Age | Commit message (Collapse) | Author |
|
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (59 commits)
MAINTAINERS: linux-m32r is moderated for non-subscribers
linux@lists.openrisc.net is moderated for non-subscribers
Drop default from "DM365 codec select" choice
parisc: Kconfig: cleanup Kernel page size default
Kconfig: remove redundant CONFIG_ prefix on two symbols
cris: remove arch/cris/arch-v32/lib/nand_init.S
microblaze: add missing CONFIG_ prefixes
h8300: drop puzzling Kconfig dependencies
MAINTAINERS: microblaze-uclinux@itee.uq.edu.au is moderated for non-subscribers
tty: drop superfluous dependency in Kconfig
ARM: mxc: fix Kconfig typo 'i.MX51'
Fix file references in Kconfig files
aic7xxx: fix Kconfig references to READMEs
Fix file references in drivers/ide/
thinkpad_acpi: Fix printk typo 'bluestooth'
bcmring: drop commented out line in Kconfig
btmrvl_sdio: fix typo 'btmrvl_sdio_sd6888'
doc: raw1394: Trivial typo fix
CIFS: Don't free volume_info->UNC until we are entirely done with it.
treewide: Correct spelling of successfully in comments
...
|
|
* 'next' of git://selinuxproject.org/~jmorris/linux-security: (95 commits)
TOMOYO: Fix incomplete read after seek.
Smack: allow to access /smack/access as normal user
TOMOYO: Fix unused kernel config option.
Smack: fix: invalid length set for the result of /smack/access
Smack: compilation fix
Smack: fix for /smack/access output, use string instead of byte
Smack: domain transition protections (v3)
Smack: Provide information for UDS getsockopt(SO_PEERCRED)
Smack: Clean up comments
Smack: Repair processing of fcntl
Smack: Rule list lookup performance
Smack: check permissions from user space (v2)
TOMOYO: Fix quota and garbage collector.
TOMOYO: Remove redundant tasklist_lock.
TOMOYO: Fix domain transition failure warning.
TOMOYO: Remove tomoyo_policy_memory_lock spinlock.
TOMOYO: Simplify garbage collector.
TOMOYO: Fix make namespacecheck warnings.
target: check hex2bin result
encrypted-keys: check hex2bin result
...
|
|
I don't usually pay much attention to the stale "? " addresses in
stack backtraces, but this lucky report from Pawel Sikora hints that
mremap's move_ptes() has inadequate locking against page migration.
3.0 BUG_ON(!PageLocked(p)) in migration_entry_to_page():
kernel BUG at include/linux/swapops.h:105!
RIP: 0010:[<ffffffff81127b76>] [<ffffffff81127b76>]
migration_entry_wait+0x156/0x160
[<ffffffff811016a1>] handle_pte_fault+0xae1/0xaf0
[<ffffffff810feee2>] ? __pte_alloc+0x42/0x120
[<ffffffff8112c26b>] ? do_huge_pmd_anonymous_page+0xab/0x310
[<ffffffff81102a31>] handle_mm_fault+0x181/0x310
[<ffffffff81106097>] ? vma_adjust+0x537/0x570
[<ffffffff81424bed>] do_page_fault+0x11d/0x4e0
[<ffffffff81109a05>] ? do_mremap+0x2d5/0x570
[<ffffffff81421d5f>] page_fault+0x1f/0x30
mremap's down_write of mmap_sem, together with i_mmap_mutex or lock,
and pagetable locks, were good enough before page migration (with its
requirement that every migration entry be found) came in, and enough
while migration always held mmap_sem; but not enough nowadays, when
there's memory hotremove and compaction.
The danger is that move_ptes() lets a migration entry dodge around
behind remove_migration_pte()'s back, so it's in the old location when
looking at the new, then in the new location when looking at the old.
Either mremap's move_ptes() must additionally take anon_vma lock(), or
migration's remove_migration_pte() must stop peeking for is_swap_entry()
before it takes pagetable lock.
Consensus chooses the latter: we prefer to add overhead to migration
than to mremapping, which gets used by JVMs and by exec stack setup.
Reported-and-tested-by: Paweł Sikora <pluto@agmk.net>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Discarding slab should be done when node partial > min_partial. Otherwise,
node partial slab may eat up all memory.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
|
|
Correct comment errors, that mistake cpu partial objects number as pages
number, may make reader misunderstand.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
|
|
Historically /proc/slabinfo and files under /sys/kernel/slab/* have
world read permissions and are accessible to the world. slabinfo
contains rather private information related both to the kernel and
userspace tasks. Depending on the situation, it might reveal either
private information per se or information useful to make another
targeted attack. Some examples of what can be learned by
reading/watching for /proc/slabinfo entries:
1) dentry (and different *inode*) number might reveal other processes fs
activity. The number of dentry "active objects" doesn't strictly show
file count opened/touched by a process, however, there is a good
correlation between them. The patch "proc: force dcache drop on
unauthorized access" relies on the privacy of dentry count.
2) different inode entries might reveal the same information as (1), but
these are more fine granted counters. If a filesystem is mounted in a
private mount point (or even a private namespace) and fs type differs from
other mounted fs types, fs activity in this mount point/namespace is
revealed. If there is a single ecryptfs mount point, the whole fs
activity of a single user is revealed. Number of files in ecryptfs
mount point is a private information per se.
3) fuse_* reveals number of files / fs activity of a user in a user
private mount point. It is approx. the same severity as ecryptfs
infoleak in (2).
4) sysfs_dir_cache similar to (2) reveals devices' addition/removal,
which can be otherwise hidden by "chmod 0700 /sys/". With 0444 slabinfo
the precise number of sysfs files is known to the world.
5) buffer_head might reveal some kernel activity. With other
information leaks an attacker might identify what specific kernel
routines generate buffer_head activity.
6) *kmalloc* infoleaks are very situational. Attacker should watch for
the specific kmalloc size entry and filter the noise related to the unrelated
kernel activity. If an attacker has relatively silent victim system, he
might get rather precise counters.
Additional information sources might significantly increase the slabinfo
infoleak benefits. E.g. if an attacker knows that the processes
activity on the system is very low (only core daemons like syslog and
cron), he may run setxid binaries / trigger local daemon activity /
trigger network services activity / await sporadic cron jobs activity
/ etc. and get rather precise counters for fs and network activity of
these privileged tasks, which is unknown otherwise.
Also hiding slabinfo and /sys/kernel/slab/* is a one step to complicate
exploitation of kernel heap overflows (and possibly, other bugs). The
related discussion:
http://thread.gmane.org/gmane.linux.kernel/1108378
To keep compatibility with old permission model where non-root
monitoring daemon could watch for kernel memleaks though slabinfo one
should do:
groupadd slabinfo
usermod -a -G slabinfo $MONITOR_USER
And add the following commands to init scripts (to mountall.conf in
Ubuntu's upstart case):
chmod g+r /proc/slabinfo /sys/kernel/slab/*/*
chgrp slabinfo /proc/slabinfo /sys/kernel/slab/*/*
Signed-off-by: Vasiliy Kulikov <segoon@openwall.com>
Reviewed-by: Kees Cook <kees@ubuntu.com>
Reviewed-by: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: Christoph Lameter <cl@gentwo.org>
Acked-by: David Rientjes <rientjes@google.com>
CC: Valdis.Kletnieks@vt.edu
CC: Linus Torvalds <torvalds@linux-foundation.org>
CC: Alan Cox <alan@linux.intel.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
|
|
* 'for-linus' of git://git.kernel.dk/linux-block:
floppy: use del_timer_sync() in init cleanup
blk-cgroup: be able to remove the record of unplugged device
block: Don't check QUEUE_FLAG_SAME_COMP in __blk_complete_request
mm: Add comment explaining task state setting in bdi_forker_thread()
mm: Cleanup clearing of BDI_pending bit in bdi_forker_thread()
block: simplify force plug flush code a little bit
block: change force plug flush call order
block: Fix queue_flag update when rq_affinity goes from 2 to 1
block: separate priority boosting from REQ_META
block: remove READ_META and WRITE_META
xen-blkback: fixed indentation and comments
xen-blkback: Don't disconnect backend until state switched to XenbusStateClosed.
|
|
* 'slab/urgent' of git://github.com/penberg/linux:
slub: add slab with one free object to partial list tail
|
|
|
|
Fast-forward merge with Linus to be able to merge patches
based on more recent version of the tree.
|
|
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Paul Menage <menage@google.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
The found entries by find_get_pages() could be all swap entries. In
this case we skip the entries, but make sure the skipped entries are
accounted, so we don't keep looping.
Using nr_found > nr_skip to simplify code as suggested by Eric.
Reported-and-tested-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Xen backend drivers (e.g., blkback and netback) would sometimes fail to
map grant pages into the vmalloc address space allocated with
alloc_vm_area(). The GNTTABOP_map_grant_ref would fail because Xen could
not find the page (in the L2 table) containing the PTEs it needed to
update.
(XEN) mm.c:3846:d0 Could not find L1 PTE for address fbb42000
netback and blkback were making the hypercall from a kernel thread where
task->active_mm != &init_mm and alloc_vm_area() was only updating the page
tables for init_mm. The usual method of deferring the update to the page
tables of other processes (i.e., after taking a fault) doesn't work as a
fault cannot occur during the hypercall.
This would work on some systems depending on what else was using vmalloc.
Fix this by reverting ef691947d8a3 ("vmalloc: remove vmalloc_sync_all()
from alloc_vm_area()") and add a comment to explain why it's needed.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Cc: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Ian Campbell <Ian.Campbell@citrix.com>
Cc: Keir Fraser <keir.xen@gmail.com>
Cc: <stable@kernel.org> [3.0.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Revert the post-3.0 commit 82f9d486e59f5 ("memcg: add
memory.vmscan_stat").
The implementation of per-memcg reclaim statistics violates how memcg
hierarchies usually behave: hierarchically.
The reclaim statistics are accounted to child memcgs and the parent
hitting the limit, but not to hierarchy levels in between. Usually,
hierarchical statistics are perfectly recursive, with each level
representing the sum of itself and all its children.
Since this exports statistics to userspace, this may lead to confusion
and problems with changing things after the release, so revert it now,
we can try again later.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Ying Han <yinghan@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Without swap, anonymous pages are not scanned. As such, they should not
count when considering force-scanning a small target if there is no swap.
Otherwise, targets are not force-scanned even when their effective scan
number is zero and the other conditions--kswapd/memcg--apply.
This fixes 246e87a93934 ("memcg: fix get_scan_count() for small
targets").
[akpm@linux-foundation.org: fix comment]
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Ying Han <yinghan@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The vmstat_text array is only defined for CONFIG_SYSFS or CONFIG_PROC_FS,
yet it is referenced for per-node vmstat with CONFIG_NUMA:
drivers/built-in.o: In function `node_read_vmstat':
node.c:(.text+0x1106df): undefined reference to `vmstat_text'
Introduced in commit fa25c503dfa2 ("mm: per-node vmstat: show proper
vmstats").
Define the array for CONFIG_NUMA as well.
[akpm@linux-foundation.org: remove unneeded ifdefs]
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Cong Wang <amwang@redhat.com>
Acked-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When compiling mm/mempolicy.c with struct user copy checks the following
warning is shown:
In file included from arch/x86/include/asm/uaccess.h:572,
from include/linux/uaccess.h:5,
from include/linux/highmem.h:7,
from include/linux/pagemap.h:10,
from include/linux/mempolicy.h:70,
from mm/mempolicy.c:68:
In function `copy_from_user',
inlined from `compat_sys_get_mempolicy' at mm/mempolicy.c:1415:
arch/x86/include/asm/uaccess_64.h:64: warning: call to `copy_from_user_overflow' declared with attribute warning: copy_from_user() buffer size is not provably correct
LD mm/built-in.o
Fix this by passing correct buffer size value.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
commit 9d8cebd4bcd7 ("mm: fix mbind vma merge problem") didn't really
fix the mbind vma merge problem due to wrong pgoff value passing to
vma_merge(), which made vma_merge() always return NULL.
Before the patch applied, we are getting a result like:
addr = 0x7fa58f00c000
[snip]
7fa58f00c000-7fa58f00d000 rw-p 00000000 00:00 0
7fa58f00d000-7fa58f00e000 rw-p 00000000 00:00 0
7fa58f00e000-7fa58f00f000 rw-p 00000000 00:00 0
here 7fa58f00c000->7fa58f00f000 we get 3 VMAs which are expected to be
merged described as described in commit 9d8cebd.
Re-testing the patched kernel with the reproducer provided in commit
9d8cebd, we get the correct result:
addr = 0x7ffa5aaa2000
[snip]
7ffa5aaa2000-7ffa5aaa6000 rw-p 00000000 00:00 0
7fffd556f000-7fffd5584000 rw-p 00000000 00:00 0 [stack]
Signed-off-by: Caspar Zhang <caspar@casparzhang.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
I find a way to reduce a variable in get_partial_node(). That is also helpful
for code understanding.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
|
|
CC: Wu Fengguang <fengguang.wu@intel.com>
CC: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
|
|
bdi_forker_thread() clears BDI_pending bit at the end of the main loop.
However clearing of this bit must not be done in some cases which is
handled by calling 'continue' from switch statement. That's kind of
unusual construct and without a good reason so change the function into
more intuitive code flow.
CC: Wu Fengguang <fengguang.wu@intel.com>
CC: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
|
|
Adding slab to partial list head/tail is sensitive to performance.
So explicitly uses DEACTIVATE_TO_TAIL/DEACTIVATE_TO_HEAD to document
it to avoid we get it wrong.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Shaohua Li <shli@kernel.org>
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
|
|
The slab has just one free object, adding it to partial list head doesn't make
sense. And it can cause lock contentation. For example,
1. CPU takes the slab from partial list
2. fetch an object
3. switch to another slab
4. free an object, then the slab is added to partial list again
In this way n->list_lock will be heavily contended.
In fact, Alex had a hackbench regression. 3.1-rc1 performance drops about 70%
against 3.0. This patch fixes it.
Acked-by: Christoph Lameter <cl@linux.com>
Reported-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Shaohua Li <shli@kernel.org>
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
|
|
Commit 79dfdaccd1d5 ("memcg: make oom_lock 0 and 1 based rather than
counter") tried to oom lock the hierarchy and roll back upon
encountering an already locked memcg.
The code is confused when it comes to detecting a locked memcg, though,
so it would fail and rollback after locking one memcg and encountering
an unlocked second one.
The result is that oom-locking hierarchies fails unconditionally and
that every oom killer invocation simply goes to sleep on the oom
waitqueue forever. The tasks practically hang forever without anyone
intervening, possibly holding locks that trip up unrelated tasks, too.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
ZONE_CONGESTED is only cleared in kswapd, but pages can be freed in any
task. It's possible ZONE_CONGESTED isn't cleared in some cases:
1. the zone is already balanced just entering balance_pgdat() for
order-0 because concurrent tasks free memory. In this case, later
check will skip the zone as it's balanced so the flag isn't cleared.
2. high order balance fallbacks to order-0. quote from Mel: At the
end of balance_pgdat(), kswapd uses the following logic;
If reclaiming at high order {
for each zone {
if all_unreclaimable
skip
if watermark is not met
order = 0
loop again
/* watermark is met */
clear congested
}
}
i.e. it clears ZONE_CONGESTED if it the zone is balanced. if not,
it restarts balancing at order-0. However, if the higher zones are
balanced for order-0, kswapd will miss clearing ZONE_CONGESTED as
that only happens after a zone is shrunk. This can mean that
wait_iff_congested() stalls unnecessarily.
This patch makes kswapd clear ZONE_CONGESTED during its initial
highmem->dma scan for zones that are already balanced.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
I get the below warning:
BUG: using smp_processor_id() in preemptible [00000000] code: bash/746
caller is native_sched_clock+0x37/0x6e
Pid: 746, comm: bash Tainted: G W 3.0.0+ #254
Call Trace:
[<ffffffff813435c6>] debug_smp_processor_id+0xc2/0xdc
[<ffffffff8104158d>] native_sched_clock+0x37/0x6e
[<ffffffff81116219>] try_to_free_mem_cgroup_pages+0x7d/0x270
[<ffffffff8114f1f8>] mem_cgroup_force_empty+0x24b/0x27a
[<ffffffff8114ff21>] ? sys_close+0x38/0x138
[<ffffffff8114ff21>] ? sys_close+0x38/0x138
[<ffffffff8114f257>] mem_cgroup_force_empty_write+0x17/0x19
[<ffffffff810c72fb>] cgroup_file_write+0xa8/0xba
[<ffffffff811522d2>] vfs_write+0xb3/0x138
[<ffffffff8115241a>] sys_write+0x4a/0x71
[<ffffffff8114ffd9>] ? sys_close+0xf0/0x138
[<ffffffff8176deab>] system_call_fastpath+0x16/0x1b
sched_clock() can't be used with preempt enabled. And we don't need
fast approach to get clock here, so let's use ktime API.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit d1a05b6973c7 ("memcg do not try to drain per-cpu caches without
pages") added a drain_local_stock() call to a preemptible section.
The draining task looks up the cpu-local stock twice to set the
draining-flag, then to drain the stock and clear the flag again. If the
task is migrated to a different CPU in between, noone will clear the
flag on the first stock and it will be forever undrainable. Its charge
can not be recovered and the cgroup can not be deleted anymore.
Properly pin the task to the executing CPU while draining stocks.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/wfg/writeback
* 'urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/writeback:
squeeze max-pause area and drop pass-good area
|
|
Signed-off-by: Justin P. Mattock <justinmattock@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
Allow filling out the rest of the kmem_cache_cpu cacheline with pointers to
partial pages. The partial page list is used in slab_free() to avoid
per node lock taking.
In __slab_alloc() we can then take multiple partial pages off the per
node partial list in one go reducing node lock pressure.
We can also use the per cpu partial list in slab_alloc() to avoid scanning
partial lists for pages with free objects.
The main effect of a per cpu partial list is that the per node list_lock
is taken for batches of partial pages instead of individual ones.
Potential future enhancements:
1. The pickup from the partial list could be perhaps be done without disabling
interrupts with some work. The free path already puts the page into the
per cpu partial list without disabling interrupts.
2. __slab_free() may have some code paths that could use optimization.
Performance:
Before After
./hackbench 100 process 200000
Time: 1953.047 1564.614
./hackbench 100 process 20000
Time: 207.176 156.940
./hackbench 100 process 20000
Time: 204.468 156.940
./hackbench 100 process 20000
Time: 204.879 158.772
./hackbench 10 process 20000
Time: 20.153 15.853
./hackbench 10 process 20000
Time: 20.153 15.986
./hackbench 10 process 20000
Time: 19.363 16.111
./hackbench 1 process 20000
Time: 2.518 2.307
./hackbench 1 process 20000
Time: 2.258 2.339
./hackbench 1 process 20000
Time: 2.864 2.163
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
|
|
There is no need anymore to return the pointer to a slab page from get_partial()
since the page reference can be stored in the kmem_cache_cpu structures "page" field.
Return an object pointer instead.
That in turn allows a simplification of the spaghetti code in __slab_alloc().
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
|
|
Pass the kmem_cache_cpu pointer to get_partial(). That way
we can avoid the this_cpu_write() statements.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
|
|
inuse will always be set to page->objects. There is no point in
initializing the field to zero in new_slab() and then overwriting
the value in __slab_alloc().
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
|
|
Two statements in __slab_alloc() do not have any effect.
1. c->page is already set to NULL by deactivate_slab() called right before.
2. gfpflags are masked in new_slab() before being passed to the page
allocator. There is no need to mask gfpflags in __slab_alloc in particular
since most frequent processing in __slab_alloc does not require the use of a
gfpmask.
Cc: torvalds@linux-foundation.org
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
|
|
There are two situations in which slub holds a lock while releasing
pages:
A. During kmem_cache_shrink()
B. During kmem_cache_close()
For A build a list while holding the lock and then release the pages
later. In case of B we are the last remaining user of the slab so
there is no need to take the listlock.
After this patch all calls to the page allocator to free pages are
done without holding any spinlocks. kmem_cache_destroy() will still
hold the slub_lock semaphore.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
|
|
Revert the pass-good area introduced in ffd1f609ab10 ("writeback:
introduce max-pause and pass-good dirty limits") and make the max-pause
area smaller and safe.
This fixes ~30% performance regression in the ext3 data=writeback
fio_mmap_randwrite_64k/fio_mmap_randrw_64k test cases, where there are
12 JBOD disks, on each disk runs 8 concurrent tasks doing reads+writes.
Using deadline scheduler also has a regression, but not that big as CFQ,
so this suggests we have some write starvation.
The test logs show that
- the disks are sometimes under utilized
- global dirty pages sometimes rush high to the pass-good area for
several hundred seconds, while in the mean time some bdi dirty pages
drop to very low value (bdi_dirty << bdi_thresh). Then suddenly the
global dirty pages dropped under global dirty threshold and bdi_dirty
rush very high (for example, 2 times higher than bdi_thresh). During
which time balance_dirty_pages() is not called at all.
So the problems are
1) The random writes progress so slow that they break the assumption of
the max-pause logic that "8 pages per 200ms is typically more than
enough to curb heavy dirtiers".
2) The max-pause logic ignored task_bdi_thresh and thus opens the possibility
for some bdi's to over dirty pages, leading to (bdi_dirty >> bdi_thresh)
and then (bdi_thresh >> bdi_dirty) for others.
3) The higher max-pause/pass-good thresholds somehow leads to the bad
swing of dirty pages.
The fix is to allow the task to slightly dirty over task_bdi_thresh, but
no way to exceed bdi_dirty and/or global dirty_thresh.
Tests show that it fixed the JBOD regression completely (both behavior
and performance), while still being able to cut down large pause times
in balance_dirty_pages() for single-disk cases.
Reported-by: Li Shaohua <shaohua.li@intel.com>
Tested-by: Li Shaohua <shaohua.li@intel.com>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
|
|
Followup to 33dd4e0ec911 "mm: make some struct page's const" which missed the
HASHED_PAGE_VIRTUAL case.
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit db64fe02258f ("mm: rewrite vmap layer") introduced code that does
address calculations under the assumption that VMAP_BLOCK_SIZE is a
power of two. However, this might not be true if CONFIG_NR_CPUS is not
set to a power of two.
Wrong vmap_block index/offset values could lead to memory corruption.
However, this has never been observed in practice (or never been
diagnosed correctly); what caught this was the BUG_ON in vb_alloc() that
checks for inconsistent vmap_block indices.
To fix this, ensure that VMAP_BLOCK_SIZE always is a power of two.
BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=31572
Reported-by: Pavel Kysilka <goldenfish@linuxsoft.cz>
Reported-by: Matias A. Fonzo <selk@dragora.org>
Signed-off-by: Clemens Ladisch <clemens@ladisch.de>
Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Krzysztof Helt <krzysztof.h1@poczta.fm>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: 2.6.28+ <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This reverts commit 8521fc50d433507a7cdc96bec280f9e5888a54cc.
The patch incorrectly assumes that using atomic FLUSHING_CACHED_CHARGE
bit operations is sufficient but that is not true. Johannes Weiner has
reported a crash during parallel memory cgroup removal:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
IP: [<ffffffff81083b70>] css_is_ancestor+0x20/0x70
Oops: 0000 [#1] PREEMPT SMP
Pid: 19677, comm: rmdir Tainted: G W 3.0.0-mm1-00188-gf38d32b #35 ECS MCP61M-M3/MCP61M-M3
RIP: 0010:[<ffffffff81083b70>] css_is_ancestor+0x20/0x70
RSP: 0018:ffff880077b09c88 EFLAGS: 00010202
Process rmdir (pid: 19677, threadinfo ffff880077b08000, task ffff8800781bb310)
Call Trace:
[<ffffffff810feba3>] mem_cgroup_same_or_subtree+0x33/0x40
[<ffffffff810feccf>] drain_all_stock+0x11f/0x170
[<ffffffff81103211>] mem_cgroup_force_empty+0x231/0x6d0
[<ffffffff811036c4>] mem_cgroup_pre_destroy+0x14/0x20
[<ffffffff81080559>] cgroup_rmdir+0xb9/0x500
[<ffffffff81114d26>] vfs_rmdir+0x86/0xe0
[<ffffffff81114e7b>] do_rmdir+0xfb/0x110
[<ffffffff81114ea6>] sys_rmdir+0x16/0x20
[<ffffffff8154d76b>] system_call_fastpath+0x16/0x1b
We are crashing because we try to dereference cached memcg when we are
checking whether we should wait for draining on the cache. The cache is
already cleaned up, though.
There is also a theoretical chance that the cached memcg gets freed
between we test for the FLUSHING_CACHED_CHARGE and dereference it in
mem_cgroup_same_or_subtree:
CPU0 CPU1 CPU2
mem=stock->cached
stock->cached=NULL
clear_bit
test_and_set_bit
test_bit() ...
<preempted> mem_cgroup_destroy
use after free
The percpu_charge_mutex protected from this race because sync draining
is exclusive.
It is safer to revert now and come up with a more parallel
implementation later.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
deactivate_slab() has the comparison if more than the minimum number of
partial pages are in the partial list wrong. An effect of this may be that
empty pages are not freed from deactivate_slab(). The result could be an
OOM due to growth of the partial slabs per node. Frees mostly occur from
__slab_free which is okay so this would only affect use cases where a lot
of switching around of per cpu slabs occur.
Switching per cpu slabs occurs with high frequency if debugging options are
enabled.
Reported-and-tested-by: Xiaotian Feng <xtfeng@gmail.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
|
|
The check_bytes() function is used by slub debugging. It returns a pointer
to the first unmatching byte for a character in the given memory area.
If the character for matching byte is greater than 0x80, check_bytes()
doesn't work. Becuase 64-bit pattern is generated as below.
value64 = value | value << 8 | value << 16 | value << 24;
value64 = value64 | value64 << 32;
The integer promotions are performed and sign-extended as the type of value
is u8. The upper 32 bits of value64 is 0xffffffff in the first line, and
the second line has no effect.
This fixes the 64-bit pattern generation.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Matt Mackall <mpm@selenic.com>
Reviewed-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Acked-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
|
|
When a slab is freed by __slab_free() and the slab can only contain a
single object ever then it was full (and therefore not on the partial
lists but on the full list in the debug case) before we reached
slab_empty.
This caused the following full list corruption when SLUB debugging was enabled:
[ 5913.233035] ------------[ cut here ]------------
[ 5913.233097] WARNING: at lib/list_debug.c:53 __list_del_entry+0x8d/0x98()
[ 5913.233101] Hardware name: Adamo 13
[ 5913.233105] list_del corruption. prev->next should be ffffea000434fd20, but was ffffea0004199520
[ 5913.233108] Modules linked in: nfs fscache fuse ebtable_nat ebtables ppdev parport_pc lp parport ipt_MASQUERADE iptable_nat nf_nat nfsd lockd nfs_acl auth_rpcgss xt_CHECKSUM sunrpc iptable_mangle bridge stp llc cpufreq_ondemand acpi_cpufreq freq_table mperf ip6t_REJECT nf_conntrack_ipv6 nf_defrag_ipv6 ip6table_filter ip6_tables rfcomm bnep arc4 iwlagn snd_hda_codec_hdmi snd_hda_codec_idt snd_hda_intel btusb mac80211 snd_hda_codec bluetooth snd_hwdep snd_seq snd_seq_device snd_pcm usb_debug dell_wmi sparse_keymap cdc_ether usbnet cdc_acm uvcvideo cdc_wdm mii cfg80211 snd_timer dell_laptop videodev dcdbas snd microcode v4l2_compat_ioctl32 soundcore joydev tg3 pcspkr snd_page_alloc iTCO_wdt i2c_i801 rfkill iTCO_vendor_support wmi virtio_net kvm_intel kvm ipv6 xts gf128mul dm_crypt i915 drm_kms_helper drm i2c_algo_bit i2c_core video [last unloaded: scsi_wait_scan]
[ 5913.233213] Pid: 0, comm: swapper Not tainted 3.0.0+ #127
[ 5913.233213] Call Trace:
[ 5913.233213] <IRQ> [<ffffffff8105df18>] warn_slowpath_common+0x83/0x9b
[ 5913.233213] [<ffffffff8105dfd3>] warn_slowpath_fmt+0x46/0x48
[ 5913.233213] [<ffffffff8127e7c1>] __list_del_entry+0x8d/0x98
[ 5913.233213] [<ffffffff8127e7da>] list_del+0xe/0x2d
[ 5913.233213] [<ffffffff814e0430>] __slab_free+0x1db/0x235
[ 5913.233213] [<ffffffff811706ab>] ? bvec_free_bs+0x35/0x37
[ 5913.233213] [<ffffffff811706ab>] ? bvec_free_bs+0x35/0x37
[ 5913.233213] [<ffffffff811706ab>] ? bvec_free_bs+0x35/0x37
[ 5913.233213] [<ffffffff81133085>] kmem_cache_free+0x88/0x102
[ 5913.233213] [<ffffffff811706ab>] bvec_free_bs+0x35/0x37
[ 5913.233213] [<ffffffff811706e1>] bio_free+0x34/0x64
[ 5913.233213] [<ffffffff813dc390>] dm_bio_destructor+0x12/0x14
[ 5913.233213] [<ffffffff8116fef6>] bio_put+0x2b/0x2d
[ 5913.233213] [<ffffffff813dccab>] clone_endio+0x9e/0xb4
[ 5913.233213] [<ffffffff8116f7dd>] bio_endio+0x2d/0x2f
[ 5913.233213] [<ffffffffa00148da>] crypt_dec_pending+0x5c/0x8b [dm_crypt]
[ 5913.233213] [<ffffffffa00150a9>] crypt_endio+0x78/0x81 [dm_crypt]
[ Full discussion here: https://lkml.org/lkml/2011/8/4/375 ]
Make sure that we remove such a slab also from the full lists.
Reported-and-tested-by: Dave Jones <davej@redhat.com>
Reported-and-tested-by: Xiaotian Feng <xtfeng@gmail.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/zohar/ima-2.6 into next
Conflicts:
fs/attr.c
Resolve conflict manually.
Signed-off-by: James Morris <jmorris@namei.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
slab, lockdep: Annotate the locks before using them
lockdep: Clear whole lockdep_map on initialization
slab, lockdep: Annotate slab -> rcu -> debug_object -> slab
lockdep: Fix up warning
lockdep: Fix trace_hardirqs_on_caller()
futex: Fix regression with read only mappings
|
|
Fernando found we hit the regular OFF_SLAB 'recursion' before we
annotate the locks, cure this.
The relevant portion of the stack-trace:
> [ 0.000000] [<c085e24f>] rt_spin_lock+0x50/0x56
> [ 0.000000] [<c04fb406>] __cache_free+0x43/0xc3
> [ 0.000000] [<c04fb23f>] kmem_cache_free+0x6c/0xdc
> [ 0.000000] [<c04fb2fe>] slab_destroy+0x4f/0x53
> [ 0.000000] [<c04fb396>] free_block+0x94/0xc1
> [ 0.000000] [<c04fc551>] do_tune_cpucache+0x10b/0x2bb
> [ 0.000000] [<c04fc8dc>] enable_cpucache+0x7b/0xa7
> [ 0.000000] [<c0bd9d3c>] kmem_cache_init_late+0x1f/0x61
> [ 0.000000] [<c0bba687>] start_kernel+0x24c/0x363
> [ 0.000000] [<c0bba0ba>] i386_start_kernel+0xa9/0xaf
Reported-by: Fernando Lopez-Lezcano <nando@ccrma.Stanford.EDU>
Acked-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1311888176.2617.379.camel@laptop
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Lockdep thinks there's lock recursion through:
kmem_cache_free()
cache_flusharray()
spin_lock(&l3->list_lock) <----------------.
free_block() |
slab_destroy() |
call_rcu() |
debug_object_activate() |
debug_object_init() |
__debug_object_init() |
kmem_cache_alloc() |
cache_alloc_refill() |
spin_lock(&l3->list_lock) --'
Now debug objects doesn't use SLAB_DESTROY_BY_RCU and hence there is no
actual possibility of recursing. Luckily debug objects marks it slab
with SLAB_DEBUG_OBJECTS so we can identify the thing.
Mark all SLAB_DEBUG_OBJECTS (all one!) slab caches with a special
lockdep key so that lockdep sees its a different cachep.
Also add a WARN on trying to create a SLAB_DESTROY_BY_RCU |
SLAB_DEBUG_OBJECTS cache, to avoid possible future trouble.
Reported-and-tested-by: Sebastian Siewior <sebastian@breakpoint.cc>
[ fixes to the initial patch ]
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1311341165.27400.58.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6
* 'apei-release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6:
ACPI, APEI, EINJ Param support is disabled by default
APEI GHES: 32-bit buildfix
ACPI: APEI build fix
ACPI, APEI, GHES: Add hardware memory error recovery support
HWPoison: add memory_failure_queue()
ACPI, APEI, GHES, Error records content based throttle
ACPI, APEI, GHES, printk support for recoverable error via NMI
lib, Make gen_pool memory allocator lockless
lib, Add lock-less NULL terminated single list
Add Kconfig option ARCH_HAVE_NMI_SAFE_CMPXCHG
ACPI, APEI, Add WHEA _OSC support
ACPI, APEI, Add APEI bit support in generic _OSC call
ACPI, APEI, GHES, Support disable GHES at boot time
ACPI, APEI, GHES, Prevent GHES to be built as module
ACPI, APEI, Use apei_exec_run_optional in APEI EINJ and ERST
ACPI, APEI, Add apei_exec_run_optional
ACPI, APEI, GHES, Do not ratelimit fatal error printk before panic
ACPI, APEI, ERST, Fix erst-dbg long record reading issue
ACPI, APEI, ERST, Prevent erst_dbg from loading if ERST is disabled
|
|
Make the radix_tree exceptional cases, mostly in filemap.c, clearer.
It's hard to devise a suitable snappy name that illuminates the use by
shmem/tmpfs for swap, while keeping filemap/pagecache/radix_tree
generality. And akpm points out that /* radix_tree_deref_retry(page) */
comments look like calls that have been commented out for unknown
reason.
Skirt the naming difficulty by rearranging these blocks to handle the
transient radix_tree_deref_retry(page) case first; then just explain the
remaining shmem/tmpfs swap case in a comment.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We have already acknowledged that swapoff of a tmpfs file is slower than
it was before conversion to the generic radix_tree: a little slower
there will be acceptable, if the hotter paths are faster.
But it was a shock to find swapoff of a 500MB file 20 times slower on my
laptop, taking 10 minutes; and at that rate it significantly slows down
my testing.
Now, most of that turned out to be overhead from PROVE_LOCKING and
PROVE_RCU: without those it was only 4 times slower than before; and
more realistic tests on other machines don't fare as badly.
I've tried a number of things to improve it, including tagging the swap
entries, then doing lookup by tag: I'd expected that to halve the time,
but in practice it's erratic, and often counter-productive.
The only change I've so far found to make a consistent improvement, is
to short-circuit the way we go back and forth, gang lookup packing
entries into the array supplied, then shmem scanning that array for the
target entry. Scanning in place doubles the speed, so it's now only
twice as slow as before (or three times slower when the PROVEs are on).
So, add radix_tree_locate_item() as an expedient, once-off,
single-caller hack to do the lookup directly in place. #ifdef it on
CONFIG_SHMEM and CONFIG_SWAP, as much to document its limited
applicability as save space in other configurations. And, sadly,
#include sched.h for cond_resched().
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|