From 0a0fca9d832b704f116a25badd1ca8c16771dcac Mon Sep 17 00:00:00 2001 From: Viresh Kumar Date: Tue, 4 Jun 2013 13:10:24 +0530 Subject: sched: Rename sched.c as sched/core.c in comments and Documentation Most of the stuff from kernel/sched.c was moved to kernel/sched/core.c long time back and the comments/Documentation never got updated. I figured it out when I was going through sched-domains.txt and so thought of fixing it globally. I haven't crossed check if the stuff that is referenced in sched/core.c by all these files is still present and hasn't changed as that wasn't the motive behind this patch. Signed-off-by: Viresh Kumar Signed-off-by: Peter Zijlstra Link: http://lkml.kernel.org/r/cdff76a265326ab8d71922a1db5be599f20aad45.1370329560.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar --- Documentation/cgroups/cpusets.txt | 2 +- Documentation/rt-mutex-design.txt | 2 +- Documentation/scheduler/sched-domains.txt | 4 ++-- Documentation/spinlocks.txt | 2 +- Documentation/virtual/uml/UserModeLinux-HOWTO.txt | 4 ++-- 5 files changed, 7 insertions(+), 7 deletions(-) (limited to 'Documentation') diff --git a/Documentation/cgroups/cpusets.txt b/Documentation/cgroups/cpusets.txt index 12e01d432bfe..7740038d82bc 100644 --- a/Documentation/cgroups/cpusets.txt +++ b/Documentation/cgroups/cpusets.txt @@ -373,7 +373,7 @@ can become very uneven. 1.7 What is sched_load_balance ? -------------------------------- -The kernel scheduler (kernel/sched.c) automatically load balances +The kernel scheduler (kernel/sched/core.c) automatically load balances tasks. If one CPU is underutilized, kernel code running on that CPU will look for tasks on other more overloaded CPUs and move those tasks to itself, within the constraints of such placement mechanisms diff --git a/Documentation/rt-mutex-design.txt b/Documentation/rt-mutex-design.txt index 33ed8007a845..a5bcd7f5c33f 100644 --- a/Documentation/rt-mutex-design.txt +++ b/Documentation/rt-mutex-design.txt @@ -384,7 +384,7 @@ priority back. __rt_mutex_adjust_prio examines the result of rt_mutex_getprio, and if the result does not equal the task's current priority, then rt_mutex_setprio is called to adjust the priority of the task to the new priority. -Note that rt_mutex_setprio is defined in kernel/sched.c to implement the +Note that rt_mutex_setprio is defined in kernel/sched/core.c to implement the actual change in priority. It is interesting to note that __rt_mutex_adjust_prio can either increase diff --git a/Documentation/scheduler/sched-domains.txt b/Documentation/scheduler/sched-domains.txt index 443f0c76bab4..4af80b1c05aa 100644 --- a/Documentation/scheduler/sched-domains.txt +++ b/Documentation/scheduler/sched-domains.txt @@ -25,7 +25,7 @@ is treated as one entity. The load of a group is defined as the sum of the load of each of its member CPUs, and only when the load of a group becomes out of balance are tasks moved between groups. -In kernel/sched.c, trigger_load_balance() is run periodically on each CPU +In kernel/sched/core.c, trigger_load_balance() is run periodically on each CPU through scheduler_tick(). It raises a softirq after the next regularly scheduled rebalancing event for the current runqueue has arrived. The actual load balancing workhorse, run_rebalance_domains()->rebalance_domains(), is then run @@ -62,7 +62,7 @@ struct sched_domain fields, SD_FLAG_*, SD_*_INIT to get an idea of the specifics and what to tune. Architectures may retain the regular override the default SD_*_INIT flags -while using the generic domain builder in kernel/sched.c if they wish to +while using the generic domain builder in kernel/sched/core.c if they wish to retain the traditional SMT->SMP->NUMA topology (or some subset of that). This can be done by #define'ing ARCH_HASH_SCHED_TUNE. diff --git a/Documentation/spinlocks.txt b/Documentation/spinlocks.txt index 9dbe885ecd8d..97eaf5727178 100644 --- a/Documentation/spinlocks.txt +++ b/Documentation/spinlocks.txt @@ -137,7 +137,7 @@ don't block on each other (and thus there is no dead-lock wrt interrupts. But when you do the write-lock, you have to use the irq-safe version. For an example of being clever with rw-locks, see the "waitqueue_lock" -handling in kernel/sched.c - nothing ever _changes_ a wait-queue from +handling in kernel/sched/core.c - nothing ever _changes_ a wait-queue from within an interrupt, they only read the queue in order to know whom to wake up. So read-locks are safe (which is good: they are very common indeed), while write-locks need to protect themselves against interrupts. diff --git a/Documentation/virtual/uml/UserModeLinux-HOWTO.txt b/Documentation/virtual/uml/UserModeLinux-HOWTO.txt index a5f8436753e7..f4099ca6b483 100644 --- a/Documentation/virtual/uml/UserModeLinux-HOWTO.txt +++ b/Documentation/virtual/uml/UserModeLinux-HOWTO.txt @@ -3127,7 +3127,7 @@ at process_kern.c:156 #3 0x1006a052 in switch_to (prev=0x50072000, next=0x507e8000, last=0x50072000) at process_kern.c:161 - #4 0x10001d12 in schedule () at sched.c:777 + #4 0x10001d12 in schedule () at core.c:777 #5 0x1006a744 in __down (sem=0x507d241c) at semaphore.c:71 #6 0x1006aa10 in __down_failed () at semaphore.c:157 #7 0x1006c5d8 in segv_handler (sc=0x5006e940) at trap_user.c:174 @@ -3191,7 +3191,7 @@ at process_kern.c:161 161 _switch_to(prev, next); (gdb) - #4 0x10001d12 in schedule () at sched.c:777 + #4 0x10001d12 in schedule () at core.c:777 777 switch_to(prev, next, prev); (gdb) #5 0x1006a744 in __down (sem=0x507d241c) at semaphore.c:71 -- cgit v1.2.3