/* * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include "clk-alpha-pll.h" #define PLL_MODE 0x00 #define PLL_OUTCTRL BIT(0) #define PLL_BYPASSNL BIT(1) #define PLL_RESET_N BIT(2) #define PLL_LOCK_COUNT_SHIFT 8 #define PLL_LOCK_COUNT_MASK 0x3f #define PLL_LOCK_COUNT_VAL 0x0 #define PLL_BIAS_COUNT_SHIFT 14 #define PLL_BIAS_COUNT_MASK 0x3f #define PLL_BIAS_COUNT_VAL 0x6 #define PLL_LATCH_INTERFACE BIT(11) #define PLL_VOTE_FSM_ENA BIT(20) #define PLL_VOTE_FSM_RESET BIT(21) #define PLL_UPDATE BIT(22) #define PLL_HW_UPDATE_LOGIC_BYPASS BIT(23) #define PLL_ALPHA_EN BIT(24) #define PLL_ACTIVE_FLAG BIT(30) #define PLL_LOCK_DET BIT(31) #define PLL_ACK_LATCH BIT(29) #define PLL_L_VAL 0x04 #define PLL_ALPHA_VAL 0x08 #define PLL_ALPHA_VAL_U 0x0c #define PLL_USER_CTL 0x10 #define PLL_POST_DIV_SHIFT 8 #define PLL_POST_DIV_MASK 0xf #define PLL_VCO_SHIFT 20 #define PLL_VCO_MASK 0x3 #define PLL_USER_CTL_U 0x14 #define PLL_CONFIG_CTL 0x18 #define PLL_TEST_CTL 0x1c #define PLL_TEST_CTL_U 0x20 #define PLL_STATUS 0x24 /* * Even though 40 bits are present, use only 32 for ease of calculation. */ #define ALPHA_REG_BITWIDTH 40 #define ALPHA_BITWIDTH 32 #define to_clk_alpha_pll(_hw) container_of(to_clk_regmap(_hw), \ struct clk_alpha_pll, clkr) #define to_clk_alpha_pll_postdiv(_hw) container_of(to_clk_regmap(_hw), \ struct clk_alpha_pll_postdiv, clkr) static int wait_for_pll(struct clk_alpha_pll *pll, u32 mask, bool inverse, const char *action) { u32 val, off; int count; int ret; const char *name = clk_hw_get_name(&pll->clkr.hw); off = pll->offset; ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val); if (ret) return ret; for (count = 100; count > 0; count--) { ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val); if (ret) return ret; if (inverse && !(val & mask)) return 0; else if ((val & mask) == mask) return 0; udelay(1); } WARN(1, "%s failed to %s!\n", name, action); return -ETIMEDOUT; } static int wait_for_pll_enable(struct clk_alpha_pll *pll, u32 mask) { return wait_for_pll(pll, mask, 0, "enable"); } static int wait_for_pll_disable(struct clk_alpha_pll *pll, u32 mask) { return wait_for_pll(pll, mask, 1, "disable"); } static int wait_for_pll_offline(struct clk_alpha_pll *pll, u32 mask) { return wait_for_pll(pll, mask, 0, "offline"); } static int wait_for_pll_latch_ack(struct clk_alpha_pll *pll, u32 mask) { return wait_for_pll(pll, mask, 0, "latch_ack"); } static int wait_for_pll_update(struct clk_alpha_pll *pll, u32 mask) { return wait_for_pll(pll, mask, 1, "update"); } /* alpha pll with hwfsm support */ #define PLL_OFFLINE_REQ BIT(7) #define PLL_FSM_ENA BIT(20) #define PLL_OFFLINE_ACK BIT(28) #define PLL_ACTIVE_FLAG BIT(30) static void clk_alpha_set_fsm_mode(struct clk_alpha_pll *pll) { u32 val; regmap_read(pll->clkr.regmap, pll->offset + PLL_MODE, &val); /* De-assert reset to FSM */ val &= ~PLL_VOTE_FSM_RESET; /* Program bias count */ val &= ~(PLL_BIAS_COUNT_MASK << PLL_BIAS_COUNT_SHIFT); val |= PLL_BIAS_COUNT_VAL << PLL_BIAS_COUNT_SHIFT; /* Program lock count */ val &= ~(PLL_LOCK_COUNT_MASK << PLL_LOCK_COUNT_SHIFT); val |= PLL_LOCK_COUNT_VAL << PLL_LOCK_COUNT_SHIFT; /* Enable PLL FSM voting */ val |= PLL_VOTE_FSM_ENA; regmap_write(pll->clkr.regmap, pll->offset + PLL_MODE, val); } void clk_alpha_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap, const struct pll_config *config) { u32 val, mask; if (config->l) regmap_write(regmap, pll->offset + PLL_L_VAL, config->l); if (config->alpha) regmap_write(regmap, pll->offset + PLL_ALPHA_VAL, config->alpha); if (config->alpha_u) regmap_write(regmap, pll->offset + PLL_ALPHA_VAL_U, config->alpha_u); if (config->config_ctl_val) regmap_write(regmap, pll->offset + PLL_CONFIG_CTL, config->config_ctl_val); if (config->main_output_mask || config->aux_output_mask || config->aux2_output_mask || config->early_output_mask || config->vco_val || config->alpha_en_mask) { val = config->main_output_mask; val |= config->aux_output_mask; val |= config->aux2_output_mask; val |= config->early_output_mask; val |= config->vco_val; val |= config->alpha_en_mask; mask = config->main_output_mask; mask |= config->aux_output_mask; mask |= config->aux2_output_mask; mask |= config->early_output_mask; mask |= config->vco_mask; mask |= config->alpha_en_mask; regmap_update_bits(regmap, pll->offset + PLL_USER_CTL, mask, val); } if (config->post_div_mask) { mask = config->post_div_mask; val = config->post_div_val; regmap_update_bits(regmap, pll->offset + PLL_USER_CTL, mask, val); } /* Do not bypass the latch interface */ if (pll->flags & SUPPORTS_SLEW) regmap_update_bits(regmap, pll->offset + PLL_USER_CTL_U, PLL_LATCH_INTERFACE, (u32)~PLL_LATCH_INTERFACE); if (pll->flags & SUPPORTS_DYNAMIC_UPDATE) { regmap_update_bits(regmap, pll->offset + PLL_MODE, PLL_HW_UPDATE_LOGIC_BYPASS, PLL_HW_UPDATE_LOGIC_BYPASS); } if (config->test_ctl_lo_mask) { mask = config->test_ctl_lo_mask; val = config->test_ctl_lo_val; regmap_update_bits(regmap, pll->offset + PLL_TEST_CTL, mask, val); } if (config->test_ctl_hi_mask) { mask = config->test_ctl_hi_mask; val = config->test_ctl_hi_val; regmap_update_bits(regmap, pll->offset + PLL_TEST_CTL_U, mask, val); } if (pll->flags & SUPPORTS_FSM_MODE) clk_alpha_set_fsm_mode(pll); } static int clk_alpha_pll_hwfsm_enable(struct clk_hw *hw) { int ret; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 val, off; off = pll->offset; ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val); if (ret) return ret; /* Enable HW FSM mode, clear OFFLINE request */ val |= PLL_FSM_ENA; val &= ~PLL_OFFLINE_REQ; ret = regmap_write(pll->clkr.regmap, off + PLL_MODE, val); if (ret) return ret; /* Make sure enable request goes through before waiting for update */ mb(); ret = wait_for_pll_enable(pll, PLL_ACTIVE_FLAG); if (ret) return ret; return 0; } static void clk_alpha_pll_hwfsm_disable(struct clk_hw *hw) { int ret; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 val, off; off = pll->offset; ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val); if (ret) return; /* Request PLL_OFFLINE and wait for ack */ ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, PLL_OFFLINE_REQ, PLL_OFFLINE_REQ); if (ret) return; ret = wait_for_pll_offline(pll, PLL_OFFLINE_ACK); if (ret) return; /* Disable hwfsm */ ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, PLL_FSM_ENA, 0); if (ret) return; wait_for_pll_disable(pll, PLL_ACTIVE_FLAG); } static int clk_alpha_pll_enable(struct clk_hw *hw) { int ret; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 val, mask, off; off = pll->offset; mask = PLL_OUTCTRL | PLL_RESET_N | PLL_BYPASSNL; ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val); if (ret) return ret; /* If in FSM mode, just vote for it */ if (val & PLL_VOTE_FSM_ENA) { ret = clk_enable_regmap(hw); if (ret) return ret; ret = wait_for_pll_enable(pll, PLL_ACTIVE_FLAG); if (ret == 0) { if (pll->flags & SUPPORTS_FSM_VOTE) *pll->soft_vote |= (pll->soft_vote_mask); return ret; } } /* Skip if already enabled */ if ((val & mask) == mask) return 0; ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, PLL_BYPASSNL, PLL_BYPASSNL); if (ret) return ret; /* * H/W requires a 5us delay between disabling the bypass and * de-asserting the reset. */ mb(); udelay(5); ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, PLL_RESET_N, PLL_RESET_N); if (ret) return ret; ret = wait_for_pll_enable(pll, PLL_LOCK_DET); if (ret) return ret; ret = regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, PLL_OUTCTRL, PLL_OUTCTRL); /* Ensure that the write above goes through before returning. */ mb(); return ret; } static void clk_alpha_pll_disable(struct clk_hw *hw) { int ret; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 val, mask, off; off = pll->offset; ret = regmap_read(pll->clkr.regmap, off + PLL_MODE, &val); if (ret) return; /* If in FSM mode, just unvote it */ if (val & PLL_VOTE_FSM_ENA) { if (pll->flags & SUPPORTS_FSM_VOTE) { *pll->soft_vote &= ~(pll->soft_vote_mask); if (!*pll->soft_vote) clk_disable_regmap(hw); } else clk_disable_regmap(hw); return; } mask = PLL_OUTCTRL; regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, mask, 0); /* Delay of 2 output clock ticks required until output is disabled */ mb(); udelay(1); mask = PLL_RESET_N | PLL_BYPASSNL; regmap_update_bits(pll->clkr.regmap, off + PLL_MODE, mask, 0); } static unsigned long alpha_pll_calc_rate(u64 prate, u32 l, u32 a) { return (prate * l) + ((prate * a) >> ALPHA_BITWIDTH); } static unsigned long alpha_pll_round_rate(unsigned long rate, unsigned long prate, u32 *l, u64 *a) { u64 remainder; u64 quotient; quotient = rate; remainder = do_div(quotient, prate); *l = quotient; if (!remainder) { *a = 0; return rate; } /* Upper ALPHA_BITWIDTH bits of Alpha */ quotient = remainder << ALPHA_BITWIDTH; remainder = do_div(quotient, prate); if (remainder) quotient++; *a = quotient; return alpha_pll_calc_rate(prate, *l, *a); } static const struct pll_vco * alpha_pll_find_vco(const struct clk_alpha_pll *pll, unsigned long rate) { const struct pll_vco *v = pll->vco_table; const struct pll_vco *end = v + pll->num_vco; for (; v < end; v++) if (rate >= v->min_freq && rate <= v->max_freq) return v; return NULL; } static unsigned long clk_alpha_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { u32 l, low, high, ctl; u64 a = 0, prate = parent_rate; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 off = pll->offset; regmap_read(pll->clkr.regmap, off + PLL_L_VAL, &l); regmap_read(pll->clkr.regmap, off + PLL_USER_CTL, &ctl); if (ctl & PLL_ALPHA_EN) { regmap_read(pll->clkr.regmap, off + PLL_ALPHA_VAL, &low); regmap_read(pll->clkr.regmap, off + PLL_ALPHA_VAL_U, &high); a = (u64)high << 32 | low; a >>= ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH; } ctl >>= PLL_POST_DIV_SHIFT; ctl &= PLL_POST_DIV_MASK; return alpha_pll_calc_rate(prate, l, a) >> fls(ctl); } static int clk_alpha_pll_dynamic_update(struct clk_alpha_pll *pll) { int ret; /* Latch the input to the PLL */ regmap_update_bits(pll->clkr.regmap, pll->offset + PLL_MODE, PLL_UPDATE, PLL_UPDATE); /* Wait for 2 reference cycle before checking ACK bit */ udelay(1); ret = wait_for_pll_latch_ack(pll, PLL_ACK_LATCH); if (ret) return ret; /* Return latch input to 0 */ regmap_update_bits(pll->clkr.regmap, pll->offset + PLL_MODE, PLL_UPDATE, (u32)~PLL_UPDATE); ret = wait_for_pll_enable(pll, PLL_LOCK_DET); if (ret) return ret; return 0; } static const struct pll_vco_data *find_vco_data(const struct pll_vco_data *data, unsigned long rate, size_t size) { int i; if (!data) return NULL; for (i = 0; i < size; i++) { if (rate == data[i].freq) return &data[i]; } return &data[i - 1]; } static int clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long prate) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); const struct pll_vco *vco; const struct pll_vco_data *data; bool is_enabled; u32 l, off = pll->offset; u64 a; unsigned long rrate; rrate = alpha_pll_round_rate(rate, prate, &l, &a); if (rrate != rate) { pr_err("alpha_pll: Call clk_set_rate with rounded rates!\n"); return -EINVAL; } vco = alpha_pll_find_vco(pll, rrate); if (!vco) { pr_err("alpha pll not in a valid vco range\n"); return -EINVAL; } is_enabled = clk_hw_is_enabled(hw); /* * For PLLs that do not support dynamic programming (dynamic_update * is not set), ensure PLL is off before changing rate. For * optimization reasons, assume no downstream clock is actively * using it. */ if (is_enabled && !(pll->flags & SUPPORTS_DYNAMIC_UPDATE)) hw->init->ops->disable(hw); a <<= (ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH); regmap_write(pll->clkr.regmap, off + PLL_L_VAL, l); regmap_write(pll->clkr.regmap, off + PLL_ALPHA_VAL, a); regmap_write(pll->clkr.regmap, off + PLL_ALPHA_VAL_U, a >> 32); regmap_update_bits(pll->clkr.regmap, off + PLL_USER_CTL, PLL_VCO_MASK << PLL_VCO_SHIFT, vco->val << PLL_VCO_SHIFT); data = find_vco_data(pll->vco_data, rate, pll->num_vco_data); if (data) { if (data->freq == rate) regmap_update_bits(pll->clkr.regmap, off + PLL_USER_CTL, PLL_POST_DIV_MASK << PLL_POST_DIV_SHIFT, data->post_div_val << PLL_POST_DIV_SHIFT); else regmap_update_bits(pll->clkr.regmap, off + PLL_USER_CTL, PLL_POST_DIV_MASK << PLL_POST_DIV_SHIFT, 0x0 << PLL_VCO_SHIFT); } regmap_update_bits(pll->clkr.regmap, off + PLL_USER_CTL, PLL_ALPHA_EN, PLL_ALPHA_EN); if (is_enabled && (pll->flags & SUPPORTS_DYNAMIC_UPDATE)) clk_alpha_pll_dynamic_update(pll); if (is_enabled && !(pll->flags & SUPPORTS_DYNAMIC_UPDATE)) hw->init->ops->enable(hw); return 0; } static long clk_alpha_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); u32 l; u64 a; unsigned long min_freq, max_freq; if (rate < pll->min_supported_freq) return pll->min_supported_freq; rate = alpha_pll_round_rate(rate, *prate, &l, &a); if (alpha_pll_find_vco(pll, rate)) return rate; min_freq = pll->vco_table[0].min_freq; max_freq = pll->vco_table[pll->num_vco - 1].max_freq; return clamp(rate, min_freq, max_freq); } static void clk_alpha_pll_list_registers(struct seq_file *f, struct clk_hw *hw) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); int size, i, val; static struct clk_register_data data[] = { {"PLL_MODE", 0x0}, {"PLL_L_VAL", 0x4}, {"PLL_ALPHA_VAL", 0x8}, {"PLL_ALPHA_VAL_U", 0xC}, {"PLL_USER_CTL", 0x10}, {"PLL_CONFIG_CTL", 0x18}, }; static struct clk_register_data data1[] = { {"APSS_PLL_VOTE", 0x0}, }; size = ARRAY_SIZE(data); for (i = 0; i < size; i++) { regmap_read(pll->clkr.regmap, pll->offset + data[i].offset, &val); seq_printf(f, "%20s: 0x%.8x\n", data[i].name, val); } regmap_read(pll->clkr.regmap, pll->offset + data[0].offset, &val); if (val & PLL_FSM_ENA) { regmap_read(pll->clkr.regmap, pll->clkr.enable_reg + data1[0].offset, &val); seq_printf(f, "%20s: 0x%.8x\n", data1[0].name, val); } } const struct clk_ops clk_alpha_pll_ops = { .enable = clk_alpha_pll_enable, .disable = clk_alpha_pll_disable, .recalc_rate = clk_alpha_pll_recalc_rate, .round_rate = clk_alpha_pll_round_rate, .set_rate = clk_alpha_pll_set_rate, .list_registers = clk_alpha_pll_list_registers, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_ops); const struct clk_ops clk_alpha_pll_hwfsm_ops = { .enable = clk_alpha_pll_hwfsm_enable, .disable = clk_alpha_pll_hwfsm_disable, .recalc_rate = clk_alpha_pll_recalc_rate, .round_rate = clk_alpha_pll_round_rate, .set_rate = clk_alpha_pll_set_rate, .list_registers = clk_alpha_pll_list_registers, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_hwfsm_ops); static unsigned long clk_alpha_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); u32 ctl; regmap_read(pll->clkr.regmap, pll->offset + PLL_USER_CTL, &ctl); ctl >>= PLL_POST_DIV_SHIFT; ctl &= PLL_POST_DIV_MASK; return parent_rate >> fls(ctl); } static const struct clk_div_table clk_alpha_div_table[] = { { 0x0, 1 }, { 0x1, 2 }, { 0x3, 4 }, { 0x7, 8 }, { 0xf, 16 }, { } }; static long clk_alpha_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); return divider_round_rate(hw, rate, prate, clk_alpha_div_table, pll->width, CLK_DIVIDER_POWER_OF_TWO); } static int clk_alpha_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); int div; /* 16 -> 0xf, 8 -> 0x7, 4 -> 0x3, 2 -> 0x1, 1 -> 0x0 */ div = DIV_ROUND_UP_ULL((u64)parent_rate, rate) - 1; return regmap_update_bits(pll->clkr.regmap, pll->offset + PLL_USER_CTL, PLL_POST_DIV_MASK << PLL_POST_DIV_SHIFT, div << PLL_POST_DIV_SHIFT); } const struct clk_ops clk_alpha_pll_postdiv_ops = { .recalc_rate = clk_alpha_pll_postdiv_recalc_rate, .round_rate = clk_alpha_pll_postdiv_round_rate, .set_rate = clk_alpha_pll_postdiv_set_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ops); static int clk_alpha_pll_slew_update(struct clk_alpha_pll *pll) { int ret = 0; u32 val; regmap_update_bits(pll->clkr.regmap, pll->offset + PLL_MODE, PLL_UPDATE, PLL_UPDATE); regmap_read(pll->clkr.regmap, pll->offset + PLL_MODE, &val); ret = wait_for_pll_update(pll, PLL_UPDATE); if (ret) return ret; /* * HPG mandates a wait of at least 570ns before polling the LOCK * detect bit. Have a delay of 1us just to be safe. */ mb(); udelay(1); ret = wait_for_pll_enable(pll, PLL_LOCK_DET); return ret; } static int clk_alpha_pll_slew_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); unsigned long freq_hz; const struct pll_vco *curr_vco, *vco; u32 l; u64 a; freq_hz = alpha_pll_round_rate(rate, parent_rate, &l, &a); if (freq_hz != rate) { pr_err("alpha_pll: Call clk_set_rate with rounded rates!\n"); return -EINVAL; } curr_vco = alpha_pll_find_vco(pll, clk_hw_get_rate(hw)); if (!curr_vco) { pr_err("alpha pll: not in a valid vco range\n"); return -EINVAL; } vco = alpha_pll_find_vco(pll, freq_hz); if (!vco) { pr_err("alpha pll: not in a valid vco range\n"); return -EINVAL; } /* * Dynamic pll update will not support switching frequencies across * vco ranges. In those cases fall back to normal alpha set rate. */ if (curr_vco->val != vco->val) return clk_alpha_pll_set_rate(hw, rate, parent_rate); a = a << (ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH); regmap_write(pll->clkr.regmap, pll->offset + PLL_L_VAL, l); regmap_write(pll->clkr.regmap, pll->offset + PLL_ALPHA_VAL, a); regmap_write(pll->clkr.regmap, pll->offset + PLL_ALPHA_VAL_U, a >> 32); /* Ensure that the write above goes through before proceeding. */ mb(); if (clk_hw_is_enabled(hw)) clk_alpha_pll_slew_update(pll); return 0; } /* * Slewing plls should be bought up at frequency which is in the middle of the * desired VCO range. So after bringing up the pll at calibration freq, set it * back to desired frequency(that was set by previous clk_set_rate). */ static int clk_alpha_pll_calibrate(struct clk_hw *hw) { unsigned long calibration_freq, freq_hz; struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); const struct pll_vco *vco; u64 a; u32 l; int rc; vco = alpha_pll_find_vco(pll, clk_hw_get_rate(hw)); if (!vco) { pr_err("alpha pll: not in a valid vco range\n"); return -EINVAL; } /* * As during slewing plls vco_sel won't be allowed to change, vco table * should have only one entry table, i.e. index = 0, find the * calibration frequency. */ calibration_freq = (pll->vco_table[0].min_freq + pll->vco_table[0].max_freq)/2; freq_hz = alpha_pll_round_rate(calibration_freq, clk_hw_get_rate(clk_hw_get_parent(hw)), &l, &a); if (freq_hz != calibration_freq) { pr_err("alpha_pll: call clk_set_rate with rounded rates!\n"); return -EINVAL; } /* Setup PLL for calibration frequency */ a <<= (ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH); regmap_write(pll->clkr.regmap, pll->offset + PLL_L_VAL, l); regmap_write(pll->clkr.regmap, pll->offset + PLL_ALPHA_VAL, a); regmap_write(pll->clkr.regmap, pll->offset + PLL_ALPHA_VAL_U, a >> 32); regmap_update_bits(pll->clkr.regmap, pll->offset + PLL_USER_CTL, PLL_VCO_MASK << PLL_VCO_SHIFT, vco->val << PLL_VCO_SHIFT); regmap_update_bits(pll->clkr.regmap, pll->offset + PLL_USER_CTL, PLL_ALPHA_EN, PLL_ALPHA_EN); /* Bringup the pll at calibration frequency */ rc = clk_alpha_pll_enable(hw); if (rc) { pr_err("alpha pll calibration failed\n"); return rc; } /* * PLL is already running at calibration frequency. * So slew pll to the previously set frequency. */ freq_hz = alpha_pll_round_rate(clk_hw_get_rate(hw), clk_hw_get_rate(clk_hw_get_parent(hw)), &l, &a); pr_debug("pll %s: setting back to required rate %lu, freq_hz %ld\n", hw->init->name, clk_hw_get_rate(hw), freq_hz); /* Setup the PLL for the new frequency */ a <<= (ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH); regmap_write(pll->clkr.regmap, pll->offset + PLL_L_VAL, l); regmap_write(pll->clkr.regmap, pll->offset + PLL_ALPHA_VAL, a); regmap_write(pll->clkr.regmap, pll->offset + PLL_ALPHA_VAL_U, a >> 32); regmap_update_bits(pll->clkr.regmap, pll->offset + PLL_USER_CTL, PLL_ALPHA_EN, PLL_ALPHA_EN); return clk_alpha_pll_slew_update(pll); } static int clk_alpha_pll_slew_enable(struct clk_hw *hw) { int rc; rc = clk_alpha_pll_calibrate(hw); if (rc) return rc; rc = clk_alpha_pll_enable(hw); return rc; } const struct clk_ops clk_alpha_pll_slew_ops = { .enable = clk_alpha_pll_slew_enable, .disable = clk_alpha_pll_disable, .recalc_rate = clk_alpha_pll_recalc_rate, .round_rate = clk_alpha_pll_round_rate, .set_rate = clk_alpha_pll_slew_set_rate, }; EXPORT_SYMBOL_GPL(clk_alpha_pll_slew_ops);