmemleak_scan+0x5a8/0x10f0
kmemleak_write+0x541/0x6ca
full_proxy_write+0xf8/0x190
__vfs_write+0xeb/0x980
vfs_write+0x15a/0x4f0
ksys_write+0xd2/0x1b0
__x64_sys_write+0x73/0xb0
do_syscall_64+0xeb/0xaaa
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f6c0dad73b8
Code: 89 02 48 c7 c0 ff ff ff ff eb b3 0f 1f 80 00 00 00 00 f3 0f 1e fa 48 8d 05 65 63 2d 00 8b 00 85 c0 75 17 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 58 c3 0f 1f 80 00 00 00 00 41 54 49 89 d4 55
RSP: 002b:00007ffd5b863cb8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000005 RCX: 00007f6c0dad73b8
RDX: 0000000000000005 RSI: 000055a9216e1710 RDI: 0000000000000001
RBP: 000055a9216e1710 R08: 000000000000000a R09: 00007ffd5b863840
R10: 000000000000000a R11: 0000000000000246 R12: 00007f6c0dda9780
R13: 0000000000000005 R14: 00007f6c0dda4740 R15: 0000000000000005
Modules linked in: nls_iso8859_1 nls_cp437 vfat fat kvm_intel kvm irqbypass efivars ip_tables x_tables xfs sd_mod ahci libahci igb i2c_algo_bit libata i2c_core dm_mirror dm_region_hash dm_log dm_mod efivarfs
CR2: ffff888453d00000
---[ end trace ccf646c7456717c5 ]---
Kernel panic - not syncing: Fatal exception
Shutting down cpus with NMI
Kernel Offset: 0x24c00000 from 0xffffffff81000000 (relocation range:
0xffffffff80000000-0xffffffffbfffffff)
---[ end Kernel panic - not syncing: Fatal exception ]---
Link: http://lkml.kernel.org/r/20190227173147.75650-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 0d3bd18a5efd66097ef58622b898d3139790aa9d ]
In case cma_init_reserved_mem failed, need to free the memblock
allocated by memblock_reserve or memblock_alloc_range.
Quote Catalin's comments:
https://lkml.org/lkml/2019/2/26/482
Kmemleak is supposed to work with the memblock_{alloc,free} pair and it
ignores the memblock_reserve() as a memblock_alloc() implementation
detail. It is, however, tolerant to memblock_free() being called on
a sub-range or just a different range from a previous memblock_alloc().
So the original patch looks fine to me. FWIW:
Link: http://lkml.kernel.org/r/20190227144631.16708-1-peng.fan@nxp.com
Signed-off-by: Peng Fan <peng.fan@nxp.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit a7f40cfe3b7ada57af9b62fd28430eeb4a7cfcb7 upstream.
When MPOL_MF_STRICT was specified and an existing page was already on a
node that does not follow the policy, mbind() should return -EIO. But
commit 6f4576e3687b ("mempolicy: apply page table walker on
queue_pages_range()") broke the rule.
And commit c8633798497c ("mm: mempolicy: mbind and migrate_pages support
thp migration") didn't return the correct value for THP mbind() too.
If MPOL_MF_STRICT is set, ignore vma_migratable() to make sure it
reaches queue_pages_to_pte_range() or queue_pages_pmd() to check if an
existing page was already on a node that does not follow the policy.
And, non-migratable vma may be used, return -EIO too if MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL was specified.
Tested with https://github.com/metan-ucw/ltp/blob/master/testcases/kernel/syscalls/mbind/mbind02.c
[akpm@linux-foundation.org: tweak code comment]
Link: http://lkml.kernel.org/r/1553020556-38583-1-git-send-email-yang.shi@linux.alibaba.com
Fixes: 6f4576e3687b ("mempolicy: apply page table walker on queue_pages_range()")
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reported-by: Cyril Hrubis <chrubis@suse.cz>
Suggested-by: Kirill A. Shutemov <kirill@shutemov.name>
Acked-by: Rafael Aquini <aquini@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 0eb77e9880321915322d42913c3b53241739c8aa ]
Currently the vmstat updater is not deferrable as a result of commit
ba4877b9ca51 ("vmstat: do not use deferrable delayed work for
vmstat_update"). This in turn can cause multiple interruptions of the
applications because the vmstat updater may run at
Make vmstate_update deferrable again and provide a function that folds
the differentials when the processor is going to idle mode thus
addressing the issue of the above commit in a clean way.
Note that the shepherd thread will continue scanning the differentials
from another processor and will reenable the vmstat workers if it
detects any changes.
Fixes: ba4877b9ca51 ("vmstat: do not use deferrable delayed work for vmstat_update")
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|