/* * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver * * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved. * Copyright (C) 2010 ST-Ericsson SA * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmci.h" #define DRIVER_NAME "mmci-pl18x" static unsigned int fmax = 515633; /** * struct variant_data - MMCI variant-specific quirks * @clkreg: default value for MCICLOCK register * @clkreg_enable: enable value for MMCICLOCK register * @datalength_bits: number of bits in the MMCIDATALENGTH register * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY * is asserted (likewise for RX) * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY * is asserted (likewise for RX) * @sdio: variant supports SDIO * @st_clkdiv: true if using a ST-specific clock divider algorithm * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register */ struct variant_data { unsigned int clkreg; unsigned int clkreg_enable; unsigned int datalength_bits; unsigned int fifosize; unsigned int fifohalfsize; bool sdio; bool st_clkdiv; bool blksz_datactrl16; }; static struct variant_data variant_arm = { .fifosize = 16 * 4, .fifohalfsize = 8 * 4, .datalength_bits = 16, }; static struct variant_data variant_arm_extended_fifo = { .fifosize = 128 * 4, .fifohalfsize = 64 * 4, .datalength_bits = 16, }; static struct variant_data variant_u300 = { .fifosize = 16 * 4, .fifohalfsize = 8 * 4, .clkreg_enable = MCI_ST_U300_HWFCEN, .datalength_bits = 16, .sdio = true, }; static struct variant_data variant_ux500 = { .fifosize = 30 * 4, .fifohalfsize = 8 * 4, .clkreg = MCI_CLK_ENABLE, .clkreg_enable = MCI_ST_UX500_HWFCEN, .datalength_bits = 24, .sdio = true, .st_clkdiv = true, }; static struct variant_data variant_ux500v2 = { .fifosize = 30 * 4, .fifohalfsize = 8 * 4, .clkreg = MCI_CLK_ENABLE, .clkreg_enable = MCI_ST_UX500_HWFCEN, .datalength_bits = 24, .sdio = true, .st_clkdiv = true, .blksz_datactrl16 = true, }; /* * This must be called with host->lock held */ static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired) { struct variant_data *variant = host->variant; u32 clk = variant->clkreg; if (desired) { if (desired >= host->mclk) { clk = MCI_CLK_BYPASS; if (variant->st_clkdiv) clk |= MCI_ST_UX500_NEG_EDGE; host->cclk = host->mclk; } else if (variant->st_clkdiv) { /* * DB8500 TRM says f = mclk / (clkdiv + 2) * => clkdiv = (mclk / f) - 2 * Round the divider up so we don't exceed the max * frequency */ clk = DIV_ROUND_UP(host->mclk, desired) - 2; if (clk >= 256) clk = 255; host->cclk = host->mclk / (clk + 2); } else { /* * PL180 TRM says f = mclk / (2 * (clkdiv + 1)) * => clkdiv = mclk / (2 * f) - 1 */ clk = host->mclk / (2 * desired) - 1; if (clk >= 256) clk = 255; host->cclk = host->mclk / (2 * (clk + 1)); } clk |= variant->clkreg_enable; clk |= MCI_CLK_ENABLE; /* This hasn't proven to be worthwhile */ /* clk |= MCI_CLK_PWRSAVE; */ } if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4) clk |= MCI_4BIT_BUS; if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) clk |= MCI_ST_8BIT_BUS; writel(clk, host->base + MMCICLOCK); } static void mmci_request_end(struct mmci_host *host, struct mmc_request *mrq) { writel(0, host->base + MMCICOMMAND); BUG_ON(host->data); host->mrq = NULL; host->cmd = NULL; /* * Need to drop the host lock here; mmc_request_done may call * back into the driver... */ spin_unlock(&host->lock); pm_runtime_put(mmc_dev(host->mmc)); mmc_request_done(host->mmc, mrq); spin_lock(&host->lock); } static void mmci_set_mask1(struct mmci_host *host, unsigned int mask) { void __iomem *base = host->base; if (host->singleirq) { unsigned int mask0 = readl(base + MMCIMASK0); mask0 &= ~MCI_IRQ1MASK; mask0 |= mask; writel(mask0, base + MMCIMASK0); } writel(mask, base + MMCIMASK1); } static void mmci_stop_data(struct mmci_host *host) { writel(0, host->base + MMCIDATACTRL); mmci_set_mask1(host, 0); host->data = NULL; } static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data) { unsigned int flags = SG_MITER_ATOMIC; if (data->flags & MMC_DATA_READ) flags |= SG_MITER_TO_SG; else flags |= SG_MITER_FROM_SG; sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); } /* * All the DMA operation mode stuff goes inside this ifdef. * This assumes that you have a generic DMA device interface, * no custom DMA interfaces are supported. */ #ifdef CONFIG_DMA_ENGINE static void __devinit mmci_dma_setup(struct mmci_host *host) { struct mmci_platform_data *plat = host->plat; const char *rxname, *txname; dma_cap_mask_t mask; if (!plat || !plat->dma_filter) { dev_info(mmc_dev(host->mmc), "no DMA platform data\n"); return; } /* initialize pre request cookie */ host->next_data.cookie = 1; /* Try to acquire a generic DMA engine slave channel */ dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); /* * If only an RX channel is specified, the driver will * attempt to use it bidirectionally, however if it is * is specified but cannot be located, DMA will be disabled. */ if (plat->dma_rx_param) { host->dma_rx_channel = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param); /* E.g if no DMA hardware is present */ if (!host->dma_rx_channel) dev_err(mmc_dev(host->mmc), "no RX DMA channel\n"); } if (plat->dma_tx_param) { host->dma_tx_channel = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param); if (!host->dma_tx_channel) dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n"); } else { host->dma_tx_channel = host->dma_rx_channel; } if (host->dma_rx_channel) rxname = dma_chan_name(host->dma_rx_channel); else rxname = "none"; if (host->dma_tx_channel) txname = dma_chan_name(host->dma_tx_channel); else txname = "none"; dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n", rxname, txname); /* * Limit the maximum segment size in any SG entry according to * the parameters of the DMA engine device. */ if (host->dma_tx_channel) { struct device *dev = host->dma_tx_channel->device->dev; unsigned int max_seg_size = dma_get_max_seg_size(dev); if (max_seg_size < host->mmc->max_seg_size) host->mmc->max_seg_size = max_seg_size; } if (host->dma_rx_channel) { struct device *dev = host->dma_rx_channel->device->dev; unsigned int max_seg_size = dma_get_max_seg_size(dev); if (max_seg_size < host->mmc->max_seg_size) host->mmc->max_seg_size = max_seg_size; } } /* * This is used in __devinit or __devexit so inline it * so it can be discarded. */ static inline void mmci_dma_release(struct mmci_host *host) { struct mmci_platform_data *plat = host->plat; if (host->dma_rx_channel) dma_release_channel(host->dma_rx_channel); if (host->dma_tx_channel && plat->dma_tx_param) dma_release_channel(host->dma_tx_channel); host->dma_rx_channel = host->dma_tx_channel = NULL; } static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) { struct dma_chan *chan = host->dma_current; enum dma_data_direction dir; u32 status; int i; /* Wait up to 1ms for the DMA to complete */ for (i = 0; ; i++) { status = readl(host->base + MMCISTATUS); if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100) break; udelay(10); } /* * Check to see whether we still have some data left in the FIFO - * this catches DMA controllers which are unable to monitor the * DMALBREQ and DMALSREQ signals while allowing us to DMA to non- * contiguous buffers. On TX, we'll get a FIFO underrun error. */ if (status & MCI_RXDATAAVLBLMASK) { dmaengine_terminate_all(chan); if (!data->error) data->error = -EIO; } if (data->flags & MMC_DATA_WRITE) { dir = DMA_TO_DEVICE; } else { dir = DMA_FROM_DEVICE; } if (!data->host_cookie) dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir); /* * Use of DMA with scatter-gather is impossible. * Give up with DMA and switch back to PIO mode. */ if (status & MCI_RXDATAAVLBLMASK) { dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n"); mmci_dma_release(host); } } static void mmci_dma_data_error(struct mmci_host *host) { dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n"); dmaengine_terminate_all(host->dma_current); } static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data, struct mmci_host_next *next) { struct variant_data *variant = host->variant; struct dma_slave_config conf = { .src_addr = host->phybase + MMCIFIFO, .dst_addr = host->phybase + MMCIFIFO, .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, .src_maxburst = variant->fifohalfsize >> 2, /* # of words */ .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */ }; struct dma_chan *chan; struct dma_device *device; struct dma_async_tx_descriptor *desc; enum dma_data_direction buffer_dirn; int nr_sg; /* Check if next job is already prepared */ if (data->host_cookie && !next && host->dma_current && host->dma_desc_current) return 0; if (!next) { host->dma_current = NULL; host->dma_desc_current = NULL; } if (data->flags & MMC_DATA_READ) { conf.direction = DMA_DEV_TO_MEM; buffer_dirn = DMA_FROM_DEVICE; chan = host->dma_rx_channel; } else { conf.direction = DMA_MEM_TO_DEV; buffer_dirn = DMA_TO_DEVICE; chan = host->dma_tx_channel; } /* If there's no DMA channel, fall back to PIO */ if (!chan) return -EINVAL; /* If less than or equal to the fifo size, don't bother with DMA */ if (data->blksz * data->blocks <= variant->fifosize) return -EINVAL; device = chan->device; nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn); if (nr_sg == 0) return -EINVAL; dmaengine_slave_config(chan, &conf); desc = device->device_prep_slave_sg(chan, data->sg, nr_sg, conf.direction, DMA_CTRL_ACK); if (!desc) goto unmap_exit; if (next) { next->dma_chan = chan; next->dma_desc = desc; } else { host->dma_current = chan; host->dma_desc_current = desc; } return 0; unmap_exit: if (!next) dmaengine_terminate_all(chan); dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn); return -ENOMEM; } static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl) { int ret; struct mmc_data *data = host->data; ret = mmci_dma_prep_data(host, host->data, NULL); if (ret) return ret; /* Okay, go for it. */ dev_vdbg(mmc_dev(host->mmc), "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n", data->sg_len, data->blksz, data->blocks, data->flags); dmaengine_submit(host->dma_desc_current); dma_async_issue_pending(host->dma_current); datactrl |= MCI_DPSM_DMAENABLE; /* Trigger the DMA transfer */ writel(datactrl, host->base + MMCIDATACTRL); /* * Let the MMCI say when the data is ended and it's time * to fire next DMA request. When that happens, MMCI will * call mmci_data_end() */ writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK, host->base + MMCIMASK0); return 0; } static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) { struct mmci_host_next *next = &host->next_data; if (data->host_cookie && data->host_cookie != next->cookie) { pr_warning("[%s] invalid cookie: data->host_cookie %d" " host->next_data.cookie %d\n", __func__, data->host_cookie, host->next_data.cookie); data->host_cookie = 0; } if (!data->host_cookie) return; host->dma_desc_current = next->dma_desc; host->dma_current = next->dma_chan; next->dma_desc = NULL; next->dma_chan = NULL; } static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq, bool is_first_req) { struct mmci_host *host = mmc_priv(mmc); struct mmc_data *data = mrq->data; struct mmci_host_next *nd = &host->next_data; if (!data) return; if (data->host_cookie) { data->host_cookie = 0; return; } /* if config for dma */ if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) || ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) { if (mmci_dma_prep_data(host, data, nd)) data->host_cookie = 0; else data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie; } } static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq, int err) { struct mmci_host *host = mmc_priv(mmc); struct mmc_data *data = mrq->data; struct dma_chan *chan; enum dma_data_direction dir; if (!data) return; if (data->flags & MMC_DATA_READ) { dir = DMA_FROM_DEVICE; chan = host->dma_rx_channel; } else { dir = DMA_TO_DEVICE; chan = host->dma_tx_channel; } /* if config for dma */ if (chan) { if (err) dmaengine_terminate_all(chan); if (data->host_cookie) dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, dir); mrq->data->host_cookie = 0; } } #else /* Blank functions if the DMA engine is not available */ static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) { } static inline void mmci_dma_setup(struct mmci_host *host) { } static inline void mmci_dma_release(struct mmci_host *host) { } static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) { } static inline void mmci_dma_data_error(struct mmci_host *host) { } static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl) { return -ENOSYS; } #define mmci_pre_request NULL #define mmci_post_request NULL #endif static void mmci_start_data(struct mmci_host *host, struct mmc_data *data) { struct variant_data *variant = host->variant; unsigned int datactrl, timeout, irqmask; unsigned long long clks; void __iomem *base; int blksz_bits; dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n", data->blksz, data->blocks, data->flags); host->data = data; host->size = data->blksz * data->blocks; data->bytes_xfered = 0; clks = (unsigned long long)data->timeout_ns * host->cclk; do_div(clks, 1000000000UL); timeout = data->timeout_clks + (unsigned int)clks; base = host->base; writel(timeout, base + MMCIDATATIMER); writel(host->size, base + MMCIDATALENGTH); blksz_bits = ffs(data->blksz) - 1; BUG_ON(1 << blksz_bits != data->blksz); if (variant->blksz_datactrl16) datactrl = MCI_DPSM_ENABLE | (data->blksz << 16); else datactrl = MCI_DPSM_ENABLE | blksz_bits << 4; if (data->flags & MMC_DATA_READ) datactrl |= MCI_DPSM_DIRECTION; /* * Attempt to use DMA operation mode, if this * should fail, fall back to PIO mode */ if (!mmci_dma_start_data(host, datactrl)) return; /* IRQ mode, map the SG list for CPU reading/writing */ mmci_init_sg(host, data); if (data->flags & MMC_DATA_READ) { irqmask = MCI_RXFIFOHALFFULLMASK; /* * If we have less than the fifo 'half-full' threshold to * transfer, trigger a PIO interrupt as soon as any data * is available. */ if (host->size < variant->fifohalfsize) irqmask |= MCI_RXDATAAVLBLMASK; } else { /* * We don't actually need to include "FIFO empty" here * since its implicit in "FIFO half empty". */ irqmask = MCI_TXFIFOHALFEMPTYMASK; } /* The ST Micro variants has a special bit to enable SDIO */ if (variant->sdio && host->mmc->card) if (mmc_card_sdio(host->mmc->card)) datactrl |= MCI_ST_DPSM_SDIOEN; writel(datactrl, base + MMCIDATACTRL); writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0); mmci_set_mask1(host, irqmask); } static void mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c) { void __iomem *base = host->base; dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n", cmd->opcode, cmd->arg, cmd->flags); if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) { writel(0, base + MMCICOMMAND); udelay(1); } c |= cmd->opcode | MCI_CPSM_ENABLE; if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) c |= MCI_CPSM_LONGRSP; c |= MCI_CPSM_RESPONSE; } if (/*interrupt*/0) c |= MCI_CPSM_INTERRUPT; host->cmd = cmd; writel(cmd->arg, base + MMCIARGUMENT); writel(c, base + MMCICOMMAND); } static void mmci_data_irq(struct mmci_host *host, struct mmc_data *data, unsigned int status) { /* First check for errors */ if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) { u32 remain, success; /* Terminate the DMA transfer */ if (dma_inprogress(host)) mmci_dma_data_error(host); /* * Calculate how far we are into the transfer. Note that * the data counter gives the number of bytes transferred * on the MMC bus, not on the host side. On reads, this * can be as much as a FIFO-worth of data ahead. This * matters for FIFO overruns only. */ remain = readl(host->base + MMCIDATACNT); success = data->blksz * data->blocks - remain; dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n", status, success); if (status & MCI_DATACRCFAIL) { /* Last block was not successful */ success -= 1; data->error = -EILSEQ; } else if (status & MCI_DATATIMEOUT) { data->error = -ETIMEDOUT; } else if (status & MCI_STARTBITERR) { data->error = -ECOMM; } else if (status & MCI_TXUNDERRUN) { data->error = -EIO; } else if (status & MCI_RXOVERRUN) { if (success > host->variant->fifosize) success -= host->variant->fifosize; else success = 0; data->error = -EIO; } data->bytes_xfered = round_down(success, data->blksz); } if (status & MCI_DATABLOCKEND) dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n"); if (status & MCI_DATAEND || data->error) { if (dma_inprogress(host)) mmci_dma_unmap(host, data); mmci_stop_data(host); if (!data->error) /* The error clause is handled above, success! */ data->bytes_xfered = data->blksz * data->blocks; if (!data->stop) { mmci_request_end(host, data->mrq); } else { mmci_start_command(host, data->stop, 0); } } } static void mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd, unsigned int status) { void __iomem *base = host->base; host->cmd = NULL; if (status & MCI_CMDTIMEOUT) { cmd->error = -ETIMEDOUT; } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) { cmd->error = -EILSEQ; } else { cmd->resp[0] = readl(base + MMCIRESPONSE0); cmd->resp[1] = readl(base + MMCIRESPONSE1); cmd->resp[2] = readl(base + MMCIRESPONSE2); cmd->resp[3] = readl(base + MMCIRESPONSE3); } if (!cmd->data || cmd->error) { if (host->data) mmci_stop_data(host); mmci_request_end(host, cmd->mrq); } else if (!(cmd->data->flags & MMC_DATA_READ)) { mmci_start_data(host, cmd->data); } } static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain) { void __iomem *base = host->base; char *ptr = buffer; u32 status; int host_remain = host->size; do { int count = host_remain - (readl(base + MMCIFIFOCNT) << 2); if (count > remain) count = remain; if (count <= 0) break; readsl(base + MMCIFIFO, ptr, count >> 2); ptr += count; remain -= count; host_remain -= count; if (remain == 0) break; status = readl(base + MMCISTATUS); } while (status & MCI_RXDATAAVLBL); return ptr - buffer; } static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status) { struct variant_data *variant = host->variant; void __iomem *base = host->base; char *ptr = buffer; do { unsigned int count, maxcnt; maxcnt = status & MCI_TXFIFOEMPTY ? variant->fifosize : variant->fifohalfsize; count = min(remain, maxcnt); /* * The ST Micro variant for SDIO transfer sizes * less then 8 bytes should have clock H/W flow * control disabled. */ if (variant->sdio && mmc_card_sdio(host->mmc->card)) { if (count < 8) writel(readl(host->base + MMCICLOCK) & ~variant->clkreg_enable, host->base + MMCICLOCK); else writel(readl(host->base + MMCICLOCK) | variant->clkreg_enable, host->base + MMCICLOCK); } /* * SDIO especially may want to send something that is * not divisible by 4 (as opposed to card sectors * etc), and the FIFO only accept full 32-bit writes. * So compensate by adding +3 on the count, a single * byte become a 32bit write, 7 bytes will be two * 32bit writes etc. */ writesl(base + MMCIFIFO, ptr, (count + 3) >> 2); ptr += count; remain -= count; if (remain == 0) break; status = readl(base + MMCISTATUS); } while (status & MCI_TXFIFOHALFEMPTY); return ptr - buffer; } /* * PIO data transfer IRQ handler. */ static irqreturn_t mmci_pio_irq(int irq, void *dev_id) { struct mmci_host *host = dev_id; struct sg_mapping_iter *sg_miter = &host->sg_miter; struct variant_data *variant = host->variant; void __iomem *base = host->base; unsigned long flags; u32 status; status = readl(base + MMCISTATUS); dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status); local_irq_save(flags); do { unsigned int remain, len; char *buffer; /* * For write, we only need to test the half-empty flag * here - if the FIFO is completely empty, then by * definition it is more than half empty. * * For read, check for data available. */ if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL))) break; if (!sg_miter_next(sg_miter)) break; buffer = sg_miter->addr; remain = sg_miter->length; len = 0; if (status & MCI_RXACTIVE) len = mmci_pio_read(host, buffer, remain); if (status & MCI_TXACTIVE) len = mmci_pio_write(host, buffer, remain, status); sg_miter->consumed = len; host->size -= len; remain -= len; if (remain) break; status = readl(base + MMCISTATUS); } while (1); sg_miter_stop(sg_miter); local_irq_restore(flags); /* * If we have less than the fifo 'half-full' threshold to transfer, * trigger a PIO interrupt as soon as any data is available. */ if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize) mmci_set_mask1(host, MCI_RXDATAAVLBLMASK); /* * If we run out of data, disable the data IRQs; this * prevents a race where the FIFO becomes empty before * the chip itself has disabled the data path, and * stops us racing with our data end IRQ. */ if (host->size == 0) { mmci_set_mask1(host, 0); writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0); } return IRQ_HANDLED; } /* * Handle completion of command and data transfers. */ static irqreturn_t mmci_irq(int irq, void *dev_id) { struct mmci_host *host = dev_id; u32 status; int ret = 0; spin_lock(&host->lock); do { struct mmc_command *cmd; struct mmc_data *data; status = readl(host->base + MMCISTATUS); if (host->singleirq) { if (status & readl(host->base + MMCIMASK1)) mmci_pio_irq(irq, dev_id); status &= ~MCI_IRQ1MASK; } status &= readl(host->base + MMCIMASK0); writel(status, host->base + MMCICLEAR); dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status); data = host->data; if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN| MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data) mmci_data_irq(host, data, status); cmd = host->cmd; if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd) mmci_cmd_irq(host, cmd, status); ret = 1; } while (status); spin_unlock(&host->lock); return IRQ_RETVAL(ret); } static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct mmci_host *host = mmc_priv(mmc); unsigned long flags; WARN_ON(host->mrq != NULL); if (mrq->data && !is_power_of_2(mrq->data->blksz)) { dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n", mrq->data->blksz); mrq->cmd->error = -EINVAL; mmc_request_done(mmc, mrq); return; } pm_runtime_get_sync(mmc_dev(mmc)); spin_lock_irqsave(&host->lock, flags); host->mrq = mrq; if (mrq->data) mmci_get_next_data(host, mrq->data); if (mrq->data && mrq->data->flags & MMC_DATA_READ) mmci_start_data(host, mrq->data); mmci_start_command(host, mrq->cmd, 0); spin_unlock_irqrestore(&host->lock, flags); } static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct mmci_host *host = mmc_priv(mmc); u32 pwr = 0; unsigned long flags; int ret; switch (ios->power_mode) { case MMC_POWER_OFF: if (host->vcc) ret = mmc_regulator_set_ocr(mmc, host->vcc, 0); break; case MMC_POWER_UP: if (host->vcc) { ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd); if (ret) { dev_err(mmc_dev(mmc), "unable to set OCR\n"); /* * The .set_ios() function in the mmc_host_ops * struct return void, and failing to set the * power should be rare so we print an error * and return here. */ return; } } if (host->plat->vdd_handler) pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd, ios->power_mode); /* The ST version does not have this, fall through to POWER_ON */ if (host->hw_designer != AMBA_VENDOR_ST) { pwr |= MCI_PWR_UP; break; } case MMC_POWER_ON: pwr |= MCI_PWR_ON; break; } if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) { if (host->hw_designer != AMBA_VENDOR_ST) pwr |= MCI_ROD; else { /* * The ST Micro variant use the ROD bit for something * else and only has OD (Open Drain). */ pwr |= MCI_OD; } } spin_lock_irqsave(&host->lock, flags); mmci_set_clkreg(host, ios->clock); if (host->pwr != pwr) { host->pwr = pwr; writel(pwr, host->base + MMCIPOWER); } spin_unlock_irqrestore(&host->lock, flags); } static int mmci_get_ro(struct mmc_host *mmc) { struct mmci_host *host = mmc_priv(mmc); if (host->gpio_wp == -ENOSYS) return -ENOSYS; return gpio_get_value_cansleep(host->gpio_wp); } static int mmci_get_cd(struct mmc_host *mmc) { struct mmci_host *host = mmc_priv(mmc); struct mmci_platform_data *plat = host->plat; unsigned int status; if (host->gpio_cd == -ENOSYS) { if (!plat->status) return 1; /* Assume always present */ status = plat->status(mmc_dev(host->mmc)); } else status = !!gpio_get_value_cansleep(host->gpio_cd) ^ plat->cd_invert; /* * Use positive logic throughout - status is zero for no card, * non-zero for card inserted. */ return status; } static irqreturn_t mmci_cd_irq(int irq, void *dev_id) { struct mmci_host *host = dev_id; mmc_detect_change(host->mmc, msecs_to_jiffies(500)); return IRQ_HANDLED; } static const struct mmc_host_ops mmci_ops = { .request = mmci_request, .pre_req = mmci_pre_request, .post_req = mmci_post_request, .set_ios = mmci_set_ios, .get_ro = mmci_get_ro, .get_cd = mmci_get_cd, }; static int __devinit mmci_probe(struct amba_device *dev, const struct amba_id *id) { struct mmci_platform_data *plat = dev->dev.platform_data; struct variant_data *variant = id->data; struct mmci_host *host; struct mmc_host *mmc; int ret; /* must have platform data */ if (!plat) { ret = -EINVAL; goto out; } ret = amba_request_regions(dev, DRIVER_NAME); if (ret) goto out; mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev); if (!mmc) { ret = -ENOMEM; goto rel_regions; } host = mmc_priv(mmc); host->mmc = mmc; host->gpio_wp = -ENOSYS; host->gpio_cd = -ENOSYS; host->gpio_cd_irq = -1; host->hw_designer = amba_manf(dev); host->hw_revision = amba_rev(dev); dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer); dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision); host->clk = clk_get(&dev->dev, NULL); if (IS_ERR(host->clk)) { ret = PTR_ERR(host->clk); host->clk = NULL; goto host_free; } ret = clk_prepare(host->clk); if (ret) goto clk_free; ret = clk_enable(host->clk); if (ret) goto clk_unprep; host->plat = plat; host->variant = variant; host->mclk = clk_get_rate(host->clk); /* * According to the spec, mclk is max 100 MHz, * so we try to adjust the clock down to this, * (if possible). */ if (host->mclk > 100000000) { ret = clk_set_rate(host->clk, 100000000); if (ret < 0) goto clk_disable; host->mclk = clk_get_rate(host->clk); dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n", host->mclk); } host->phybase = dev->res.start; host->base = ioremap(dev->res.start, resource_size(&dev->res)); if (!host->base) { ret = -ENOMEM; goto clk_disable; } mmc->ops = &mmci_ops; /* * The ARM and ST versions of the block have slightly different * clock divider equations which means that the minimum divider * differs too. */ if (variant->st_clkdiv) mmc->f_min = DIV_ROUND_UP(host->mclk, 257); else mmc->f_min = DIV_ROUND_UP(host->mclk, 512); /* * If the platform data supplies a maximum operating * frequency, this takes precedence. Else, we fall back * to using the module parameter, which has a (low) * default value in case it is not specified. Either * value must not exceed the clock rate into the block, * of course. */ if (plat->f_max) mmc->f_max = min(host->mclk, plat->f_max); else mmc->f_max = min(host->mclk, fmax); dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max); #ifdef CONFIG_REGULATOR /* If we're using the regulator framework, try to fetch a regulator */ host->vcc = regulator_get(&dev->dev, "vmmc"); if (IS_ERR(host->vcc)) host->vcc = NULL; else { int mask = mmc_regulator_get_ocrmask(host->vcc); if (mask < 0) dev_err(&dev->dev, "error getting OCR mask (%d)\n", mask); else { host->mmc->ocr_avail = (u32) mask; if (plat->ocr_mask) dev_warn(&dev->dev, "Provided ocr_mask/setpower will not be used " "(using regulator instead)\n"); } } #endif /* Fall back to platform data if no regulator is found */ if (host->vcc == NULL) mmc->ocr_avail = plat->ocr_mask; mmc->caps = plat->capabilities; /* * We can do SGIO */ mmc->max_segs = NR_SG; /* * Since only a certain number of bits are valid in the data length * register, we must ensure that we don't exceed 2^num-1 bytes in a * single request. */ mmc->max_req_size = (1 << variant->datalength_bits) - 1; /* * Set the maximum segment size. Since we aren't doing DMA * (yet) we are only limited by the data length register. */ mmc->max_seg_size = mmc->max_req_size; /* * Block size can be up to 2048 bytes, but must be a power of two. */ mmc->max_blk_size = 2048; /* * No limit on the number of blocks transferred. */ mmc->max_blk_count = mmc->max_req_size; spin_lock_init(&host->lock); writel(0, host->base + MMCIMASK0); writel(0, host->base + MMCIMASK1); writel(0xfff, host->base + MMCICLEAR); if (gpio_is_valid(plat->gpio_cd)) { ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)"); if (ret == 0) ret = gpio_direction_input(plat->gpio_cd); if (ret == 0) host->gpio_cd = plat->gpio_cd; else if (ret != -ENOSYS) goto err_gpio_cd; /* * A gpio pin that will detect cards when inserted and removed * will most likely want to trigger on the edges if it is * 0 when ejected and 1 when inserted (or mutatis mutandis * for the inverted case) so we request triggers on both * edges. */ ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd), mmci_cd_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, DRIVER_NAME " (cd)", host); if (ret >= 0) host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd); } if (gpio_is_valid(plat->gpio_wp)) { ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)"); if (ret == 0) ret = gpio_direction_input(plat->gpio_wp); if (ret == 0) host->gpio_wp = plat->gpio_wp; else if (ret != -ENOSYS) goto err_gpio_wp; } if ((host->plat->status || host->gpio_cd != -ENOSYS) && host->gpio_cd_irq < 0) mmc->caps |= MMC_CAP_NEEDS_POLL; ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host); if (ret) goto unmap; if (dev->irq[1] == NO_IRQ) host->singleirq = true; else { ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED, DRIVER_NAME " (pio)", host); if (ret) goto irq0_free; } writel(MCI_IRQENABLE, host->base + MMCIMASK0); amba_set_drvdata(dev, mmc); dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n", mmc_hostname(mmc), amba_part(dev), amba_manf(dev), amba_rev(dev), (unsigned long long)dev->res.start, dev->irq[0], dev->irq[1]); mmci_dma_setup(host); pm_runtime_put(&dev->dev); mmc_add_host(mmc); return 0; irq0_free: free_irq(dev->irq[0], host); unmap: if (host->gpio_wp != -ENOSYS) gpio_free(host->gpio_wp); err_gpio_wp: if (host->gpio_cd_irq >= 0) free_irq(host->gpio_cd_irq, host); if (host->gpio_cd != -ENOSYS) gpio_free(host->gpio_cd); err_gpio_cd: iounmap(host->base); clk_disable: clk_disable(host->clk); clk_unprep: clk_unprepare(host->clk); clk_free: clk_put(host->clk); host_free: mmc_free_host(mmc); rel_regions: amba_release_regions(dev); out: return ret; } static int __devexit mmci_remove(struct amba_device *dev) { struct mmc_host *mmc = amba_get_drvdata(dev); amba_set_drvdata(dev, NULL); if (mmc) { struct mmci_host *host = mmc_priv(mmc); /* * Undo pm_runtime_put() in probe. We use the _sync * version here so that we can access the primecell. */ pm_runtime_get_sync(&dev->dev); mmc_remove_host(mmc); writel(0, host->base + MMCIMASK0); writel(0, host->base + MMCIMASK1); writel(0, host->base + MMCICOMMAND); writel(0, host->base + MMCIDATACTRL); mmci_dma_release(host); free_irq(dev->irq[0], host); if (!host->singleirq) free_irq(dev->irq[1], host); if (host->gpio_wp != -ENOSYS) gpio_free(host->gpio_wp); if (host->gpio_cd_irq >= 0) free_irq(host->gpio_cd_irq, host); if (host->gpio_cd != -ENOSYS) gpio_free(host->gpio_cd); iounmap(host->base); clk_disable(host->clk); clk_unprepare(host->clk); clk_put(host->clk); if (host->vcc) mmc_regulator_set_ocr(mmc, host->vcc, 0); regulator_put(host->vcc); mmc_free_host(mmc); amba_release_regions(dev); } return 0; } #ifdef CONFIG_PM static int mmci_suspend(struct amba_device *dev, pm_message_t state) { struct mmc_host *mmc = amba_get_drvdata(dev); int ret = 0; if (mmc) { struct mmci_host *host = mmc_priv(mmc); ret = mmc_suspend_host(mmc); if (ret == 0) writel(0, host->base + MMCIMASK0); } return ret; } static int mmci_resume(struct amba_device *dev) { struct mmc_host *mmc = amba_get_drvdata(dev); int ret = 0; if (mmc) { struct mmci_host *host = mmc_priv(mmc); writel(MCI_IRQENABLE, host->base + MMCIMASK0); ret = mmc_resume_host(mmc); } return ret; } #else #define mmci_suspend NULL #define mmci_resume NULL #endif static struct amba_id mmci_ids[] = { { .id = 0x00041180, .mask = 0xff0fffff, .data = &variant_arm, }, { .id = 0x01041180, .mask = 0xff0fffff, .data = &variant_arm_extended_fifo, }, { .id = 0x00041181, .mask = 0x000fffff, .data = &variant_arm, }, /* ST Micro variants */ { .id = 0x00180180, .mask = 0x00ffffff, .data = &variant_u300, }, { .id = 0x00280180, .mask = 0x00ffffff, .data = &variant_u300, }, { .id = 0x00480180, .mask = 0xf0ffffff, .data = &variant_ux500, }, { .id = 0x10480180, .mask = 0xf0ffffff, .data = &variant_ux500v2, }, { 0, 0 }, }; static struct amba_driver mmci_driver = { .drv = { .name = DRIVER_NAME, }, .probe = mmci_probe, .remove = __devexit_p(mmci_remove), .suspend = mmci_suspend, .resume = mmci_resume, .id_table = mmci_ids, }; static int __init mmci_init(void) { return amba_driver_register(&mmci_driver); } static void __exit mmci_exit(void) { amba_driver_unregister(&mmci_driver); } module_init(mmci_init); module_exit(mmci_exit); module_param(fmax, uint, 0444); MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver"); MODULE_LICENSE("GPL");