/* Copyright (c) 2012-2017, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PMIC_VER_8941 0x01 #define PMIC_VERSION_REG 0x0105 #define PMIC_VERSION_REV4_REG 0x0103 #define PMIC8941_V1_REV4 0x01 #define PMIC8941_V2_REV4 0x02 #define PON_PRIMARY 0x01 #define PON_SECONDARY 0x02 #define PON_1REG 0x03 #define PON_GEN2_PRIMARY 0x04 #define PON_GEN2_SECONDARY 0x05 #define PON_OFFSET(subtype, offset_gen1, offset_gen2) \ (((subtype == PON_PRIMARY) || \ (subtype == PON_SECONDARY) || \ (subtype == PON_1REG)) ? offset_gen1 : offset_gen2) /* Common PNP defines */ #define QPNP_PON_REVISION2(pon) ((pon)->base + 0x01) #define QPNP_PON_PERPH_SUBTYPE(pon) ((pon)->base + 0x05) /* PON common register addresses */ #define QPNP_PON_RT_STS(pon) ((pon)->base + 0x10) #define QPNP_PON_PULL_CTL(pon) ((pon)->base + 0x70) #define QPNP_PON_DBC_CTL(pon) ((pon)->base + 0x71) /* PON/RESET sources register addresses */ #define QPNP_PON_REASON1(pon) \ ((pon)->base + PON_OFFSET((pon)->subtype, 0x8, 0xC0)) #define QPNP_PON_WARM_RESET_REASON1(pon) \ ((pon)->base + PON_OFFSET((pon)->subtype, 0xA, 0xC2)) #define QPNP_POFF_REASON1(pon) \ ((pon)->base + PON_OFFSET((pon)->subtype, 0xC, 0xC5)) #define QPNP_PON_WARM_RESET_REASON2(pon) ((pon)->base + 0xB) #define QPNP_PON_OFF_REASON(pon) ((pon)->base + 0xC7) #define QPNP_FAULT_REASON1(pon) ((pon)->base + 0xC8) #define QPNP_S3_RESET_REASON(pon) ((pon)->base + 0xCA) #define QPNP_PON_KPDPWR_S1_TIMER(pon) ((pon)->base + 0x40) #define QPNP_PON_KPDPWR_S2_TIMER(pon) ((pon)->base + 0x41) #define QPNP_PON_KPDPWR_S2_CNTL(pon) ((pon)->base + 0x42) #define QPNP_PON_KPDPWR_S2_CNTL2(pon) ((pon)->base + 0x43) #define QPNP_PON_RESIN_S1_TIMER(pon) ((pon)->base + 0x44) #define QPNP_PON_RESIN_S2_TIMER(pon) ((pon)->base + 0x45) #define QPNP_PON_RESIN_S2_CNTL(pon) ((pon)->base + 0x46) #define QPNP_PON_RESIN_S2_CNTL2(pon) ((pon)->base + 0x47) #define QPNP_PON_KPDPWR_RESIN_S1_TIMER(pon) ((pon)->base + 0x48) #define QPNP_PON_KPDPWR_RESIN_S2_TIMER(pon) ((pon)->base + 0x49) #define QPNP_PON_KPDPWR_RESIN_S2_CNTL(pon) ((pon)->base + 0x4A) #define QPNP_PON_KPDPWR_RESIN_S2_CNTL2(pon) ((pon)->base + 0x4B) #define QPNP_PON_PS_HOLD_RST_CTL(pon) ((pon)->base + 0x5A) #define QPNP_PON_PS_HOLD_RST_CTL2(pon) ((pon)->base + 0x5B) #define QPNP_PON_WD_RST_S2_CTL(pon) ((pon)->base + 0x56) #define QPNP_PON_WD_RST_S2_CTL2(pon) ((pon)->base + 0x57) #define QPNP_PON_S3_SRC(pon) ((pon)->base + 0x74) #define QPNP_PON_S3_DBC_CTL(pon) ((pon)->base + 0x75) #define QPNP_PON_SMPL_CTL(pon) ((pon)->base + 0x7F) #define QPNP_PON_TRIGGER_EN(pon) ((pon)->base + 0x80) #define QPNP_PON_XVDD_RB_SPARE(pon) ((pon)->base + 0x8E) #define QPNP_PON_SOFT_RB_SPARE(pon) ((pon)->base + 0x8F) #define QPNP_PON_SEC_ACCESS(pon) ((pon)->base + 0xD0) #define QPNP_PON_SEC_UNLOCK 0xA5 #define QPNP_PON_WARM_RESET_TFT BIT(4) #define QPNP_PON_RESIN_PULL_UP BIT(0) #define QPNP_PON_KPDPWR_PULL_UP BIT(1) #define QPNP_PON_CBLPWR_PULL_UP BIT(2) #define QPNP_PON_FAULT_PULL_UP BIT(4) #define QPNP_PON_S2_CNTL_EN BIT(7) #define QPNP_PON_S2_RESET_ENABLE BIT(7) #define QPNP_PON_DELAY_BIT_SHIFT 6 #define QPNP_PON_GEN2_DELAY_BIT_SHIFT 14 #define QPNP_PON_S1_TIMER_MASK (0xF) #define QPNP_PON_S2_TIMER_MASK (0x7) #define QPNP_PON_S2_CNTL_TYPE_MASK (0xF) #define QPNP_PON_DBC_DELAY_MASK(pon) \ PON_OFFSET((pon)->subtype, 0x7, 0xF) #define QPNP_PON_KPDPWR_N_SET BIT(0) #define QPNP_PON_RESIN_N_SET BIT(1) #define QPNP_PON_CBLPWR_N_SET BIT(2) #define QPNP_PON_RESIN_BARK_N_SET BIT(4) #define QPNP_PON_KPDPWR_RESIN_BARK_N_SET BIT(5) #define QPNP_PON_WD_EN BIT(7) #define QPNP_PON_RESET_EN BIT(7) #define QPNP_PON_POWER_OFF_MASK 0xF #define QPNP_GEN2_POFF_SEQ BIT(7) #define QPNP_GEN2_FAULT_SEQ BIT(6) #define QPNP_GEN2_S3_RESET_SEQ BIT(5) #define QPNP_PON_S3_SRC_KPDPWR 0 #define QPNP_PON_S3_SRC_RESIN 1 #define QPNP_PON_S3_SRC_KPDPWR_AND_RESIN 2 #define QPNP_PON_S3_SRC_KPDPWR_OR_RESIN 3 #define QPNP_PON_S3_SRC_MASK 0x3 #define QPNP_PON_HARD_RESET_MASK GENMASK(7, 5) #define QPNP_PON_UVLO_DLOAD_EN BIT(7) #define QPNP_PON_SMPL_EN BIT(7) /* Ranges */ #define QPNP_PON_S1_TIMER_MAX 10256 #define QPNP_PON_S2_TIMER_MAX 2000 #define QPNP_PON_S3_TIMER_SECS_MAX 128 #define QPNP_PON_S3_DBC_DELAY_MASK 0x07 #define QPNP_PON_RESET_TYPE_MAX 0xF #define PON_S1_COUNT_MAX 0xF #define QPNP_PON_MIN_DBC_US (USEC_PER_SEC / 64) #define QPNP_PON_MAX_DBC_US (USEC_PER_SEC * 2) #define QPNP_PON_GEN2_MIN_DBC_US 62 #define QPNP_PON_GEN2_MAX_DBC_US (USEC_PER_SEC / 4) #define QPNP_KEY_STATUS_DELAY msecs_to_jiffies(250) #define QPNP_PON_BUFFER_SIZE 9 #define QPNP_POFF_REASON_UVLO 13 enum qpnp_pon_version { QPNP_PON_GEN1_V1, QPNP_PON_GEN1_V2, QPNP_PON_GEN2, }; enum pon_type { PON_KPDPWR, PON_RESIN, PON_CBLPWR, PON_KPDPWR_RESIN, }; struct qpnp_pon_config { u32 pon_type; u32 support_reset; u32 key_code; u32 s1_timer; u32 s2_timer; u32 s2_type; u32 pull_up; u32 state_irq; u32 bark_irq; u16 s2_cntl_addr; u16 s2_cntl2_addr; bool old_state; bool use_bark; bool config_reset; }; struct pon_regulator { struct qpnp_pon *pon; struct regulator_dev *rdev; struct regulator_desc rdesc; u32 addr; u32 bit; bool enabled; }; struct qpnp_pon { struct platform_device *pdev; struct regmap *regmap; struct input_dev *pon_input; struct qpnp_pon_config *pon_cfg; struct pon_regulator *pon_reg_cfg; struct list_head list; struct delayed_work bark_work; struct dentry *debugfs; int pon_trigger_reason; int pon_power_off_reason; int num_pon_reg; int num_pon_config; u32 dbc_time_us; u32 uvlo; int warm_reset_poff_type; int hard_reset_poff_type; int shutdown_poff_type; u16 base; u8 subtype; u8 pon_ver; u8 warm_reset_reason1; u8 warm_reset_reason2; bool is_spon; bool store_hard_reset_reason; bool kpdpwr_dbc_enable; ktime_t kpdpwr_last_release_time; }; static int pon_ship_mode_en; module_param_named( ship_mode_en, pon_ship_mode_en, int, 0600 ); static struct qpnp_pon *sys_reset_dev; static DEFINE_SPINLOCK(spon_list_slock); static LIST_HEAD(spon_dev_list); static u32 s1_delay[PON_S1_COUNT_MAX + 1] = { 0, 32, 56, 80, 138, 184, 272, 408, 608, 904, 1352, 2048, 3072, 4480, 6720, 10256 }; static const char * const qpnp_pon_reason[] = { [0] = "Triggered from Hard Reset", [1] = "Triggered from SMPL (sudden momentary power loss)", [2] = "Triggered from RTC (RTC alarm expiry)", [3] = "Triggered from DC (DC charger insertion)", [4] = "Triggered from USB (USB charger insertion)", [5] = "Triggered from PON1 (secondary PMIC)", [6] = "Triggered from CBL (external power supply)", [7] = "Triggered from KPD (power key press)", }; #define POFF_REASON_FAULT_OFFSET 16 #define POFF_REASON_S3_RESET_OFFSET 32 static const char * const qpnp_poff_reason[] = { /* QPNP_PON_GEN1 POFF reasons */ [0] = "Triggered from SOFT (Software)", [1] = "Triggered from PS_HOLD (PS_HOLD/MSM controlled shutdown)", [2] = "Triggered from PMIC_WD (PMIC watchdog)", [3] = "Triggered from GP1 (Keypad_Reset1)", [4] = "Triggered from GP2 (Keypad_Reset2)", [5] = "Triggered from KPDPWR_AND_RESIN (Simultaneous power key and reset line)", [6] = "Triggered from RESIN_N (Reset line/Volume Down Key)", [7] = "Triggered from KPDPWR_N (Long Power Key hold)", [8] = "N/A", [9] = "N/A", [10] = "N/A", [11] = "Triggered from CHARGER (Charger ENUM_TIMER, BOOT_DONE)", [12] = "Triggered from TFT (Thermal Fault Tolerance)", [13] = "Triggered from UVLO (Under Voltage Lock Out)", [14] = "Triggered from OTST3 (Overtemp)", [15] = "Triggered from STAGE3 (Stage 3 reset)", /* QPNP_PON_GEN2 FAULT reasons */ [16] = "Triggered from GP_FAULT0", [17] = "Triggered from GP_FAULT1", [18] = "Triggered from GP_FAULT2", [19] = "Triggered from GP_FAULT3", [20] = "Triggered from MBG_FAULT", [21] = "Triggered from OVLO (Over Voltage Lock Out)", [22] = "Triggered from UVLO (Under Voltage Lock Out)", [23] = "Triggered from AVDD_RB", [24] = "N/A", [25] = "N/A", [26] = "N/A", [27] = "Triggered from FAULT_FAULT_N", [28] = "Triggered from FAULT_PBS_WATCHDOG_TO", [29] = "Triggered from FAULT_PBS_NACK", [30] = "Triggered from FAULT_RESTART_PON", [31] = "Triggered from OTST3 (Overtemp)", /* QPNP_PON_GEN2 S3_RESET reasons */ [32] = "N/A", [33] = "N/A", [34] = "N/A", [35] = "N/A", [36] = "Triggered from S3_RESET_FAULT_N", [37] = "Triggered from S3_RESET_PBS_WATCHDOG_TO", [38] = "Triggered from S3_RESET_PBS_NACK", [39] = "Triggered from S3_RESET_KPDPWR_ANDOR_RESIN (power key and/or reset line)", }; static int qpnp_pon_masked_write(struct qpnp_pon *pon, u16 addr, u8 mask, u8 val) { int rc; rc = regmap_update_bits(pon->regmap, addr, mask, val); if (rc) dev_err(&pon->pdev->dev, "Unable to regmap_update_bits to addr=%hx, rc(%d)\n", addr, rc); return rc; } static bool is_pon_gen1(struct qpnp_pon *pon) { return pon->subtype == PON_PRIMARY || pon->subtype == PON_SECONDARY; } static bool is_pon_gen2(struct qpnp_pon *pon) { return pon->subtype == PON_GEN2_PRIMARY || pon->subtype == PON_GEN2_SECONDARY; } /** * qpnp_pon_set_restart_reason - Store device restart reason in PMIC register. * * Returns = 0 if PMIC feature is not available or store restart reason * successfully. * Returns > 0 for errors * * This function is used to store device restart reason in PMIC register. * It checks here to see if the restart reason register has been specified. * If it hasn't, this function should immediately return 0 */ int qpnp_pon_set_restart_reason(enum pon_restart_reason reason) { int rc = 0; struct qpnp_pon *pon = sys_reset_dev; if (!pon) return 0; if (!pon->store_hard_reset_reason) return 0; if (is_pon_gen2(pon)) rc = qpnp_pon_masked_write(pon, QPNP_PON_SOFT_RB_SPARE(pon), GENMASK(7, 1), (reason << 1)); else rc = qpnp_pon_masked_write(pon, QPNP_PON_SOFT_RB_SPARE(pon), GENMASK(7, 2), (reason << 2)); if (rc) dev_err(&pon->pdev->dev, "Unable to write to addr=%x, rc(%d)\n", QPNP_PON_SOFT_RB_SPARE(pon), rc); return rc; } EXPORT_SYMBOL(qpnp_pon_set_restart_reason); /* * qpnp_pon_check_hard_reset_stored - Checks if the PMIC need to * store hard reset reason. * * Returns true if reset reason can be stored, false if it cannot be stored * */ bool qpnp_pon_check_hard_reset_stored(void) { struct qpnp_pon *pon = sys_reset_dev; if (!pon) return false; return pon->store_hard_reset_reason; } EXPORT_SYMBOL(qpnp_pon_check_hard_reset_stored); static int qpnp_pon_set_dbc(struct qpnp_pon *pon, u32 delay) { int rc = 0; u32 val; if (delay == pon->dbc_time_us) goto out; if (pon->pon_input) mutex_lock(&pon->pon_input->mutex); if (is_pon_gen2(pon)) { if (delay < QPNP_PON_GEN2_MIN_DBC_US) delay = QPNP_PON_GEN2_MIN_DBC_US; else if (delay > QPNP_PON_GEN2_MAX_DBC_US) delay = QPNP_PON_GEN2_MAX_DBC_US; val = (delay << QPNP_PON_GEN2_DELAY_BIT_SHIFT) / USEC_PER_SEC; } else { if (delay < QPNP_PON_MIN_DBC_US) delay = QPNP_PON_MIN_DBC_US; else if (delay > QPNP_PON_MAX_DBC_US) delay = QPNP_PON_MAX_DBC_US; val = (delay << QPNP_PON_DELAY_BIT_SHIFT) / USEC_PER_SEC; } val = ilog2(val); rc = qpnp_pon_masked_write(pon, QPNP_PON_DBC_CTL(pon), QPNP_PON_DBC_DELAY_MASK(pon), val); if (rc) { dev_err(&pon->pdev->dev, "Unable to set PON debounce\n"); goto unlock; } pon->dbc_time_us = delay; unlock: if (pon->pon_input) mutex_unlock(&pon->pon_input->mutex); out: return rc; } static int qpnp_pon_get_dbc(struct qpnp_pon *pon, u32 *delay) { int rc; unsigned int val; rc = regmap_read(pon->regmap, QPNP_PON_DBC_CTL(pon), &val); if (rc) { pr_err("Unable to read pon_dbc_ctl rc=%d\n", rc); return rc; } val &= QPNP_PON_DBC_DELAY_MASK(pon); if (is_pon_gen2(pon)) *delay = USEC_PER_SEC / (1 << (QPNP_PON_GEN2_DELAY_BIT_SHIFT - val)); else *delay = USEC_PER_SEC / (1 << (QPNP_PON_DELAY_BIT_SHIFT - val)); return rc; } static ssize_t qpnp_pon_dbc_show(struct device *dev, struct device_attribute *attr, char *buf) { struct qpnp_pon *pon = dev_get_drvdata(dev); return snprintf(buf, QPNP_PON_BUFFER_SIZE, "%d\n", pon->dbc_time_us); } static ssize_t qpnp_pon_dbc_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct qpnp_pon *pon = dev_get_drvdata(dev); u32 value; int rc; if (size > QPNP_PON_BUFFER_SIZE) return -EINVAL; rc = kstrtou32(buf, 10, &value); if (rc) return rc; rc = qpnp_pon_set_dbc(pon, value); if (rc < 0) return rc; return size; } static DEVICE_ATTR(debounce_us, 0664, qpnp_pon_dbc_show, qpnp_pon_dbc_store); static int qpnp_pon_reset_config(struct qpnp_pon *pon, enum pon_power_off_type type) { int rc; u16 rst_en_reg; if (pon->pon_ver == QPNP_PON_GEN1_V1) rst_en_reg = QPNP_PON_PS_HOLD_RST_CTL(pon); else rst_en_reg = QPNP_PON_PS_HOLD_RST_CTL2(pon); /* * Based on the poweroff type set for a PON device through device tree * change the type being configured into PS_HOLD_RST_CTL. */ switch (type) { case PON_POWER_OFF_WARM_RESET: if (pon->warm_reset_poff_type != -EINVAL) type = pon->warm_reset_poff_type; break; case PON_POWER_OFF_HARD_RESET: if (pon->hard_reset_poff_type != -EINVAL) type = pon->hard_reset_poff_type; break; case PON_POWER_OFF_SHUTDOWN: if (pon->shutdown_poff_type != -EINVAL) type = pon->shutdown_poff_type; break; default: break; } rc = qpnp_pon_masked_write(pon, rst_en_reg, QPNP_PON_RESET_EN, 0); if (rc) dev_err(&pon->pdev->dev, "Unable to write to addr=%hx, rc(%d)\n", rst_en_reg, rc); /* * We need 10 sleep clock cycles here. But since the clock is * internally generated, we need to add 50% tolerance to be * conservative. */ udelay(500); rc = qpnp_pon_masked_write(pon, QPNP_PON_PS_HOLD_RST_CTL(pon), QPNP_PON_POWER_OFF_MASK, type); if (rc) dev_err(&pon->pdev->dev, "Unable to write to addr=%x, rc(%d)\n", QPNP_PON_PS_HOLD_RST_CTL(pon), rc); rc = qpnp_pon_masked_write(pon, rst_en_reg, QPNP_PON_RESET_EN, QPNP_PON_RESET_EN); if (rc) dev_err(&pon->pdev->dev, "Unable to write to addr=%hx, rc(%d)\n", rst_en_reg, rc); dev_dbg(&pon->pdev->dev, "power off type = 0x%02X\n", type); return rc; } /** * qpnp_pon_system_pwr_off - Configure system-reset PMIC for shutdown or reset * @type: Determines the type of power off to perform - shutdown, reset, etc * * This function will support configuring for multiple PMICs. In some cases, the * PON of secondary PMICs also needs to be configured. So this supports that * requirement. Once the system-reset and secondary PMIC is configured properly, * the MSM can drop PS_HOLD to activate the specified configuration. Note that * this function may be called from atomic context as in the case of the panic * notifier path and thus it should not rely on function calls that may sleep. */ int qpnp_pon_system_pwr_off(enum pon_power_off_type type) { int rc = 0; struct qpnp_pon *pon = sys_reset_dev; struct qpnp_pon *tmp; struct power_supply *batt_psy; union power_supply_propval val; unsigned long flags; if (!pon) return -ENODEV; rc = qpnp_pon_reset_config(pon, type); if (rc) { dev_err(&pon->pdev->dev, "Error configuring main PON rc: %d\n", rc); return rc; } /* * Check if a secondary PON device needs to be configured. If it * is available, configure that also as per the requested power off * type */ spin_lock_irqsave(&spon_list_slock, flags); if (list_empty(&spon_dev_list)) goto out; list_for_each_entry_safe(pon, tmp, &spon_dev_list, list) { dev_emerg(&pon->pdev->dev, "PMIC@SID%d: configuring PON for reset\n", to_spmi_device(pon->pdev->dev.parent)->usid); rc = qpnp_pon_reset_config(pon, type); if (rc) { dev_err(&pon->pdev->dev, "Error configuring secondary PON rc: %d\n", rc); goto out; } } /* Set ship mode here if it has been requested */ if (!!pon_ship_mode_en) { batt_psy = power_supply_get_by_name("battery"); if (batt_psy) { pr_debug("Set ship mode!\n"); val.intval = 1; rc = power_supply_set_property(batt_psy, POWER_SUPPLY_PROP_SET_SHIP_MODE, &val); if (rc) dev_err(&pon->pdev->dev, "Set ship-mode failed\n"); } } out: spin_unlock_irqrestore(&spon_list_slock, flags); return rc; } EXPORT_SYMBOL(qpnp_pon_system_pwr_off); /** * qpnp_pon_is_warm_reset - Checks if the PMIC went through a warm reset. * * Returns > 0 for warm resets, 0 for not warm reset, < 0 for errors * * Note that this function will only return the warm vs not-warm reset status * of the PMIC that is configured as the system-reset device. */ int qpnp_pon_is_warm_reset(void) { struct qpnp_pon *pon = sys_reset_dev; if (!pon) return -EPROBE_DEFER; if (is_pon_gen1(pon) || pon->subtype == PON_1REG) return pon->warm_reset_reason1 || (pon->warm_reset_reason2 & QPNP_PON_WARM_RESET_TFT); else return pon->warm_reset_reason1; } EXPORT_SYMBOL(qpnp_pon_is_warm_reset); /** * qpnp_pon_wd_config - Disable the wd in a warm reset. * @enable: to enable or disable the PON watch dog * * Returns = 0 for operate successfully, < 0 for errors */ int qpnp_pon_wd_config(bool enable) { struct qpnp_pon *pon = sys_reset_dev; int rc = 0; if (!pon) return -EPROBE_DEFER; rc = qpnp_pon_masked_write(pon, QPNP_PON_WD_RST_S2_CTL2(pon), QPNP_PON_WD_EN, enable ? QPNP_PON_WD_EN : 0); if (rc) dev_err(&pon->pdev->dev, "Unable to write to addr=%x, rc(%d)\n", QPNP_PON_WD_RST_S2_CTL2(pon), rc); return rc; } EXPORT_SYMBOL(qpnp_pon_wd_config); static int qpnp_pon_get_trigger_config(enum pon_trigger_source pon_src, bool *enabled) { struct qpnp_pon *pon = sys_reset_dev; int rc; u16 addr; int val; u8 mask; if (!pon) return -ENODEV; if (pon_src < PON_SMPL || pon_src > PON_KPDPWR_N) { dev_err(&pon->pdev->dev, "Invalid PON source\n"); return -EINVAL; } addr = QPNP_PON_TRIGGER_EN(pon); mask = BIT(pon_src); if (is_pon_gen2(pon) && pon_src == PON_SMPL) { addr = QPNP_PON_SMPL_CTL(pon); mask = QPNP_PON_SMPL_EN; } rc = regmap_read(pon->regmap, addr, &val); if (rc) dev_err(&pon->pdev->dev, "Unable to read from addr=%hx, rc(%d)\n", addr, rc); else *enabled = !!(val & mask); return rc; } /** * qpnp_pon_trigger_config - Configures (enable/disable) the PON trigger source * @pon_src: PON source to be configured * @enable: to enable or disable the PON trigger * * This function configures the power-on trigger capability of a * PON source. If a specific PON trigger is disabled it cannot act * as a power-on source to the PMIC. */ int qpnp_pon_trigger_config(enum pon_trigger_source pon_src, bool enable) { struct qpnp_pon *pon = sys_reset_dev; int rc; if (!pon) return -EPROBE_DEFER; if (pon_src < PON_SMPL || pon_src > PON_KPDPWR_N) { dev_err(&pon->pdev->dev, "Invalid PON source\n"); return -EINVAL; } if (is_pon_gen2(pon) && pon_src == PON_SMPL) { rc = qpnp_pon_masked_write(pon, QPNP_PON_SMPL_CTL(pon), QPNP_PON_SMPL_EN, enable ? QPNP_PON_SMPL_EN : 0); if (rc) dev_err(&pon->pdev->dev, "Unable to write to addr=%x, rc(%d)\n", QPNP_PON_SMPL_CTL(pon), rc); } else { rc = qpnp_pon_masked_write(pon, QPNP_PON_TRIGGER_EN(pon), BIT(pon_src), enable ? BIT(pon_src) : 0); if (rc) dev_err(&pon->pdev->dev, "Unable to write to addr=%x, rc(%d)\n", QPNP_PON_TRIGGER_EN(pon), rc); } return rc; } EXPORT_SYMBOL(qpnp_pon_trigger_config); /* * This function stores the PMIC warm reset reason register values. It also * clears these registers if the qcom,clear-warm-reset device tree property * is specified. */ static int qpnp_pon_store_and_clear_warm_reset(struct qpnp_pon *pon) { int rc; u8 reg = 0; uint val; rc = regmap_read(pon->regmap, QPNP_PON_WARM_RESET_REASON1(pon), &val); if (rc) { dev_err(&pon->pdev->dev, "Unable to read addr=%x, rc(%d)\n", QPNP_PON_WARM_RESET_REASON1(pon), rc); return rc; } pon->warm_reset_reason1 = (u8)val; if (is_pon_gen1(pon) || pon->subtype == PON_1REG) { rc = regmap_read(pon->regmap, QPNP_PON_WARM_RESET_REASON2(pon), &val); if (rc) { dev_err(&pon->pdev->dev, "Unable to read addr=%x, rc(%d)\n", QPNP_PON_WARM_RESET_REASON2(pon), rc); return rc; } pon->warm_reset_reason2 = (u8)val; } if (of_property_read_bool(pon->pdev->dev.of_node, "qcom,clear-warm-reset")) { rc = regmap_write(pon->regmap, QPNP_PON_WARM_RESET_REASON1(pon), reg); if (rc) dev_err(&pon->pdev->dev, "Unable to write to addr=%hx, rc(%d)\n", QPNP_PON_WARM_RESET_REASON1(pon), rc); } return 0; } static struct qpnp_pon_config * qpnp_get_cfg(struct qpnp_pon *pon, u32 pon_type) { int i; for (i = 0; i < pon->num_pon_config; i++) { if (pon_type == pon->pon_cfg[i].pon_type) return &pon->pon_cfg[i]; } return NULL; } static int qpnp_pon_input_dispatch(struct qpnp_pon *pon, u32 pon_type) { int rc; struct qpnp_pon_config *cfg = NULL; u8 pon_rt_bit = 0; u32 key_status; uint pon_rt_sts; u64 elapsed_us; cfg = qpnp_get_cfg(pon, pon_type); if (!cfg) return -EINVAL; /* Check if key reporting is supported */ if (!cfg->key_code) return 0; if (pon->kpdpwr_dbc_enable && cfg->pon_type == PON_KPDPWR) { elapsed_us = ktime_us_delta(ktime_get(), pon->kpdpwr_last_release_time); if (elapsed_us < pon->dbc_time_us) { pr_debug("Ignoring kpdpwr event - within debounce time\n"); return 0; } } /* check the RT status to get the current status of the line */ rc = regmap_read(pon->regmap, QPNP_PON_RT_STS(pon), &pon_rt_sts); if (rc) { dev_err(&pon->pdev->dev, "Unable to read PON RT status\n"); return rc; } switch (cfg->pon_type) { case PON_KPDPWR: pon_rt_bit = QPNP_PON_KPDPWR_N_SET; break; case PON_RESIN: pon_rt_bit = QPNP_PON_RESIN_N_SET; break; case PON_CBLPWR: pon_rt_bit = QPNP_PON_CBLPWR_N_SET; break; case PON_KPDPWR_RESIN: pon_rt_bit = QPNP_PON_KPDPWR_RESIN_BARK_N_SET; break; default: return -EINVAL; } pr_debug("PMIC input: code=%d, sts=0x%hhx\n", cfg->key_code, pon_rt_sts); key_status = pon_rt_sts & pon_rt_bit; if (pon->kpdpwr_dbc_enable && cfg->pon_type == PON_KPDPWR) { if (!key_status) pon->kpdpwr_last_release_time = ktime_get(); } /* * simulate press event in case release event occurred * without a press event */ if (!cfg->old_state && !key_status) { input_report_key(pon->pon_input, cfg->key_code, 1); input_sync(pon->pon_input); } input_report_key(pon->pon_input, cfg->key_code, key_status); input_sync(pon->pon_input); cfg->old_state = !!key_status; return 0; } static irqreturn_t qpnp_kpdpwr_irq(int irq, void *_pon) { int rc; struct qpnp_pon *pon = _pon; rc = qpnp_pon_input_dispatch(pon, PON_KPDPWR); if (rc) dev_err(&pon->pdev->dev, "Unable to send input event\n"); return IRQ_HANDLED; } static irqreturn_t qpnp_kpdpwr_bark_irq(int irq, void *_pon) { return IRQ_HANDLED; } static irqreturn_t qpnp_resin_irq(int irq, void *_pon) { int rc; struct qpnp_pon *pon = _pon; rc = qpnp_pon_input_dispatch(pon, PON_RESIN); if (rc) dev_err(&pon->pdev->dev, "Unable to send input event\n"); return IRQ_HANDLED; } static irqreturn_t qpnp_kpdpwr_resin_bark_irq(int irq, void *_pon) { return IRQ_HANDLED; } static irqreturn_t qpnp_cblpwr_irq(int irq, void *_pon) { int rc; struct qpnp_pon *pon = _pon; rc = qpnp_pon_input_dispatch(pon, PON_CBLPWR); if (rc) dev_err(&pon->pdev->dev, "Unable to send input event\n"); return IRQ_HANDLED; } static void print_pon_reg(struct qpnp_pon *pon, u16 offset) { int rc; u16 addr; uint reg; addr = pon->base + offset; rc = regmap_read(pon->regmap, addr, ®); if (rc) dev_emerg(&pon->pdev->dev, "Unable to read reg at 0x%04hx\n", addr); else dev_emerg(&pon->pdev->dev, "reg@0x%04hx: %02hhx\n", addr, reg); } #define PON_PBL_STATUS 0x7 #define PON_PON_REASON1(subtype) PON_OFFSET(subtype, 0x8, 0xC0) #define PON_PON_REASON2 0x9 #define PON_WARM_RESET_REASON1(subtype) PON_OFFSET(subtype, 0xA, 0xC2) #define PON_WARM_RESET_REASON2 0xB #define PON_POFF_REASON1(subtype) PON_OFFSET(subtype, 0xC, 0xC5) #define PON_POFF_REASON2 0xD #define PON_SOFT_RESET_REASON1(subtype) PON_OFFSET(subtype, 0xE, 0xCB) #define PON_SOFT_RESET_REASON2 0xF #define PON_FAULT_REASON1 0xC8 #define PON_FAULT_REASON2 0xC9 #define PON_PMIC_WD_RESET_S1_TIMER 0x54 #define PON_PMIC_WD_RESET_S2_TIMER 0x55 static irqreturn_t qpnp_pmic_wd_bark_irq(int irq, void *_pon) { struct qpnp_pon *pon = _pon; print_pon_reg(pon, PON_PBL_STATUS); print_pon_reg(pon, PON_PON_REASON1(pon->subtype)); print_pon_reg(pon, PON_WARM_RESET_REASON1(pon->subtype)); print_pon_reg(pon, PON_SOFT_RESET_REASON1(pon->subtype)); print_pon_reg(pon, PON_POFF_REASON1(pon->subtype)); if (is_pon_gen1(pon) || pon->subtype == PON_1REG) { print_pon_reg(pon, PON_PON_REASON2); print_pon_reg(pon, PON_WARM_RESET_REASON2); print_pon_reg(pon, PON_POFF_REASON2); print_pon_reg(pon, PON_SOFT_RESET_REASON2); } else { print_pon_reg(pon, PON_FAULT_REASON1); print_pon_reg(pon, PON_FAULT_REASON2); } print_pon_reg(pon, PON_PMIC_WD_RESET_S1_TIMER); print_pon_reg(pon, PON_PMIC_WD_RESET_S2_TIMER); panic("PMIC Watch dog triggered"); return IRQ_HANDLED; } static void bark_work_func(struct work_struct *work) { int rc; uint pon_rt_sts = 0; struct qpnp_pon_config *cfg; struct qpnp_pon *pon = container_of(work, struct qpnp_pon, bark_work.work); cfg = qpnp_get_cfg(pon, PON_RESIN); if (!cfg) { dev_err(&pon->pdev->dev, "Invalid config pointer\n"); goto err_return; } /* enable reset */ rc = qpnp_pon_masked_write(pon, cfg->s2_cntl2_addr, QPNP_PON_S2_CNTL_EN, QPNP_PON_S2_CNTL_EN); if (rc) { dev_err(&pon->pdev->dev, "Unable to configure S2 enable\n"); goto err_return; } /* bark RT status update delay */ msleep(100); /* read the bark RT status */ rc = regmap_read(pon->regmap, QPNP_PON_RT_STS(pon), &pon_rt_sts); if (rc) { dev_err(&pon->pdev->dev, "Unable to read PON RT status\n"); goto err_return; } if (!(pon_rt_sts & QPNP_PON_RESIN_BARK_N_SET)) { /* report the key event and enable the bark IRQ */ input_report_key(pon->pon_input, cfg->key_code, 0); input_sync(pon->pon_input); enable_irq(cfg->bark_irq); } else { /* disable reset */ rc = qpnp_pon_masked_write(pon, cfg->s2_cntl2_addr, QPNP_PON_S2_CNTL_EN, 0); if (rc) { dev_err(&pon->pdev->dev, "Unable to configure S2 enable\n"); goto err_return; } /* re-arm the work */ schedule_delayed_work(&pon->bark_work, QPNP_KEY_STATUS_DELAY); } err_return: return; } static irqreturn_t qpnp_resin_bark_irq(int irq, void *_pon) { int rc; struct qpnp_pon *pon = _pon; struct qpnp_pon_config *cfg; /* disable the bark interrupt */ disable_irq_nosync(irq); cfg = qpnp_get_cfg(pon, PON_RESIN); if (!cfg) { dev_err(&pon->pdev->dev, "Invalid config pointer\n"); goto err_exit; } /* disable reset */ rc = qpnp_pon_masked_write(pon, cfg->s2_cntl2_addr, QPNP_PON_S2_CNTL_EN, 0); if (rc) { dev_err(&pon->pdev->dev, "Unable to configure S2 enable\n"); goto err_exit; } /* report the key event */ input_report_key(pon->pon_input, cfg->key_code, 1); input_sync(pon->pon_input); /* schedule work to check the bark status for key-release */ schedule_delayed_work(&pon->bark_work, QPNP_KEY_STATUS_DELAY); err_exit: return IRQ_HANDLED; } static int qpnp_config_pull(struct qpnp_pon *pon, struct qpnp_pon_config *cfg) { int rc; u8 pull_bit; switch (cfg->pon_type) { case PON_KPDPWR: pull_bit = QPNP_PON_KPDPWR_PULL_UP; break; case PON_RESIN: pull_bit = QPNP_PON_RESIN_PULL_UP; break; case PON_CBLPWR: pull_bit = QPNP_PON_CBLPWR_PULL_UP; break; case PON_KPDPWR_RESIN: pull_bit = QPNP_PON_KPDPWR_PULL_UP | QPNP_PON_RESIN_PULL_UP; break; default: return -EINVAL; } rc = qpnp_pon_masked_write(pon, QPNP_PON_PULL_CTL(pon), pull_bit, cfg->pull_up ? pull_bit : 0); if (rc) dev_err(&pon->pdev->dev, "Unable to config pull-up\n"); return rc; } static int qpnp_config_reset(struct qpnp_pon *pon, struct qpnp_pon_config *cfg) { int rc; u8 i; u16 s1_timer_addr, s2_timer_addr; switch (cfg->pon_type) { case PON_KPDPWR: s1_timer_addr = QPNP_PON_KPDPWR_S1_TIMER(pon); s2_timer_addr = QPNP_PON_KPDPWR_S2_TIMER(pon); break; case PON_RESIN: s1_timer_addr = QPNP_PON_RESIN_S1_TIMER(pon); s2_timer_addr = QPNP_PON_RESIN_S2_TIMER(pon); break; case PON_KPDPWR_RESIN: s1_timer_addr = QPNP_PON_KPDPWR_RESIN_S1_TIMER(pon); s2_timer_addr = QPNP_PON_KPDPWR_RESIN_S2_TIMER(pon); break; default: return -EINVAL; } /* disable S2 reset */ rc = qpnp_pon_masked_write(pon, cfg->s2_cntl2_addr, QPNP_PON_S2_CNTL_EN, 0); if (rc) { dev_err(&pon->pdev->dev, "Unable to configure S2 enable\n"); return rc; } usleep_range(100, 120); /* configure s1 timer, s2 timer and reset type */ for (i = 0; i < PON_S1_COUNT_MAX + 1; i++) { if (cfg->s1_timer <= s1_delay[i]) break; } rc = qpnp_pon_masked_write(pon, s1_timer_addr, QPNP_PON_S1_TIMER_MASK, i); if (rc) { dev_err(&pon->pdev->dev, "Unable to configure S1 timer\n"); return rc; } i = 0; if (cfg->s2_timer) { i = cfg->s2_timer / 10; i = ilog2(i + 1); } rc = qpnp_pon_masked_write(pon, s2_timer_addr, QPNP_PON_S2_TIMER_MASK, i); if (rc) { dev_err(&pon->pdev->dev, "Unable to configure S2 timer\n"); return rc; } rc = qpnp_pon_masked_write(pon, cfg->s2_cntl_addr, QPNP_PON_S2_CNTL_TYPE_MASK, (u8)cfg->s2_type); if (rc) { dev_err(&pon->pdev->dev, "Unable to configure S2 reset type\n"); return rc; } /* enable S2 reset */ rc = qpnp_pon_masked_write(pon, cfg->s2_cntl2_addr, QPNP_PON_S2_CNTL_EN, QPNP_PON_S2_CNTL_EN); if (rc) { dev_err(&pon->pdev->dev, "Unable to configure S2 enable\n"); return rc; } return 0; } static int qpnp_pon_request_irqs(struct qpnp_pon *pon, struct qpnp_pon_config *cfg) { int rc = 0; switch (cfg->pon_type) { case PON_KPDPWR: rc = devm_request_irq(&pon->pdev->dev, cfg->state_irq, qpnp_kpdpwr_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, "qpnp_kpdpwr_status", pon); if (rc < 0) { dev_err(&pon->pdev->dev, "Can't request %d IRQ\n", cfg->state_irq); return rc; } if (cfg->use_bark) { rc = devm_request_irq(&pon->pdev->dev, cfg->bark_irq, qpnp_kpdpwr_bark_irq, IRQF_TRIGGER_RISING, "qpnp_kpdpwr_bark", pon); if (rc < 0) { dev_err(&pon->pdev->dev, "Can't request %d IRQ\n", cfg->bark_irq); return rc; } } break; case PON_RESIN: rc = devm_request_irq(&pon->pdev->dev, cfg->state_irq, qpnp_resin_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, "qpnp_resin_status", pon); if (rc < 0) { dev_err(&pon->pdev->dev, "Can't request %d IRQ\n", cfg->state_irq); return rc; } if (cfg->use_bark) { rc = devm_request_irq(&pon->pdev->dev, cfg->bark_irq, qpnp_resin_bark_irq, IRQF_TRIGGER_RISING, "qpnp_resin_bark", pon); if (rc < 0) { dev_err(&pon->pdev->dev, "Can't request %d IRQ\n", cfg->bark_irq); return rc; } } break; case PON_CBLPWR: rc = devm_request_irq(&pon->pdev->dev, cfg->state_irq, qpnp_cblpwr_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, "qpnp_cblpwr_status", pon); if (rc < 0) { dev_err(&pon->pdev->dev, "Can't request %d IRQ\n", cfg->state_irq); return rc; } break; case PON_KPDPWR_RESIN: if (cfg->use_bark) { rc = devm_request_irq(&pon->pdev->dev, cfg->bark_irq, qpnp_kpdpwr_resin_bark_irq, IRQF_TRIGGER_RISING, "qpnp_kpdpwr_resin_bark", pon); if (rc < 0) { dev_err(&pon->pdev->dev, "Can't request %d IRQ\n", cfg->bark_irq); return rc; } } break; default: return -EINVAL; } /* mark the interrupts wakeable if they support linux-key */ if (cfg->key_code) { enable_irq_wake(cfg->state_irq); /* special handling for RESIN due to a hardware bug */ if (cfg->pon_type == PON_RESIN && cfg->support_reset) enable_irq_wake(cfg->bark_irq); } return rc; } static int qpnp_pon_config_input(struct qpnp_pon *pon, struct qpnp_pon_config *cfg) { if (!pon->pon_input) { pon->pon_input = input_allocate_device(); if (!pon->pon_input) { dev_err(&pon->pdev->dev, "Can't allocate pon input device\n"); return -ENOMEM; } pon->pon_input->name = "qpnp_pon"; pon->pon_input->phys = "qpnp_pon/input0"; } input_set_capability(pon->pon_input, EV_KEY, cfg->key_code); return 0; } static int qpnp_pon_config_init(struct qpnp_pon *pon) { int rc = 0, i = 0, pmic_wd_bark_irq; struct device_node *pp = NULL; struct qpnp_pon_config *cfg; uint pmic_type; uint revid_rev4; if (!pon->num_pon_config) { dev_dbg(&pon->pdev->dev, "num_pon_config: %d\n", pon->num_pon_config); return 0; } /* iterate through the list of pon configs */ for_each_available_child_of_node(pon->pdev->dev.of_node, pp) { if (!of_find_property(pp, "qcom,pon-type", NULL)) continue; cfg = &pon->pon_cfg[i++]; rc = of_property_read_u32(pp, "qcom,pon-type", &cfg->pon_type); if (rc) { dev_err(&pon->pdev->dev, "PON type not specified\n"); return rc; } switch (cfg->pon_type) { case PON_KPDPWR: cfg->state_irq = platform_get_irq_byname(pon->pdev, "kpdpwr"); if (cfg->state_irq < 0) { dev_err(&pon->pdev->dev, "Unable to get kpdpwr irq\n"); return cfg->state_irq; } rc = of_property_read_u32(pp, "qcom,support-reset", &cfg->support_reset); if (rc) { if (rc == -EINVAL) { dev_dbg(&pon->pdev->dev, "'qcom,support-reset' DT property doesn't exist\n"); } else { dev_err(&pon->pdev->dev, "Unable to read 'qcom,support-reset'\n"); return rc; } } else { cfg->config_reset = true; } cfg->use_bark = of_property_read_bool(pp, "qcom,use-bark"); if (cfg->use_bark) { cfg->bark_irq = platform_get_irq_byname(pon->pdev, "kpdpwr-bark"); if (cfg->bark_irq < 0) { dev_err(&pon->pdev->dev, "Unable to get kpdpwr-bark irq\n"); return cfg->bark_irq; } } /* * If the value read from REVISION2 register is 0x00, * then there is a single register to control s2 reset. * Otherwise there are separate registers for s2 reset * type and s2 reset enable. */ if (pon->pon_ver == QPNP_PON_GEN1_V1) { cfg->s2_cntl_addr = cfg->s2_cntl2_addr = QPNP_PON_KPDPWR_S2_CNTL(pon); } else { cfg->s2_cntl_addr = QPNP_PON_KPDPWR_S2_CNTL(pon); cfg->s2_cntl2_addr = QPNP_PON_KPDPWR_S2_CNTL2(pon); } break; case PON_RESIN: cfg->state_irq = platform_get_irq_byname(pon->pdev, "resin"); if (cfg->state_irq < 0) { dev_err(&pon->pdev->dev, "Unable to get resin irq\n"); return cfg->bark_irq; } rc = of_property_read_u32(pp, "qcom,support-reset", &cfg->support_reset); if (rc) { if (rc == -EINVAL) { dev_dbg(&pon->pdev->dev, "'qcom,support-reset' DT property doesn't exist\n"); } else { dev_err(&pon->pdev->dev, "Unable to read 'qcom,support-reset'\n"); return rc; } } else { cfg->config_reset = true; } cfg->use_bark = of_property_read_bool(pp, "qcom,use-bark"); rc = regmap_read(pon->regmap, PMIC_VERSION_REG, &pmic_type); if (rc) { dev_err(&pon->pdev->dev, "Unable to read PMIC type\n"); return rc; } if (pmic_type == PMIC_VER_8941) { rc = regmap_read(pon->regmap, PMIC_VERSION_REV4_REG, &revid_rev4); if (rc) { dev_err(&pon->pdev->dev, "Unable to read PMIC revision ID\n"); return rc; } /* * PM8941 V3 does not have hardware bug. Hence * bark is not required from PMIC versions 3.0. */ if (!(revid_rev4 == PMIC8941_V1_REV4 || revid_rev4 == PMIC8941_V2_REV4)) { cfg->support_reset = false; cfg->use_bark = false; } } if (cfg->use_bark) { cfg->bark_irq = platform_get_irq_byname(pon->pdev, "resin-bark"); if (cfg->bark_irq < 0) { dev_err(&pon->pdev->dev, "Unable to get resin-bark irq\n"); return cfg->bark_irq; } } if (pon->pon_ver == QPNP_PON_GEN1_V1) { cfg->s2_cntl_addr = cfg->s2_cntl2_addr = QPNP_PON_RESIN_S2_CNTL(pon); } else { cfg->s2_cntl_addr = QPNP_PON_RESIN_S2_CNTL(pon); cfg->s2_cntl2_addr = QPNP_PON_RESIN_S2_CNTL2(pon); } break; case PON_CBLPWR: cfg->state_irq = platform_get_irq_byname(pon->pdev, "cblpwr"); if (cfg->state_irq < 0) { dev_err(&pon->pdev->dev, "Unable to get cblpwr irq\n"); return rc; } break; case PON_KPDPWR_RESIN: rc = of_property_read_u32(pp, "qcom,support-reset", &cfg->support_reset); if (rc) { if (rc == -EINVAL) { dev_dbg(&pon->pdev->dev, "'qcom,support-reset' DT property doesn't exist\n"); } else { dev_err(&pon->pdev->dev, "Unable to read 'qcom,support-reset'\n"); return rc; } } else { cfg->config_reset = true; } cfg->use_bark = of_property_read_bool(pp, "qcom,use-bark"); if (cfg->use_bark) { cfg->bark_irq = platform_get_irq_byname(pon->pdev, "kpdpwr-resin-bark"); if (cfg->bark_irq < 0) { dev_err(&pon->pdev->dev, "Unable to get kpdpwr-resin-bark irq\n"); return cfg->bark_irq; } } if (pon->pon_ver == QPNP_PON_GEN1_V1) { cfg->s2_cntl_addr = cfg->s2_cntl2_addr = QPNP_PON_KPDPWR_RESIN_S2_CNTL(pon); } else { cfg->s2_cntl_addr = QPNP_PON_KPDPWR_RESIN_S2_CNTL(pon); cfg->s2_cntl2_addr = QPNP_PON_KPDPWR_RESIN_S2_CNTL2(pon); } break; default: dev_err(&pon->pdev->dev, "PON RESET %d not supported", cfg->pon_type); return -EINVAL; } if (cfg->support_reset) { /* * Get the reset parameters (bark debounce time and * reset debounce time) for the reset line. */ rc = of_property_read_u32(pp, "qcom,s1-timer", &cfg->s1_timer); if (rc) { dev_err(&pon->pdev->dev, "Unable to read s1-timer\n"); return rc; } if (cfg->s1_timer > QPNP_PON_S1_TIMER_MAX) { dev_err(&pon->pdev->dev, "Incorrect S1 debounce time\n"); return -EINVAL; } rc = of_property_read_u32(pp, "qcom,s2-timer", &cfg->s2_timer); if (rc) { dev_err(&pon->pdev->dev, "Unable to read s2-timer\n"); return rc; } if (cfg->s2_timer > QPNP_PON_S2_TIMER_MAX) { dev_err(&pon->pdev->dev, "Incorrect S2 debounce time\n"); return -EINVAL; } rc = of_property_read_u32(pp, "qcom,s2-type", &cfg->s2_type); if (rc) { dev_err(&pon->pdev->dev, "Unable to read s2-type\n"); return rc; } if (cfg->s2_type > QPNP_PON_RESET_TYPE_MAX) { dev_err(&pon->pdev->dev, "Incorrect reset type specified\n"); return -EINVAL; } } /* * Get the standard-key parameters. This might not be * specified if there is no key mapping on the reset line. */ rc = of_property_read_u32(pp, "linux,code", &cfg->key_code); if (rc && rc != -EINVAL) { dev_err(&pon->pdev->dev, "Unable to read key-code\n"); return rc; } /* Register key configuration */ if (cfg->key_code) { rc = qpnp_pon_config_input(pon, cfg); if (rc < 0) return rc; } /* get the pull-up configuration */ rc = of_property_read_u32(pp, "qcom,pull-up", &cfg->pull_up); if (rc && rc != -EINVAL) { dev_err(&pon->pdev->dev, "Unable to read pull-up\n"); return rc; } } pmic_wd_bark_irq = platform_get_irq_byname(pon->pdev, "pmic-wd-bark"); /* request the pmic-wd-bark irq only if it is defined */ if (pmic_wd_bark_irq >= 0) { rc = devm_request_irq(&pon->pdev->dev, pmic_wd_bark_irq, qpnp_pmic_wd_bark_irq, IRQF_TRIGGER_RISING, "qpnp_pmic_wd_bark", pon); if (rc < 0) { dev_err(&pon->pdev->dev, "Can't request %d IRQ\n", pmic_wd_bark_irq); goto free_input_dev; } } /* register the input device */ if (pon->pon_input) { rc = input_register_device(pon->pon_input); if (rc) { dev_err(&pon->pdev->dev, "Can't register pon key: %d\n", rc); goto free_input_dev; } } for (i = 0; i < pon->num_pon_config; i++) { cfg = &pon->pon_cfg[i]; /* Configure the pull-up */ rc = qpnp_config_pull(pon, cfg); if (rc) { dev_err(&pon->pdev->dev, "Unable to config pull-up\n"); goto unreg_input_dev; } if (cfg->config_reset) { /* Configure the reset-configuration */ if (cfg->support_reset) { rc = qpnp_config_reset(pon, cfg); if (rc) { dev_err(&pon->pdev->dev, "Unable to config pon reset\n"); goto unreg_input_dev; } } else { if (cfg->pon_type != PON_CBLPWR) { /* disable S2 reset */ rc = qpnp_pon_masked_write(pon, cfg->s2_cntl2_addr, QPNP_PON_S2_CNTL_EN, 0); if (rc) { dev_err(&pon->pdev->dev, "Unable to disable S2 reset\n"); goto unreg_input_dev; } } } } rc = qpnp_pon_request_irqs(pon, cfg); if (rc) { dev_err(&pon->pdev->dev, "Unable to request-irq's\n"); goto unreg_input_dev; } } device_init_wakeup(&pon->pdev->dev, 1); return rc; unreg_input_dev: if (pon->pon_input) input_unregister_device(pon->pon_input); free_input_dev: if (pon->pon_input) input_free_device(pon->pon_input); return rc; } static int pon_spare_regulator_enable(struct regulator_dev *rdev) { int rc = 0; u8 value; struct pon_regulator *pon_reg = rdev_get_drvdata(rdev); pr_debug("reg %s enable addr: %x bit: %d\n", rdev->desc->name, pon_reg->addr, pon_reg->bit); value = BIT(pon_reg->bit) & 0xFF; rc = qpnp_pon_masked_write(pon_reg->pon, pon_reg->pon->base + pon_reg->addr, value, value); if (rc) dev_err(&pon_reg->pon->pdev->dev, "Unable to write to %x\n", pon_reg->pon->base + pon_reg->addr); else pon_reg->enabled = true; return rc; } static int pon_spare_regulator_disable(struct regulator_dev *rdev) { int rc = 0; u8 mask; struct pon_regulator *pon_reg = rdev_get_drvdata(rdev); pr_debug("reg %s disable addr: %x bit: %d\n", rdev->desc->name, pon_reg->addr, pon_reg->bit); mask = BIT(pon_reg->bit) & 0xFF; rc = qpnp_pon_masked_write(pon_reg->pon, pon_reg->pon->base + pon_reg->addr, mask, 0); if (rc) dev_err(&pon_reg->pon->pdev->dev, "Unable to write to %x\n", pon_reg->pon->base + pon_reg->addr); else pon_reg->enabled = false; return rc; } static int pon_spare_regulator_is_enable(struct regulator_dev *rdev) { struct pon_regulator *pon_reg = rdev_get_drvdata(rdev); return pon_reg->enabled; } struct regulator_ops pon_spare_reg_ops = { .enable = pon_spare_regulator_enable, .disable = pon_spare_regulator_disable, .is_enabled = pon_spare_regulator_is_enable, }; static int pon_regulator_init(struct qpnp_pon *pon) { int rc = 0, i = 0; struct regulator_init_data *init_data; struct regulator_config reg_cfg = {}; struct device_node *node = NULL; struct device *dev = &pon->pdev->dev; struct pon_regulator *pon_reg; if (!pon->num_pon_reg) return 0; pon->pon_reg_cfg = devm_kcalloc(dev, pon->num_pon_reg, sizeof(*(pon->pon_reg_cfg)), GFP_KERNEL); if (!pon->pon_reg_cfg) return -ENOMEM; for_each_available_child_of_node(dev->of_node, node) { if (!of_find_property(node, "regulator-name", NULL)) continue; pon_reg = &pon->pon_reg_cfg[i++]; pon_reg->pon = pon; rc = of_property_read_u32(node, "qcom,pon-spare-reg-addr", &pon_reg->addr); if (rc) { dev_err(dev, "Unable to read address for regulator, rc=%d\n", rc); return rc; } rc = of_property_read_u32(node, "qcom,pon-spare-reg-bit", &pon_reg->bit); if (rc) { dev_err(dev, "Unable to read bit for regulator, rc=%d\n", rc); return rc; } init_data = of_get_regulator_init_data(dev, node, &pon_reg->rdesc); if (!init_data) { dev_err(dev, "regulator init data is missing\n"); return -EINVAL; } init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_STATUS; if (!init_data->constraints.name) { dev_err(dev, "regulator-name is missing\n"); return -EINVAL; } pon_reg->rdesc.owner = THIS_MODULE; pon_reg->rdesc.type = REGULATOR_VOLTAGE; pon_reg->rdesc.ops = &pon_spare_reg_ops; pon_reg->rdesc.name = init_data->constraints.name; reg_cfg.dev = dev; reg_cfg.init_data = init_data; reg_cfg.driver_data = pon_reg; reg_cfg.of_node = node; pon_reg->rdev = regulator_register(&pon_reg->rdesc, ®_cfg); if (IS_ERR(pon_reg->rdev)) { rc = PTR_ERR(pon_reg->rdev); pon_reg->rdev = NULL; if (rc != -EPROBE_DEFER) dev_err(dev, "regulator_register failed, rc=%d\n", rc); return rc; } } return rc; } static bool smpl_en; static int qpnp_pon_smpl_en_get(char *buf, const struct kernel_param *kp) { bool enabled = 0; int rc; rc = qpnp_pon_get_trigger_config(PON_SMPL, &enabled); if (rc < 0) return rc; return snprintf(buf, QPNP_PON_BUFFER_SIZE, "%d", enabled); } static int qpnp_pon_smpl_en_set(const char *val, const struct kernel_param *kp) { int rc; rc = param_set_bool(val, kp); if (rc < 0) { pr_err("Unable to set smpl_en rc=%d\n", rc); return rc; } rc = qpnp_pon_trigger_config(PON_SMPL, *(bool *)kp->arg); return rc; } static struct kernel_param_ops smpl_en_ops = { .set = qpnp_pon_smpl_en_set, .get = qpnp_pon_smpl_en_get, }; module_param_cb(smpl_en, &smpl_en_ops, &smpl_en, 0644); static bool dload_on_uvlo; static int qpnp_pon_debugfs_uvlo_dload_get(char *buf, const struct kernel_param *kp) { struct qpnp_pon *pon = sys_reset_dev; int rc = 0; uint reg; if (!pon) return -ENODEV; rc = regmap_read(pon->regmap, QPNP_PON_XVDD_RB_SPARE(pon), ®); if (rc) { dev_err(&pon->pdev->dev, "Unable to read addr=%x, rc(%d)\n", QPNP_PON_XVDD_RB_SPARE(pon), rc); return rc; } return snprintf(buf, PAGE_SIZE, "%d", !!(QPNP_PON_UVLO_DLOAD_EN & reg)); } static int qpnp_pon_debugfs_uvlo_dload_set(const char *val, const struct kernel_param *kp) { struct qpnp_pon *pon = sys_reset_dev; int rc = 0; uint reg; if (!pon) return -ENODEV; rc = param_set_bool(val, kp); if (rc) { pr_err("Unable to set bms_reset: %d\n", rc); return rc; } rc = regmap_read(pon->regmap, QPNP_PON_XVDD_RB_SPARE(pon), ®); if (rc) { dev_err(&pon->pdev->dev, "Unable to read addr=%x, rc(%d)\n", QPNP_PON_XVDD_RB_SPARE(pon), rc); return rc; } reg &= ~QPNP_PON_UVLO_DLOAD_EN; if (*(bool *)kp->arg) reg |= QPNP_PON_UVLO_DLOAD_EN; rc = regmap_write(pon->regmap, QPNP_PON_XVDD_RB_SPARE(pon), reg); if (rc) { dev_err(&pon->pdev->dev, "Unable to write to addr=%hx, rc(%d)\n", QPNP_PON_XVDD_RB_SPARE(pon), rc); return rc; } return 0; } static struct kernel_param_ops dload_on_uvlo_ops = { .set = qpnp_pon_debugfs_uvlo_dload_set, .get = qpnp_pon_debugfs_uvlo_dload_get, }; module_param_cb(dload_on_uvlo, &dload_on_uvlo_ops, &dload_on_uvlo, 0644); #if defined(CONFIG_DEBUG_FS) static int qpnp_pon_debugfs_uvlo_get(void *data, u64 *val) { struct qpnp_pon *pon = (struct qpnp_pon *) data; *val = pon->uvlo; return 0; } static int qpnp_pon_debugfs_uvlo_set(void *data, u64 val) { struct qpnp_pon *pon = (struct qpnp_pon *) data; if (pon->pon_trigger_reason == PON_SMPL || pon->pon_power_off_reason == QPNP_POFF_REASON_UVLO) panic("An UVLO was occurred.\n"); pon->uvlo = val; return 0; } DEFINE_SIMPLE_ATTRIBUTE(qpnp_pon_debugfs_uvlo_fops, qpnp_pon_debugfs_uvlo_get, qpnp_pon_debugfs_uvlo_set, "0x%02llx\n"); static void qpnp_pon_debugfs_init(struct platform_device *pdev) { struct qpnp_pon *pon = dev_get_drvdata(&pdev->dev); struct dentry *ent; pon->debugfs = debugfs_create_dir(dev_name(&pdev->dev), NULL); if (!pon->debugfs) { dev_err(&pon->pdev->dev, "Unable to create debugfs directory\n"); } else { ent = debugfs_create_file("uvlo_panic", 0644, pon->debugfs, pon, &qpnp_pon_debugfs_uvlo_fops); if (!ent) dev_err(&pon->pdev->dev, "Unable to create uvlo_panic debugfs file.\n"); } } static void qpnp_pon_debugfs_remove(struct platform_device *pdev) { struct qpnp_pon *pon = dev_get_drvdata(&pdev->dev); debugfs_remove_recursive(pon->debugfs); } #else static void qpnp_pon_debugfs_init(struct platform_device *pdev) {} static void qpnp_pon_debugfs_remove(struct platform_device *pdev) {} #endif static int read_gen2_pon_off_reason(struct qpnp_pon *pon, u16 *reason, int *reason_index_offset) { int rc; int buf[2], reg; rc = regmap_read(pon->regmap, QPNP_PON_OFF_REASON(pon), ®); if (rc) { dev_err(&pon->pdev->dev, "Unable to read PON_OFF_REASON reg rc:%d\n", rc); return rc; } if (reg & QPNP_GEN2_POFF_SEQ) { rc = regmap_read(pon->regmap, QPNP_POFF_REASON1(pon), buf); if (rc) { dev_err(&pon->pdev->dev, "Unable to read POFF_REASON1 reg rc:%d\n", rc); return rc; } *reason = (u8)buf[0]; *reason_index_offset = 0; } else if (reg & QPNP_GEN2_FAULT_SEQ) { rc = regmap_bulk_read(pon->regmap, QPNP_FAULT_REASON1(pon), buf, 2); if (rc) { dev_err(&pon->pdev->dev, "Unable to read FAULT_REASON regs rc:%d\n", rc); return rc; } *reason = (u8)buf[0] | (u16)(buf[1] << 8); *reason_index_offset = POFF_REASON_FAULT_OFFSET; } else if (reg & QPNP_GEN2_S3_RESET_SEQ) { rc = regmap_read(pon->regmap, QPNP_S3_RESET_REASON(pon), buf); if (rc) { dev_err(&pon->pdev->dev, "Unable to read S3_RESET_REASON reg rc:%d\n", rc); return rc; } *reason = (u8)buf[0]; *reason_index_offset = POFF_REASON_S3_RESET_OFFSET; } return 0; } static int qpnp_pon_probe(struct platform_device *pdev) { struct qpnp_pon *pon; unsigned int base; struct device_node *node = NULL; u32 delay = 0, s3_debounce = 0; int rc, sys_reset, index; int reason_index_offset = 0; u8 buf[2]; uint pon_sts = 0; u16 poff_sts = 0; const char *s3_src; u8 s3_src_reg; unsigned long flags; uint temp = 0; pon = devm_kzalloc(&pdev->dev, sizeof(struct qpnp_pon), GFP_KERNEL); if (!pon) return -ENOMEM; pon->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!pon->regmap) { dev_err(&pdev->dev, "Couldn't get parent's regmap\n"); return -EINVAL; } sys_reset = of_property_read_bool(pdev->dev.of_node, "qcom,system-reset"); if (sys_reset && sys_reset_dev) { dev_err(&pdev->dev, "qcom,system-reset property can only be specified for one device on the system\n"); return -EINVAL; } else if (sys_reset) { sys_reset_dev = pon; } pon->pdev = pdev; rc = of_property_read_u32(pdev->dev.of_node, "reg", &base); if (rc < 0) { dev_err(&pdev->dev, "Couldn't find reg in node = %s rc = %d\n", pdev->dev.of_node->full_name, rc); return rc; } pon->base = base; /* get the total number of pon configurations */ for_each_available_child_of_node(pdev->dev.of_node, node) { if (of_find_property(node, "regulator-name", NULL)) { pon->num_pon_reg++; } else if (of_find_property(node, "qcom,pon-type", NULL)) { pon->num_pon_config++; } else { pr_err("Unknown sub-node\n"); return -EINVAL; } } pr_debug("PON@SID %d: num_pon_config: %d num_pon_reg: %d\n", to_spmi_device(pon->pdev->dev.parent)->usid, pon->num_pon_config, pon->num_pon_reg); rc = pon_regulator_init(pon); if (rc) { dev_err(&pdev->dev, "Error in pon_regulator_init rc: %d\n", rc); return rc; } if (!pon->num_pon_config) /* No PON config., do not register the driver */ dev_info(&pdev->dev, "No PON config. specified\n"); else pon->pon_cfg = devm_kzalloc(&pdev->dev, sizeof(struct qpnp_pon_config) * pon->num_pon_config, GFP_KERNEL); /* Read PON_PERPH_SUBTYPE register to get PON type */ rc = regmap_read(pon->regmap, QPNP_PON_PERPH_SUBTYPE(pon), &temp); if (rc) { dev_err(&pon->pdev->dev, "Unable to read PON_PERPH_SUBTYPE register rc: %d\n", rc); return rc; } pon->subtype = temp; /* Check if it is rev B */ rc = regmap_read(pon->regmap, QPNP_PON_REVISION2(pon), &temp); if (rc) { dev_err(&pon->pdev->dev, "Unable to read addr=%x, rc(%d)\n", QPNP_PON_REVISION2(pon), rc); return rc; } pon->pon_ver = temp; if (is_pon_gen1(pon)) { if (pon->pon_ver == 0) pon->pon_ver = QPNP_PON_GEN1_V1; else pon->pon_ver = QPNP_PON_GEN1_V2; } else if (is_pon_gen2(pon)) { pon->pon_ver = QPNP_PON_GEN2; } else if (pon->subtype == PON_1REG) { pon->pon_ver = QPNP_PON_GEN1_V2; } else { dev_err(&pon->pdev->dev, "Invalid PON_PERPH_SUBTYPE value %x\n", pon->subtype); return -EINVAL; } pr_debug("%s: pon_subtype=%x, pon_version=%x\n", __func__, pon->subtype, pon->pon_ver); rc = qpnp_pon_store_and_clear_warm_reset(pon); if (rc) { dev_err(&pon->pdev->dev, "Unable to store/clear WARM_RESET_REASONx registers rc: %d\n", rc); return rc; } /* PON reason */ rc = regmap_read(pon->regmap, QPNP_PON_REASON1(pon), &pon_sts); if (rc) { dev_err(&pon->pdev->dev, "Unable to read PON_RESASON1 reg rc: %d\n", rc); return rc; } if (sys_reset) boot_reason = ffs(pon_sts); index = ffs(pon_sts) - 1; cold_boot = !qpnp_pon_is_warm_reset(); if (index >= ARRAY_SIZE(qpnp_pon_reason) || index < 0) { dev_info(&pon->pdev->dev, "PMIC@SID%d Power-on reason: Unknown and '%s' boot\n", to_spmi_device(pon->pdev->dev.parent)->usid, cold_boot ? "cold" : "warm"); } else { pon->pon_trigger_reason = index; dev_info(&pon->pdev->dev, "PMIC@SID%d Power-on reason: %s and '%s' boot\n", to_spmi_device(pon->pdev->dev.parent)->usid, qpnp_pon_reason[index], cold_boot ? "cold" : "warm"); } /* POFF reason */ if (!is_pon_gen1(pon) && pon->subtype != PON_1REG) { rc = read_gen2_pon_off_reason(pon, &poff_sts, &reason_index_offset); if (rc) return rc; } else { rc = regmap_bulk_read(pon->regmap, QPNP_POFF_REASON1(pon), buf, 2); if (rc) { dev_err(&pon->pdev->dev, "Unable to read POFF_REASON regs rc:%d\n", rc); return rc; } poff_sts = buf[0] | (buf[1] << 8); } index = ffs(poff_sts) - 1 + reason_index_offset; if (index >= ARRAY_SIZE(qpnp_poff_reason) || index < 0) { dev_info(&pon->pdev->dev, "PMIC@SID%d: Unknown power-off reason\n", to_spmi_device(pon->pdev->dev.parent)->usid); } else { pon->pon_power_off_reason = index; dev_info(&pon->pdev->dev, "PMIC@SID%d: Power-off reason: %s\n", to_spmi_device(pon->pdev->dev.parent)->usid, qpnp_poff_reason[index]); } if (pon->pon_trigger_reason == PON_SMPL || pon->pon_power_off_reason == QPNP_POFF_REASON_UVLO) { if (of_property_read_bool(pdev->dev.of_node, "qcom,uvlo-panic")) panic("An UVLO was occurred."); } /* program s3 debounce */ rc = of_property_read_u32(pon->pdev->dev.of_node, "qcom,s3-debounce", &s3_debounce); if (rc) { if (rc != -EINVAL) { dev_err(&pon->pdev->dev, "Unable to read s3 timer rc:%d\n", rc); return rc; } } else { if (s3_debounce > QPNP_PON_S3_TIMER_SECS_MAX) { dev_info(&pon->pdev->dev, "Exceeded S3 max value, set it to max\n"); s3_debounce = QPNP_PON_S3_TIMER_SECS_MAX; } /* 0 is a special value to indicate instant s3 reset */ if (s3_debounce != 0) s3_debounce = ilog2(s3_debounce); /* s3 debounce is SEC_ACCESS register */ rc = qpnp_pon_masked_write(pon, QPNP_PON_SEC_ACCESS(pon), 0xFF, QPNP_PON_SEC_UNLOCK); if (rc) { dev_err(&pdev->dev, "Unable to do SEC_ACCESS rc:%d\n", rc); return rc; } rc = qpnp_pon_masked_write(pon, QPNP_PON_S3_DBC_CTL(pon), QPNP_PON_S3_DBC_DELAY_MASK, s3_debounce); if (rc) { dev_err(&pdev->dev, "Unable to set S3 debounce rc:%d\n", rc); return rc; } } /* program s3 source */ s3_src = "kpdpwr-and-resin"; rc = of_property_read_string(pon->pdev->dev.of_node, "qcom,s3-src", &s3_src); if (rc && rc != -EINVAL) { dev_err(&pon->pdev->dev, "Unable to read s3 timer rc: %d\n", rc); return rc; } if (!strcmp(s3_src, "kpdpwr")) s3_src_reg = QPNP_PON_S3_SRC_KPDPWR; else if (!strcmp(s3_src, "resin")) s3_src_reg = QPNP_PON_S3_SRC_RESIN; else if (!strcmp(s3_src, "kpdpwr-or-resin")) s3_src_reg = QPNP_PON_S3_SRC_KPDPWR_OR_RESIN; else /* default combination */ s3_src_reg = QPNP_PON_S3_SRC_KPDPWR_AND_RESIN; /* * S3 source is a write once register. If the register has * been configured by bootloader then this operation will * not be effective. */ rc = qpnp_pon_masked_write(pon, QPNP_PON_S3_SRC(pon), QPNP_PON_S3_SRC_MASK, s3_src_reg); if (rc) { dev_err(&pdev->dev, "Unable to program s3 source rc: %d\n", rc); return rc; } dev_set_drvdata(&pdev->dev, pon); INIT_DELAYED_WORK(&pon->bark_work, bark_work_func); /* register the PON configurations */ rc = qpnp_pon_config_init(pon); if (rc) { dev_err(&pdev->dev, "Unable to initialize PON configurations rc: %d\n", rc); return rc; } rc = of_property_read_u32(pon->pdev->dev.of_node, "qcom,pon-dbc-delay", &delay); if (rc) { if (rc != -EINVAL) { dev_err(&pdev->dev, "Unable to read debounce delay rc: %d\n", rc); return rc; } } else { rc = qpnp_pon_set_dbc(pon, delay); if (rc) { dev_err(&pdev->dev, "Unable to set PON debounce delay rc=%d\n", rc); return rc; } } rc = qpnp_pon_get_dbc(pon, &pon->dbc_time_us); if (rc) { dev_err(&pdev->dev, "Unable to get PON debounce delay rc=%d\n", rc); return rc; } pon->kpdpwr_dbc_enable = of_property_read_bool(pon->pdev->dev.of_node, "qcom,kpdpwr-sw-debounce"); rc = of_property_read_u32(pon->pdev->dev.of_node, "qcom,warm-reset-poweroff-type", &pon->warm_reset_poff_type); if (rc) { if (rc != -EINVAL) { dev_err(&pdev->dev, "Unable to read warm reset poweroff type rc: %d\n", rc); return rc; } pon->warm_reset_poff_type = -EINVAL; } else if (pon->warm_reset_poff_type <= PON_POWER_OFF_RESERVED || pon->warm_reset_poff_type >= PON_POWER_OFF_MAX_TYPE) { dev_err(&pdev->dev, "Invalid warm-reset-poweroff-type\n"); pon->warm_reset_poff_type = -EINVAL; } rc = of_property_read_u32(pon->pdev->dev.of_node, "qcom,hard-reset-poweroff-type", &pon->hard_reset_poff_type); if (rc) { if (rc != -EINVAL) { dev_err(&pdev->dev, "Unable to read hard reset poweroff type rc: %d\n", rc); return rc; } pon->hard_reset_poff_type = -EINVAL; } else if (pon->hard_reset_poff_type <= PON_POWER_OFF_RESERVED || pon->hard_reset_poff_type >= PON_POWER_OFF_MAX_TYPE) { dev_err(&pdev->dev, "Invalid hard-reset-poweroff-type\n"); pon->hard_reset_poff_type = -EINVAL; } rc = of_property_read_u32(pon->pdev->dev.of_node, "qcom,shutdown-poweroff-type", &pon->shutdown_poff_type); if (rc) { if (rc != -EINVAL) { dev_err(&pdev->dev, "Unable to read shutdown poweroff type rc: %d\n", rc); return rc; } pon->shutdown_poff_type = -EINVAL; } else if (pon->shutdown_poff_type <= PON_POWER_OFF_RESERVED || pon->shutdown_poff_type >= PON_POWER_OFF_MAX_TYPE) { dev_err(&pdev->dev, "Invalid shutdown-poweroff-type\n"); pon->shutdown_poff_type = -EINVAL; } rc = device_create_file(&pdev->dev, &dev_attr_debounce_us); if (rc) { dev_err(&pdev->dev, "sys file creation failed rc: %d\n", rc); return rc; } if (of_property_read_bool(pdev->dev.of_node, "qcom,secondary-pon-reset")) { if (sys_reset) { dev_err(&pdev->dev, "qcom,system-reset property shouldn't be used along with qcom,secondary-pon-reset property\n"); return -EINVAL; } spin_lock_irqsave(&spon_list_slock, flags); list_add(&pon->list, &spon_dev_list); spin_unlock_irqrestore(&spon_list_slock, flags); pon->is_spon = true; } /* config whether store the hard reset reason */ pon->store_hard_reset_reason = of_property_read_bool(pdev->dev.of_node, "qcom,store-hard-reset-reason"); qpnp_pon_debugfs_init(pdev); return 0; } static int qpnp_pon_remove(struct platform_device *pdev) { struct qpnp_pon *pon = dev_get_drvdata(&pdev->dev); unsigned long flags; device_remove_file(&pdev->dev, &dev_attr_debounce_us); cancel_delayed_work_sync(&pon->bark_work); if (pon->pon_input) input_unregister_device(pon->pon_input); qpnp_pon_debugfs_remove(pdev); if (pon->is_spon) { spin_lock_irqsave(&spon_list_slock, flags); list_del(&pon->list); spin_unlock_irqrestore(&spon_list_slock, flags); } return 0; } static const struct of_device_id spmi_match_table[] = { { .compatible = "qcom,qpnp-power-on", }, {} }; static struct platform_driver qpnp_pon_driver = { .driver = { .name = "qcom,qpnp-power-on", .of_match_table = spmi_match_table, }, .probe = qpnp_pon_probe, .remove = qpnp_pon_remove, }; static int __init qpnp_pon_init(void) { return platform_driver_register(&qpnp_pon_driver); } subsys_initcall(qpnp_pon_init); static void __exit qpnp_pon_exit(void) { return platform_driver_unregister(&qpnp_pon_driver); } module_exit(qpnp_pon_exit); MODULE_DESCRIPTION("QPNP PMIC POWER-ON driver"); MODULE_LICENSE("GPL v2");