/* * Copyright (c) 2014-2016, 2018 The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "bimc-bwmon: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include "governor_bw_hwmon.h" #define GLB_INT_STATUS(m) ((m)->global_base + 0x100) #define GLB_INT_CLR(m) ((m)->global_base + 0x108) #define GLB_INT_EN(m) ((m)->global_base + 0x10C) #define MON_INT_STATUS(m) ((m)->base + 0x100) #define MON_INT_CLR(m) ((m)->base + 0x108) #define MON_INT_EN(m) ((m)->base + 0x10C) #define MON_EN(m) ((m)->base + 0x280) #define MON_CLEAR(m) ((m)->base + 0x284) #define MON_CNT(m) ((m)->base + 0x288) #define MON_THRES(m) ((m)->base + 0x290) #define MON_MASK(m) ((m)->base + 0x298) #define MON_MATCH(m) ((m)->base + 0x29C) #define MON2_EN(m) ((m)->base + 0x2A0) #define MON2_CLEAR(m) ((m)->base + 0x2A4) #define MON2_SW(m) ((m)->base + 0x2A8) #define MON2_THRES_HI(m) ((m)->base + 0x2AC) #define MON2_THRES_MED(m) ((m)->base + 0x2B0) #define MON2_THRES_LO(m) ((m)->base + 0x2B4) #define MON2_ZONE_ACTIONS(m) ((m)->base + 0x2B8) #define MON2_ZONE_CNT_THRES(m) ((m)->base + 0x2BC) #define MON2_BYTE_CNT(m) ((m)->base + 0x2D0) #define MON2_WIN_TIMER(m) ((m)->base + 0x2D4) #define MON2_ZONE_CNT(m) ((m)->base + 0x2D8) #define MON2_ZONE_MAX(m, zone) ((m)->base + 0x2E0 + 0x4 * zone) struct bwmon_spec { bool wrap_on_thres; bool overflow; bool throt_adj; bool hw_sampling; }; struct bwmon { void __iomem *base; void __iomem *global_base; unsigned int mport; unsigned int irq; const struct bwmon_spec *spec; struct device *dev; struct bw_hwmon hw; u32 hw_timer_hz; u32 throttle_adj; u32 sample_size_ms; u32 intr_status; }; #define to_bwmon(ptr) container_of(ptr, struct bwmon, hw) #define has_hw_sampling(m) (m->spec->hw_sampling) #define ENABLE_MASK BIT(0) #define THROTTLE_MASK 0x1F #define THROTTLE_SHIFT 16 #define INT_ENABLE_V1 0x1 #define INT_STATUS_MASK 0x03 #define INT_STATUS_MASK_HWS 0xF0 static DEFINE_SPINLOCK(glb_lock); static void mon_enable(struct bwmon *m) { if (has_hw_sampling(m)) writel_relaxed((ENABLE_MASK | m->throttle_adj), MON2_EN(m)); else writel_relaxed((ENABLE_MASK | m->throttle_adj), MON_EN(m)); } static void mon_disable(struct bwmon *m) { if (has_hw_sampling(m)) writel_relaxed(m->throttle_adj, MON2_EN(m)); else writel_relaxed(m->throttle_adj, MON_EN(m)); /* * mon_disable() and mon_irq_clear(), * If latter goes first and count happen to trigger irq, we would * have the irq line high but no one handling it. */ mb(); } #define MON_CLEAR_BIT 0x1 #define MON_CLEAR_ALL_BIT 0x2 static void mon_clear(struct bwmon *m, bool clear_all) { if (!has_hw_sampling(m)) { writel_relaxed(MON_CLEAR_BIT, MON_CLEAR(m)); goto out; } if (clear_all) writel_relaxed(MON_CLEAR_ALL_BIT, MON2_CLEAR(m)); else writel_relaxed(MON_CLEAR_BIT, MON2_CLEAR(m)); /* * The counter clear and IRQ clear bits are not in the same 4KB * region. So, we need to make sure the counter clear is completed * before we try to clear the IRQ or do any other counter operations. */ out: mb(); } #define SAMPLE_WIN_LIM 0xFFFFF static void mon_set_hw_sampling_window(struct bwmon *m, unsigned int sample_ms) { u32 rate; if (unlikely(sample_ms != m->sample_size_ms)) { rate = mult_frac(sample_ms, m->hw_timer_hz, MSEC_PER_SEC); m->sample_size_ms = sample_ms; if (unlikely(rate > SAMPLE_WIN_LIM)) { rate = SAMPLE_WIN_LIM; pr_warn("Sample window %u larger than hw limit: %u\n", rate, SAMPLE_WIN_LIM); } writel_relaxed(rate, MON2_SW(m)); } } static void mon_irq_enable(struct bwmon *m) { u32 val; spin_lock(&glb_lock); val = readl_relaxed(GLB_INT_EN(m)); val |= 1 << m->mport; writel_relaxed(val, GLB_INT_EN(m)); val = readl_relaxed(MON_INT_EN(m)); val |= has_hw_sampling(m) ? INT_STATUS_MASK_HWS : INT_ENABLE_V1; writel_relaxed(val, MON_INT_EN(m)); spin_unlock(&glb_lock); /* * make Sure irq enable complete for local and global * to avoid race with other monitor calls */ mb(); } static void mon_irq_disable(struct bwmon *m) { u32 val; spin_lock(&glb_lock); val = readl_relaxed(GLB_INT_EN(m)); val &= ~(1 << m->mport); writel_relaxed(val, GLB_INT_EN(m)); val = readl_relaxed(MON_INT_EN(m)); val &= has_hw_sampling(m) ? ~INT_STATUS_MASK_HWS : ~INT_ENABLE_V1; writel_relaxed(val, MON_INT_EN(m)); spin_unlock(&glb_lock); /* * make Sure irq disable complete for local and global * to avoid race with other monitor calls */ mb(); } static unsigned int mon_irq_status(struct bwmon *m) { u32 mval; mval = readl_relaxed(MON_INT_STATUS(m)); dev_dbg(m->dev, "IRQ status p:%x, g:%x\n", mval, readl_relaxed(GLB_INT_STATUS(m))); mval &= has_hw_sampling(m) ? INT_STATUS_MASK_HWS : INT_STATUS_MASK; return mval; } static void mon_irq_clear(struct bwmon *m) { u32 intclr; intclr = has_hw_sampling(m) ? INT_STATUS_MASK_HWS : INT_STATUS_MASK; writel_relaxed(intclr, MON_INT_CLR(m)); mb(); writel_relaxed(1 << m->mport, GLB_INT_CLR(m)); mb(); } static int mon_set_throttle_adj(struct bw_hwmon *hw, uint adj) { struct bwmon *m = to_bwmon(hw); if (adj > THROTTLE_MASK) return -EINVAL; adj = (adj & THROTTLE_MASK) << THROTTLE_SHIFT; m->throttle_adj = adj; return 0; } static u32 mon_get_throttle_adj(struct bw_hwmon *hw) { struct bwmon *m = to_bwmon(hw); return m->throttle_adj >> THROTTLE_SHIFT; } #define ZONE1_SHIFT 8 #define ZONE2_SHIFT 16 #define ZONE3_SHIFT 24 #define ZONE0_ACTION 0x01 /* Increment zone 0 count */ #define ZONE1_ACTION 0x09 /* Increment zone 1 & clear lower zones */ #define ZONE2_ACTION 0x25 /* Increment zone 2 & clear lower zones */ #define ZONE3_ACTION 0x95 /* Increment zone 3 & clear lower zones */ static u32 calc_zone_actions(void) { u32 zone_actions; zone_actions = ZONE0_ACTION; zone_actions |= ZONE1_ACTION << ZONE1_SHIFT; zone_actions |= ZONE2_ACTION << ZONE2_SHIFT; zone_actions |= ZONE3_ACTION << ZONE3_SHIFT; return zone_actions; } #define ZONE_CNT_LIM 0xFFU #define UP_CNT_1 1 static u32 calc_zone_counts(struct bw_hwmon *hw) { u32 zone_counts; zone_counts = ZONE_CNT_LIM; zone_counts |= min(hw->down_cnt, ZONE_CNT_LIM) << ZONE1_SHIFT; zone_counts |= ZONE_CNT_LIM << ZONE2_SHIFT; zone_counts |= UP_CNT_1 << ZONE3_SHIFT; return zone_counts; } static unsigned int mbps_to_mb(unsigned long mbps, unsigned int ms) { mbps *= ms; mbps = DIV_ROUND_UP(mbps, MSEC_PER_SEC); return mbps; } /* * Define the 4 zones using HI, MED & LO thresholds: * Zone 0: byte count < THRES_LO * Zone 1: THRES_LO < byte count < THRES_MED * Zone 2: THRES_MED < byte count < THRES_HI * Zone 3: byte count > THRES_HI */ #define THRES_LIM 0x7FFU static void set_zone_thres(struct bwmon *m, unsigned int sample_ms) { struct bw_hwmon *hw = &(m->hw); u32 hi, med, lo; hi = mbps_to_mb(hw->up_wake_mbps, sample_ms); med = mbps_to_mb(hw->down_wake_mbps, sample_ms); lo = 0; if (unlikely((hi > THRES_LIM) || (med > hi) || (lo > med))) { pr_warn("Zone thres larger than hw limit: hi:%u med:%u lo:%u\n", hi, med, lo); hi = min(hi, THRES_LIM); med = min(med, hi - 1); lo = min(lo, med-1); } writel_relaxed(hi, MON2_THRES_HI(m)); writel_relaxed(med, MON2_THRES_MED(m)); writel_relaxed(lo, MON2_THRES_LO(m)); dev_dbg(m->dev, "Thres: hi:%u med:%u lo:%u\n", hi, med, lo); } static void mon_set_zones(struct bwmon *m, unsigned int sample_ms) { struct bw_hwmon *hw = &(m->hw); u32 zone_cnt_thres = calc_zone_counts(hw); mon_set_hw_sampling_window(m, sample_ms); set_zone_thres(m, sample_ms); /* Set the zone count thresholds for interrupts */ writel_relaxed(zone_cnt_thres, MON2_ZONE_CNT_THRES(m)); dev_dbg(m->dev, "Zone Count Thres: %0x\n", zone_cnt_thres); } static void mon_set_limit(struct bwmon *m, u32 count) { writel_relaxed(count, MON_THRES(m)); dev_dbg(m->dev, "Thres: %08x\n", count); } static u32 mon_get_limit(struct bwmon *m) { return readl_relaxed(MON_THRES(m)); } #define THRES_HIT(status) (status & BIT(0)) #define OVERFLOW(status) (status & BIT(1)) static unsigned long mon_get_count(struct bwmon *m) { unsigned long count, status; count = readl_relaxed(MON_CNT(m)); status = mon_irq_status(m); dev_dbg(m->dev, "Counter: %08lx\n", count); if (OVERFLOW(status) && m->spec->overflow) count += 0xFFFFFFFF; if (THRES_HIT(status) && m->spec->wrap_on_thres) count += mon_get_limit(m); dev_dbg(m->dev, "Actual Count: %08lx\n", count); return count; } static unsigned int get_zone(struct bwmon *m) { u32 zone_counts; u32 zone; zone = get_bitmask_order((m->intr_status & INT_STATUS_MASK_HWS) >> 4); if (zone) { zone--; } else { zone_counts = readl_relaxed(MON2_ZONE_CNT(m)); if (zone_counts) { zone = get_bitmask_order(zone_counts) - 1; zone /= 8; } } m->intr_status = 0; return zone; } static unsigned long mon_get_zone_stats(struct bwmon *m) { unsigned int zone; unsigned long count = 0; zone = get_zone(m); count = readl_relaxed(MON2_ZONE_MAX(m, zone)) + 1; count *= SZ_1M; dev_dbg(m->dev, "Zone%d Max byte count: %08lx\n", zone, count); return count; } /* ********** CPUBW specific code ********** */ /* Returns MBps of read/writes for the sampling window. */ static unsigned int mbps_to_bytes(unsigned long mbps, unsigned int ms, unsigned int tolerance_percent) { mbps *= (100 + tolerance_percent) * ms; mbps /= 100; mbps = DIV_ROUND_UP(mbps, MSEC_PER_SEC); mbps *= SZ_1M; return mbps; } static unsigned long get_bytes_and_clear(struct bw_hwmon *hw) { struct bwmon *m = to_bwmon(hw); unsigned long count; mon_disable(m); count = has_hw_sampling(m) ? mon_get_zone_stats(m) : mon_get_count(m); mon_clear(m, false); mon_irq_clear(m); mon_enable(m); return count; } static unsigned long set_thres(struct bw_hwmon *hw, unsigned long bytes) { unsigned long count; u32 limit; struct bwmon *m = to_bwmon(hw); mon_disable(m); count = mon_get_count(m); mon_clear(m, false); mon_irq_clear(m); if (likely(!m->spec->wrap_on_thres)) limit = bytes; else limit = max(bytes, 500000UL); mon_set_limit(m, limit); mon_enable(m); return count; } static unsigned long set_hw_events(struct bw_hwmon *hw, unsigned sample_ms) { struct bwmon *m = to_bwmon(hw); mon_disable(m); mon_clear(m, false); mon_irq_clear(m); mon_set_zones(m, sample_ms); mon_enable(m); return 0; } static irqreturn_t bwmon_intr_handler(int irq, void *dev) { struct bwmon *m = dev; m->intr_status = mon_irq_status(m); if (!m->intr_status) return IRQ_NONE; if (bw_hwmon_sample_end(&m->hw) > 0) return IRQ_WAKE_THREAD; return IRQ_HANDLED; } static irqreturn_t bwmon_intr_thread(int irq, void *dev) { struct bwmon *m = dev; update_bw_hwmon(&m->hw); return IRQ_HANDLED; } static int start_bw_hwmon(struct bw_hwmon *hw, unsigned long mbps) { struct bwmon *m = to_bwmon(hw); u32 limit; u32 zone_actions = calc_zone_actions(); int ret; ret = request_threaded_irq(m->irq, bwmon_intr_handler, bwmon_intr_thread, IRQF_ONESHOT | IRQF_SHARED, dev_name(m->dev), m); if (ret) { dev_err(m->dev, "Unable to register interrupt handler! (%d)\n", ret); return ret; } mon_disable(m); mon_clear(m, true); limit = mbps_to_bytes(mbps, hw->df->profile->polling_ms, 0); if (has_hw_sampling(m)) { mon_set_zones(m, hw->df->profile->polling_ms); /* Set the zone actions to increment appropriate counters */ writel_relaxed(zone_actions, MON2_ZONE_ACTIONS(m)); } else { mon_set_limit(m, limit); } mon_irq_clear(m); mon_irq_enable(m); mon_enable(m); return 0; } static void stop_bw_hwmon(struct bw_hwmon *hw) { struct bwmon *m = to_bwmon(hw); mon_irq_disable(m); free_irq(m->irq, m); mon_disable(m); mon_clear(m, true); mon_irq_clear(m); } static int suspend_bw_hwmon(struct bw_hwmon *hw) { struct bwmon *m = to_bwmon(hw); mon_irq_disable(m); free_irq(m->irq, m); mon_disable(m); mon_irq_clear(m); return 0; } static int resume_bw_hwmon(struct bw_hwmon *hw) { struct bwmon *m = to_bwmon(hw); int ret; mon_clear(m, false); ret = request_threaded_irq(m->irq, bwmon_intr_handler, bwmon_intr_thread, IRQF_ONESHOT | IRQF_SHARED, dev_name(m->dev), m); if (ret) { dev_err(m->dev, "Unable to register interrupt handler! (%d)\n", ret); return ret; } mon_irq_enable(m); mon_enable(m); return 0; } /*************************************************************************/ static const struct bwmon_spec spec[] = { { .wrap_on_thres = true, .overflow = false, .throt_adj = false, .hw_sampling = false}, { .wrap_on_thres = false, .overflow = true, .throt_adj = false, .hw_sampling = false}, { .wrap_on_thres = false, .overflow = true, .throt_adj = true, .hw_sampling = false}, { .wrap_on_thres = false, .overflow = true, .throt_adj = true, .hw_sampling = true}, }; static struct of_device_id match_table[] = { { .compatible = "qcom,bimc-bwmon", .data = &spec[0] }, { .compatible = "qcom,bimc-bwmon2", .data = &spec[1] }, { .compatible = "qcom,bimc-bwmon3", .data = &spec[2] }, { .compatible = "qcom,bimc-bwmon4", .data = &spec[3] }, {} }; static int bimc_bwmon_driver_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct resource *res; struct bwmon *m; const struct of_device_id *id; int ret; u32 data; m = devm_kzalloc(dev, sizeof(*m), GFP_KERNEL); if (!m) return -ENOMEM; m->dev = dev; ret = of_property_read_u32(dev->of_node, "qcom,mport", &data); if (ret) { dev_err(dev, "mport not found!\n"); return ret; } m->mport = data; id = of_match_device(match_table, dev); if (!id) { dev_err(dev, "Unknown device type!\n"); return -ENODEV; } m->spec = id->data; if (has_hw_sampling(m)) { ret = of_property_read_u32(dev->of_node, "qcom,hw-timer-hz", &data); if (ret) { dev_err(dev, "HW sampling rate not specified!\n"); return ret; } m->hw_timer_hz = data; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); if (!res) { dev_err(dev, "base not found!\n"); return -EINVAL; } m->base = devm_ioremap(dev, res->start, resource_size(res)); if (!m->base) { dev_err(dev, "Unable map base!\n"); return -ENOMEM; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "global_base"); if (!res) { dev_err(dev, "global_base not found!\n"); return -EINVAL; } m->global_base = devm_ioremap(dev, res->start, resource_size(res)); if (!m->global_base) { dev_err(dev, "Unable map global_base!\n"); return -ENOMEM; } m->irq = platform_get_irq(pdev, 0); if (m->irq < 0) { dev_err(dev, "Unable to get IRQ number\n"); return m->irq; } m->hw.of_node = of_parse_phandle(dev->of_node, "qcom,target-dev", 0); if (!m->hw.of_node) return -EINVAL; m->hw.start_hwmon = &start_bw_hwmon; m->hw.stop_hwmon = &stop_bw_hwmon; m->hw.suspend_hwmon = &suspend_bw_hwmon; m->hw.resume_hwmon = &resume_bw_hwmon; m->hw.get_bytes_and_clear = &get_bytes_and_clear; m->hw.set_thres = &set_thres; if (has_hw_sampling(m)) m->hw.set_hw_events = &set_hw_events; if (m->spec->throt_adj) { m->hw.set_throttle_adj = &mon_set_throttle_adj; m->hw.get_throttle_adj = &mon_get_throttle_adj; } ret = register_bw_hwmon(dev, &m->hw); if (ret) { dev_err(dev, "Dev BW hwmon registration failed\n"); return ret; } return 0; } static struct platform_driver bimc_bwmon_driver = { .probe = bimc_bwmon_driver_probe, .driver = { .name = "bimc-bwmon", .of_match_table = match_table, .owner = THIS_MODULE, .suppress_bind_attrs = true, }, }; static int __init bimc_bwmon_init(void) { return platform_driver_register(&bimc_bwmon_driver); } module_init(bimc_bwmon_init); static void __exit bimc_bwmon_exit(void) { platform_driver_unregister(&bimc_bwmon_driver); } module_exit(bimc_bwmon_exit); MODULE_DESCRIPTION("BIMC bandwidth monitor driver"); MODULE_LICENSE("GPL v2");