/* * arch/arm64/kernel/topology.c * * Copyright (C) 2011,2013,2014 Linaro Limited. * * Based on the arm32 version written by Vincent Guittot in turn based on * arch/sh/kernel/topology.c * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * cpu power table * This per cpu data structure describes the relative capacity of each core. * On a heteregenous system, cores don't have the same computation capacity * and we reflect that difference in the cpu_power field so the scheduler can * take this difference into account during load balance. A per cpu structure * is preferred because each CPU updates its own cpu_power field during the * load balance except for idle cores. One idle core is selected to run the * rebalance_domains for all idle cores and the cpu_power can be updated * during this sequence. */ static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu) { return per_cpu(cpu_scale, cpu); } static void set_power_scale(unsigned int cpu, unsigned long power) { per_cpu(cpu_scale, cpu) = power; } unsigned long scale_cpu_capacity(struct sched_domain *sd, int cpu) { #ifdef CONFIG_CPU_FREQ unsigned long max_freq_scale = cpufreq_scale_max_freq_capacity(cpu); return per_cpu(cpu_scale, cpu) * max_freq_scale >> SCHED_CAPACITY_SHIFT; #else return per_cpu(cpu_scale, cpu); #endif } static void set_capacity_scale(unsigned int cpu, unsigned long capacity) { per_cpu(cpu_scale, cpu) = capacity; } static int __init get_cpu_for_node(struct device_node *node) { struct device_node *cpu_node; int cpu; cpu_node = of_parse_phandle(node, "cpu", 0); if (!cpu_node) return -1; for_each_possible_cpu(cpu) { if (of_get_cpu_node(cpu, NULL) == cpu_node) { of_node_put(cpu_node); return cpu; } } pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name); of_node_put(cpu_node); return -1; } static int __init parse_core(struct device_node *core, int cluster_id, int core_id) { char name[10]; bool leaf = true; int i = 0; int cpu; struct device_node *t; do { snprintf(name, sizeof(name), "thread%d", i); t = of_get_child_by_name(core, name); if (t) { leaf = false; cpu = get_cpu_for_node(t); if (cpu >= 0) { cpu_topology[cpu].cluster_id = cluster_id; cpu_topology[cpu].core_id = core_id; cpu_topology[cpu].thread_id = i; } else { pr_err("%s: Can't get CPU for thread\n", t->full_name); of_node_put(t); return -EINVAL; } of_node_put(t); } i++; } while (t); cpu = get_cpu_for_node(core); if (cpu >= 0) { if (!leaf) { pr_err("%s: Core has both threads and CPU\n", core->full_name); return -EINVAL; } cpu_topology[cpu].cluster_id = cluster_id; cpu_topology[cpu].core_id = core_id; } else if (leaf) { pr_err("%s: Can't get CPU for leaf core\n", core->full_name); return -EINVAL; } return 0; } static int __init parse_cluster(struct device_node *cluster, int depth) { char name[10]; bool leaf = true; bool has_cores = false; struct device_node *c; static int cluster_id __initdata; int core_id = 0; int i, ret; /* * First check for child clusters; we currently ignore any * information about the nesting of clusters and present the * scheduler with a flat list of them. */ i = 0; do { snprintf(name, sizeof(name), "cluster%d", i); c = of_get_child_by_name(cluster, name); if (c) { leaf = false; ret = parse_cluster(c, depth + 1); of_node_put(c); if (ret != 0) return ret; } i++; } while (c); /* Now check for cores */ i = 0; do { snprintf(name, sizeof(name), "core%d", i); c = of_get_child_by_name(cluster, name); if (c) { has_cores = true; if (depth == 0) { pr_err("%s: cpu-map children should be clusters\n", c->full_name); of_node_put(c); return -EINVAL; } if (leaf) { ret = parse_core(c, cluster_id, core_id++); } else { pr_err("%s: Non-leaf cluster with core %s\n", cluster->full_name, name); ret = -EINVAL; } of_node_put(c); if (ret != 0) return ret; } i++; } while (c); if (leaf && !has_cores) pr_warn("%s: empty cluster\n", cluster->full_name); if (leaf) cluster_id++; return 0; } struct cpu_efficiency { const char *compatible; unsigned long efficiency; }; /* * Table of relative efficiency of each processors * The efficiency value must fit in 20bit and the final * cpu_scale value must be in the range * 0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2 * in order to return at most 1 when DIV_ROUND_CLOSEST * is used to compute the capacity of a CPU. * Processors that are not defined in the table, * use the default SCHED_CAPACITY_SCALE value for cpu_scale. */ static const struct cpu_efficiency table_efficiency[] = { { NULL, }, }; static unsigned long *__cpu_capacity; #define cpu_capacity(cpu) __cpu_capacity[cpu] static unsigned long middle_capacity = 1; static DEFINE_PER_CPU(unsigned long, cpu_efficiency) = SCHED_CAPACITY_SCALE; unsigned long arch_get_cpu_efficiency(int cpu) { return per_cpu(cpu_efficiency, cpu); } EXPORT_SYMBOL(arch_get_cpu_efficiency); /* * Iterate all CPUs' descriptor in DT and compute the efficiency * (as per table_efficiency). Also calculate a middle efficiency * as close as possible to (max{eff_i} - min{eff_i}) / 2 * This is later used to scale the cpu_power field such that an * 'average' CPU is of middle power. Also see the comments near * table_efficiency[] and update_cpu_power(). */ static int __init parse_dt_topology(void) { struct device_node *cn, *map; int ret = 0; int cpu; cn = of_find_node_by_path("/cpus"); if (!cn) { pr_err("No CPU information found in DT\n"); return 0; } /* * When topology is provided cpu-map is essentially a root * cluster with restricted subnodes. */ map = of_get_child_by_name(cn, "cpu-map"); if (!map) goto out; ret = parse_cluster(map, 0); if (ret != 0) goto out_map; /* * Check that all cores are in the topology; the SMP code will * only mark cores described in the DT as possible. */ for_each_possible_cpu(cpu) if (cpu_topology[cpu].cluster_id == -1) ret = -EINVAL; out_map: of_node_put(map); out: of_node_put(cn); return ret; } static void __init parse_dt_cpu_power(void) { const struct cpu_efficiency *cpu_eff; struct device_node *cn; unsigned long min_capacity = ULONG_MAX; unsigned long max_capacity = 0; unsigned long capacity = 0; int cpu; __cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity), GFP_NOWAIT); for_each_possible_cpu(cpu) { const u32 *rate; int len; u32 efficiency; /* Too early to use cpu->of_node */ cn = of_get_cpu_node(cpu, NULL); if (!cn) { pr_err("Missing device node for CPU %d\n", cpu); continue; } /* * The CPU efficiency value passed from the device tree * overrides the value defined in the table_efficiency[] */ if (of_property_read_u32(cn, "efficiency", &efficiency) < 0) { for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++) if (of_device_is_compatible(cn, cpu_eff->compatible)) break; if (cpu_eff->compatible == NULL) { pr_warn("%s: Unknown CPU type\n", cn->full_name); continue; } efficiency = cpu_eff->efficiency; } per_cpu(cpu_efficiency, cpu) = efficiency; rate = of_get_property(cn, "clock-frequency", &len); if (!rate || len != 4) { pr_err("%s: Missing clock-frequency property\n", cn->full_name); continue; } capacity = ((be32_to_cpup(rate)) >> 20) * efficiency; /* Save min capacity of the system */ if (capacity < min_capacity) min_capacity = capacity; /* Save max capacity of the system */ if (capacity > max_capacity) max_capacity = capacity; cpu_capacity(cpu) = capacity; } /* If min and max capacities are equal we bypass the update of the * cpu_scale because all CPUs have the same capacity. Otherwise, we * compute a middle_capacity factor that will ensure that the capacity * of an 'average' CPU of the system will be as close as possible to * SCHED_CAPACITY_SCALE, which is the default value, but with the * constraint explained near table_efficiency[]. */ if (min_capacity == max_capacity) return; else if (4 * max_capacity < (3 * (max_capacity + min_capacity))) middle_capacity = (min_capacity + max_capacity) >> (SCHED_CAPACITY_SHIFT+1); else middle_capacity = ((max_capacity / 3) >> (SCHED_CAPACITY_SHIFT-1)) + 1; } /* * Look for a customed capacity of a CPU in the cpu_topo_data table during the * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the * function returns directly for SMP system. */ static void update_cpu_power(unsigned int cpu) { if (!cpu_capacity(cpu)) return; set_power_scale(cpu, cpu_capacity(cpu) / middle_capacity); pr_info("CPU%u: update cpu_power %lu\n", cpu, arch_scale_freq_power(NULL, cpu)); } /* * cpu topology table */ struct cpu_topology cpu_topology[NR_CPUS]; EXPORT_SYMBOL_GPL(cpu_topology); /* sd energy functions */ static inline const struct sched_group_energy * const cpu_cluster_energy(int cpu) { struct sched_group_energy *sge = sge_array[cpu][SD_LEVEL1]; if (!sge) { pr_warn("Invalid sched_group_energy for Cluster%d\n", cpu); return NULL; } return sge; } static inline const struct sched_group_energy * const cpu_core_energy(int cpu) { struct sched_group_energy *sge = sge_array[cpu][SD_LEVEL0]; if (!sge) { pr_warn("Invalid sched_group_energy for CPU%d\n", cpu); return NULL; } return sge; } const struct cpumask *cpu_coregroup_mask(int cpu) { return &cpu_topology[cpu].core_sibling; } static inline int cpu_corepower_flags(void) { return SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN | \ SD_SHARE_CAP_STATES; } static struct sched_domain_topology_level arm64_topology[] = { #ifdef CONFIG_SCHED_MC { cpu_coregroup_mask, cpu_corepower_flags, cpu_core_energy, SD_INIT_NAME(MC) }, #endif { cpu_cpu_mask, NULL, cpu_cluster_energy, SD_INIT_NAME(DIE) }, { NULL, }, }; static void update_cpu_capacity(unsigned int cpu) { unsigned long capacity = SCHED_CAPACITY_SCALE; if (sched_energy_aware && cpu_core_energy(cpu)) { int max_cap_idx = cpu_core_energy(cpu)->nr_cap_states - 1; capacity = cpu_core_energy(cpu)->cap_states[max_cap_idx].cap; } set_capacity_scale(cpu, capacity); pr_info("CPU%d: update cpu_capacity %lu\n", cpu, arch_scale_cpu_capacity(NULL, cpu)); } static void update_siblings_masks(unsigned int cpuid) { struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; int cpu; /* update core and thread sibling masks */ for_each_possible_cpu(cpu) { cpu_topo = &cpu_topology[cpu]; if (cpuid_topo->cluster_id != cpu_topo->cluster_id) continue; cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); if (cpu != cpuid) cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); if (cpuid_topo->core_id != cpu_topo->core_id) continue; cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); if (cpu != cpuid) cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); } } void store_cpu_topology(unsigned int cpuid) { struct cpu_topology *cpuid_topo = &cpu_topology[cpuid]; u64 mpidr; if (cpuid_topo->cluster_id != -1) goto topology_populated; mpidr = read_cpuid_mpidr(); /* Uniprocessor systems can rely on default topology values */ if (mpidr & MPIDR_UP_BITMASK) return; /* Create cpu topology mapping based on MPIDR. */ if (mpidr & MPIDR_MT_BITMASK) { /* Multiprocessor system : Multi-threads per core */ cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1); cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 2) | MPIDR_AFFINITY_LEVEL(mpidr, 3) << 8; } else { /* Multiprocessor system : Single-thread per core */ cpuid_topo->thread_id = -1; cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); cpuid_topo->cluster_id = MPIDR_AFFINITY_LEVEL(mpidr, 1) | MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8 | MPIDR_AFFINITY_LEVEL(mpidr, 3) << 16; } pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n", cpuid, cpuid_topo->cluster_id, cpuid_topo->core_id, cpuid_topo->thread_id, mpidr); topology_populated: update_siblings_masks(cpuid); update_cpu_power(cpuid); update_cpu_capacity(cpuid); } static void __init reset_cpu_topology(void) { unsigned int cpu; for_each_possible_cpu(cpu) { struct cpu_topology *cpu_topo = &cpu_topology[cpu]; cpu_topo->thread_id = -1; cpu_topo->core_id = 0; cpu_topo->cluster_id = -1; cpumask_clear(&cpu_topo->core_sibling); cpumask_set_cpu(cpu, &cpu_topo->core_sibling); cpumask_clear(&cpu_topo->thread_sibling); cpumask_set_cpu(cpu, &cpu_topo->thread_sibling); } } static void __init reset_cpu_power(void) { unsigned int cpu; for_each_possible_cpu(cpu) set_power_scale(cpu, SCHED_CAPACITY_SCALE); } void __init init_cpu_topology(void) { int cpu; reset_cpu_topology(); /* * Discard anything that was parsed if we hit an error so we * don't use partial information. */ if (of_have_populated_dt() && parse_dt_topology()) { reset_cpu_topology(); } else { set_sched_topology(arm64_topology); for_each_possible_cpu(cpu) update_siblings_masks(cpu); } reset_cpu_power(); parse_dt_cpu_power(); init_sched_energy_costs(); }