/* * TI BQ25890 charger driver * * Copyright (C) 2015 Intel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #define BQ25890_MANUFACTURER "Texas Instruments" #define BQ25890_IRQ_PIN "bq25890_irq" #define BQ25890_ID 3 enum bq25890_fields { F_EN_HIZ, F_EN_ILIM, F_IILIM, /* Reg00 */ F_BHOT, F_BCOLD, F_VINDPM_OFS, /* Reg01 */ F_CONV_START, F_CONV_RATE, F_BOOSTF, F_ICO_EN, F_HVDCP_EN, F_MAXC_EN, F_FORCE_DPM, F_AUTO_DPDM_EN, /* Reg02 */ F_BAT_LOAD_EN, F_WD_RST, F_OTG_CFG, F_CHG_CFG, F_SYSVMIN, /* Reg03 */ F_PUMPX_EN, F_ICHG, /* Reg04 */ F_IPRECHG, F_ITERM, /* Reg05 */ F_VREG, F_BATLOWV, F_VRECHG, /* Reg06 */ F_TERM_EN, F_STAT_DIS, F_WD, F_TMR_EN, F_CHG_TMR, F_JEITA_ISET, /* Reg07 */ F_BATCMP, F_VCLAMP, F_TREG, /* Reg08 */ F_FORCE_ICO, F_TMR2X_EN, F_BATFET_DIS, F_JEITA_VSET, F_BATFET_DLY, F_BATFET_RST_EN, F_PUMPX_UP, F_PUMPX_DN, /* Reg09 */ F_BOOSTV, F_BOOSTI, /* Reg0A */ F_VBUS_STAT, F_CHG_STAT, F_PG_STAT, F_SDP_STAT, F_VSYS_STAT, /* Reg0B */ F_WD_FAULT, F_BOOST_FAULT, F_CHG_FAULT, F_BAT_FAULT, F_NTC_FAULT, /* Reg0C */ F_FORCE_VINDPM, F_VINDPM, /* Reg0D */ F_THERM_STAT, F_BATV, /* Reg0E */ F_SYSV, /* Reg0F */ F_TSPCT, /* Reg10 */ F_VBUS_GD, F_VBUSV, /* Reg11 */ F_ICHGR, /* Reg12 */ F_VDPM_STAT, F_IDPM_STAT, F_IDPM_LIM, /* Reg13 */ F_REG_RST, F_ICO_OPTIMIZED, F_PN, F_TS_PROFILE, F_DEV_REV, /* Reg14 */ F_MAX_FIELDS }; /* initial field values, converted to register values */ struct bq25890_init_data { u8 ichg; /* charge current */ u8 vreg; /* regulation voltage */ u8 iterm; /* termination current */ u8 iprechg; /* precharge current */ u8 sysvmin; /* minimum system voltage limit */ u8 boostv; /* boost regulation voltage */ u8 boosti; /* boost current limit */ u8 boostf; /* boost frequency */ u8 ilim_en; /* enable ILIM pin */ u8 treg; /* thermal regulation threshold */ }; struct bq25890_state { u8 online; u8 chrg_status; u8 chrg_fault; u8 vsys_status; u8 boost_fault; u8 bat_fault; }; struct bq25890_device { struct i2c_client *client; struct device *dev; struct power_supply *charger; struct usb_phy *usb_phy; struct notifier_block usb_nb; struct work_struct usb_work; unsigned long usb_event; struct regmap *rmap; struct regmap_field *rmap_fields[F_MAX_FIELDS]; int chip_id; struct bq25890_init_data init_data; struct bq25890_state state; struct mutex lock; /* protect state data */ }; static const struct regmap_range bq25890_readonly_reg_ranges[] = { regmap_reg_range(0x0b, 0x0c), regmap_reg_range(0x0e, 0x13), }; static const struct regmap_access_table bq25890_writeable_regs = { .no_ranges = bq25890_readonly_reg_ranges, .n_no_ranges = ARRAY_SIZE(bq25890_readonly_reg_ranges), }; static const struct regmap_range bq25890_volatile_reg_ranges[] = { regmap_reg_range(0x00, 0x00), regmap_reg_range(0x09, 0x09), regmap_reg_range(0x0b, 0x0c), regmap_reg_range(0x0e, 0x14), }; static const struct regmap_access_table bq25890_volatile_regs = { .yes_ranges = bq25890_volatile_reg_ranges, .n_yes_ranges = ARRAY_SIZE(bq25890_volatile_reg_ranges), }; static const struct regmap_config bq25890_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 0x14, .cache_type = REGCACHE_RBTREE, .wr_table = &bq25890_writeable_regs, .volatile_table = &bq25890_volatile_regs, }; static const struct reg_field bq25890_reg_fields[] = { /* REG00 */ [F_EN_HIZ] = REG_FIELD(0x00, 7, 7), [F_EN_ILIM] = REG_FIELD(0x00, 6, 6), [F_IILIM] = REG_FIELD(0x00, 0, 5), /* REG01 */ [F_BHOT] = REG_FIELD(0x01, 6, 7), [F_BCOLD] = REG_FIELD(0x01, 5, 5), [F_VINDPM_OFS] = REG_FIELD(0x01, 0, 4), /* REG02 */ [F_CONV_START] = REG_FIELD(0x02, 7, 7), [F_CONV_RATE] = REG_FIELD(0x02, 6, 6), [F_BOOSTF] = REG_FIELD(0x02, 5, 5), [F_ICO_EN] = REG_FIELD(0x02, 4, 4), [F_HVDCP_EN] = REG_FIELD(0x02, 3, 3), [F_MAXC_EN] = REG_FIELD(0x02, 2, 2), [F_FORCE_DPM] = REG_FIELD(0x02, 1, 1), [F_AUTO_DPDM_EN] = REG_FIELD(0x02, 0, 0), /* REG03 */ [F_BAT_LOAD_EN] = REG_FIELD(0x03, 7, 7), [F_WD_RST] = REG_FIELD(0x03, 6, 6), [F_OTG_CFG] = REG_FIELD(0x03, 5, 5), [F_CHG_CFG] = REG_FIELD(0x03, 4, 4), [F_SYSVMIN] = REG_FIELD(0x03, 1, 3), /* REG04 */ [F_PUMPX_EN] = REG_FIELD(0x04, 7, 7), [F_ICHG] = REG_FIELD(0x04, 0, 6), /* REG05 */ [F_IPRECHG] = REG_FIELD(0x05, 4, 7), [F_ITERM] = REG_FIELD(0x05, 0, 3), /* REG06 */ [F_VREG] = REG_FIELD(0x06, 2, 7), [F_BATLOWV] = REG_FIELD(0x06, 1, 1), [F_VRECHG] = REG_FIELD(0x06, 0, 0), /* REG07 */ [F_TERM_EN] = REG_FIELD(0x07, 7, 7), [F_STAT_DIS] = REG_FIELD(0x07, 6, 6), [F_WD] = REG_FIELD(0x07, 4, 5), [F_TMR_EN] = REG_FIELD(0x07, 3, 3), [F_CHG_TMR] = REG_FIELD(0x07, 1, 2), [F_JEITA_ISET] = REG_FIELD(0x07, 0, 0), /* REG08 */ [F_BATCMP] = REG_FIELD(0x08, 6, 7), [F_VCLAMP] = REG_FIELD(0x08, 2, 4), [F_TREG] = REG_FIELD(0x08, 0, 1), /* REG09 */ [F_FORCE_ICO] = REG_FIELD(0x09, 7, 7), [F_TMR2X_EN] = REG_FIELD(0x09, 6, 6), [F_BATFET_DIS] = REG_FIELD(0x09, 5, 5), [F_JEITA_VSET] = REG_FIELD(0x09, 4, 4), [F_BATFET_DLY] = REG_FIELD(0x09, 3, 3), [F_BATFET_RST_EN] = REG_FIELD(0x09, 2, 2), [F_PUMPX_UP] = REG_FIELD(0x09, 1, 1), [F_PUMPX_DN] = REG_FIELD(0x09, 0, 0), /* REG0A */ [F_BOOSTV] = REG_FIELD(0x0A, 4, 7), [F_BOOSTI] = REG_FIELD(0x0A, 0, 2), /* REG0B */ [F_VBUS_STAT] = REG_FIELD(0x0B, 5, 7), [F_CHG_STAT] = REG_FIELD(0x0B, 3, 4), [F_PG_STAT] = REG_FIELD(0x0B, 2, 2), [F_SDP_STAT] = REG_FIELD(0x0B, 1, 1), [F_VSYS_STAT] = REG_FIELD(0x0B, 0, 0), /* REG0C */ [F_WD_FAULT] = REG_FIELD(0x0C, 7, 7), [F_BOOST_FAULT] = REG_FIELD(0x0C, 6, 6), [F_CHG_FAULT] = REG_FIELD(0x0C, 4, 5), [F_BAT_FAULT] = REG_FIELD(0x0C, 3, 3), [F_NTC_FAULT] = REG_FIELD(0x0C, 0, 2), /* REG0D */ [F_FORCE_VINDPM] = REG_FIELD(0x0D, 7, 7), [F_VINDPM] = REG_FIELD(0x0D, 0, 6), /* REG0E */ [F_THERM_STAT] = REG_FIELD(0x0E, 7, 7), [F_BATV] = REG_FIELD(0x0E, 0, 6), /* REG0F */ [F_SYSV] = REG_FIELD(0x0F, 0, 6), /* REG10 */ [F_TSPCT] = REG_FIELD(0x10, 0, 6), /* REG11 */ [F_VBUS_GD] = REG_FIELD(0x11, 7, 7), [F_VBUSV] = REG_FIELD(0x11, 0, 6), /* REG12 */ [F_ICHGR] = REG_FIELD(0x12, 0, 6), /* REG13 */ [F_VDPM_STAT] = REG_FIELD(0x13, 7, 7), [F_IDPM_STAT] = REG_FIELD(0x13, 6, 6), [F_IDPM_LIM] = REG_FIELD(0x13, 0, 5), /* REG14 */ [F_REG_RST] = REG_FIELD(0x14, 7, 7), [F_ICO_OPTIMIZED] = REG_FIELD(0x14, 6, 6), [F_PN] = REG_FIELD(0x14, 3, 5), [F_TS_PROFILE] = REG_FIELD(0x14, 2, 2), [F_DEV_REV] = REG_FIELD(0x14, 0, 1) }; /* * Most of the val -> idx conversions can be computed, given the minimum, * maximum and the step between values. For the rest of conversions, we use * lookup tables. */ enum bq25890_table_ids { /* range tables */ TBL_ICHG, TBL_ITERM, TBL_IPRECHG, TBL_VREG, TBL_BATCMP, TBL_VCLAMP, TBL_BOOSTV, TBL_SYSVMIN, /* lookup tables */ TBL_TREG, TBL_BOOSTI, }; /* Thermal Regulation Threshold lookup table, in degrees Celsius */ static const u32 bq25890_treg_tbl[] = { 60, 80, 100, 120 }; #define BQ25890_TREG_TBL_SIZE ARRAY_SIZE(bq25890_treg_tbl) /* Boost mode current limit lookup table, in uA */ static const u32 bq25890_boosti_tbl[] = { 500000, 700000, 1100000, 1300000, 1600000, 1800000, 2100000, 2400000 }; #define BQ25890_BOOSTI_TBL_SIZE ARRAY_SIZE(bq25890_boosti_tbl) struct bq25890_range { u32 min; u32 max; u32 step; }; struct bq25890_lookup { const u32 *tbl; u32 size; }; static const union { struct bq25890_range rt; struct bq25890_lookup lt; } bq25890_tables[] = { /* range tables */ [TBL_ICHG] = { .rt = {0, 5056000, 64000} }, /* uA */ [TBL_ITERM] = { .rt = {64000, 1024000, 64000} }, /* uA */ [TBL_VREG] = { .rt = {3840000, 4608000, 16000} }, /* uV */ [TBL_BATCMP] = { .rt = {0, 140, 20} }, /* mOhm */ [TBL_VCLAMP] = { .rt = {0, 224000, 32000} }, /* uV */ [TBL_BOOSTV] = { .rt = {4550000, 5510000, 64000} }, /* uV */ [TBL_SYSVMIN] = { .rt = {3000000, 3700000, 100000} }, /* uV */ /* lookup tables */ [TBL_TREG] = { .lt = {bq25890_treg_tbl, BQ25890_TREG_TBL_SIZE} }, [TBL_BOOSTI] = { .lt = {bq25890_boosti_tbl, BQ25890_BOOSTI_TBL_SIZE} } }; static int bq25890_field_read(struct bq25890_device *bq, enum bq25890_fields field_id) { int ret; int val; ret = regmap_field_read(bq->rmap_fields[field_id], &val); if (ret < 0) return ret; return val; } static int bq25890_field_write(struct bq25890_device *bq, enum bq25890_fields field_id, u8 val) { return regmap_field_write(bq->rmap_fields[field_id], val); } static u8 bq25890_find_idx(u32 value, enum bq25890_table_ids id) { u8 idx; if (id >= TBL_TREG) { const u32 *tbl = bq25890_tables[id].lt.tbl; u32 tbl_size = bq25890_tables[id].lt.size; for (idx = 1; idx < tbl_size && tbl[idx] <= value; idx++) ; } else { const struct bq25890_range *rtbl = &bq25890_tables[id].rt; u8 rtbl_size; rtbl_size = (rtbl->max - rtbl->min) / rtbl->step + 1; for (idx = 1; idx < rtbl_size && (idx * rtbl->step + rtbl->min <= value); idx++) ; } return idx - 1; } static u32 bq25890_find_val(u8 idx, enum bq25890_table_ids id) { const struct bq25890_range *rtbl; /* lookup table? */ if (id >= TBL_TREG) return bq25890_tables[id].lt.tbl[idx]; /* range table */ rtbl = &bq25890_tables[id].rt; return (rtbl->min + idx * rtbl->step); } enum bq25890_status { STATUS_NOT_CHARGING, STATUS_PRE_CHARGING, STATUS_FAST_CHARGING, STATUS_TERMINATION_DONE, }; enum bq25890_chrg_fault { CHRG_FAULT_NORMAL, CHRG_FAULT_INPUT, CHRG_FAULT_THERMAL_SHUTDOWN, CHRG_FAULT_TIMER_EXPIRED, }; static int bq25890_power_supply_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { int ret; struct bq25890_device *bq = power_supply_get_drvdata(psy); struct bq25890_state state; mutex_lock(&bq->lock); state = bq->state; mutex_unlock(&bq->lock); switch (psp) { case POWER_SUPPLY_PROP_STATUS: if (!state.online) val->intval = POWER_SUPPLY_STATUS_DISCHARGING; else if (state.chrg_status == STATUS_NOT_CHARGING) val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; else if (state.chrg_status == STATUS_PRE_CHARGING || state.chrg_status == STATUS_FAST_CHARGING) val->intval = POWER_SUPPLY_STATUS_CHARGING; else if (state.chrg_status == STATUS_TERMINATION_DONE) val->intval = POWER_SUPPLY_STATUS_FULL; else val->intval = POWER_SUPPLY_STATUS_UNKNOWN; break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = BQ25890_MANUFACTURER; break; case POWER_SUPPLY_PROP_ONLINE: val->intval = state.online; break; case POWER_SUPPLY_PROP_HEALTH: if (!state.chrg_fault && !state.bat_fault && !state.boost_fault) val->intval = POWER_SUPPLY_HEALTH_GOOD; else if (state.bat_fault) val->intval = POWER_SUPPLY_HEALTH_OVERVOLTAGE; else if (state.chrg_fault == CHRG_FAULT_TIMER_EXPIRED) val->intval = POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE; else if (state.chrg_fault == CHRG_FAULT_THERMAL_SHUTDOWN) val->intval = POWER_SUPPLY_HEALTH_OVERHEAT; else val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: ret = bq25890_field_read(bq, F_ICHGR); /* read measured value */ if (ret < 0) return ret; /* converted_val = ADC_val * 50mA (table 10.3.19) */ val->intval = ret * 50000; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: val->intval = bq25890_tables[TBL_ICHG].rt.max; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: if (!state.online) { val->intval = 0; break; } ret = bq25890_field_read(bq, F_BATV); /* read measured value */ if (ret < 0) return ret; /* converted_val = 2.304V + ADC_val * 20mV (table 10.3.15) */ val->intval = 2304000 + ret * 20000; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: val->intval = bq25890_tables[TBL_VREG].rt.max; break; case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: val->intval = bq25890_find_val(bq->init_data.iterm, TBL_ITERM); break; default: return -EINVAL; } return 0; } static int bq25890_get_chip_state(struct bq25890_device *bq, struct bq25890_state *state) { int i, ret; struct { enum bq25890_fields id; u8 *data; } state_fields[] = { {F_CHG_STAT, &state->chrg_status}, {F_PG_STAT, &state->online}, {F_VSYS_STAT, &state->vsys_status}, {F_BOOST_FAULT, &state->boost_fault}, {F_BAT_FAULT, &state->bat_fault}, {F_CHG_FAULT, &state->chrg_fault} }; for (i = 0; i < ARRAY_SIZE(state_fields); i++) { ret = bq25890_field_read(bq, state_fields[i].id); if (ret < 0) return ret; *state_fields[i].data = ret; } dev_dbg(bq->dev, "S:CHG/PG/VSYS=%d/%d/%d, F:CHG/BOOST/BAT=%d/%d/%d\n", state->chrg_status, state->online, state->vsys_status, state->chrg_fault, state->boost_fault, state->bat_fault); return 0; } static bool bq25890_state_changed(struct bq25890_device *bq, struct bq25890_state *new_state) { struct bq25890_state old_state; mutex_lock(&bq->lock); old_state = bq->state; mutex_unlock(&bq->lock); return (old_state.chrg_status != new_state->chrg_status || old_state.chrg_fault != new_state->chrg_fault || old_state.online != new_state->online || old_state.bat_fault != new_state->bat_fault || old_state.boost_fault != new_state->boost_fault || old_state.vsys_status != new_state->vsys_status); } static void bq25890_handle_state_change(struct bq25890_device *bq, struct bq25890_state *new_state) { int ret; struct bq25890_state old_state; mutex_lock(&bq->lock); old_state = bq->state; mutex_unlock(&bq->lock); if (!new_state->online) { /* power removed */ /* disable ADC */ ret = bq25890_field_write(bq, F_CONV_RATE, 0); if (ret < 0) goto error; } else if (!old_state.online) { /* power inserted */ /* enable ADC, to have control of charge current/voltage */ ret = bq25890_field_write(bq, F_CONV_RATE, 1); if (ret < 0) goto error; } return; error: dev_err(bq->dev, "Error communicating with the chip.\n"); } static irqreturn_t bq25890_irq_handler_thread(int irq, void *private) { struct bq25890_device *bq = private; int ret; struct bq25890_state state; ret = bq25890_get_chip_state(bq, &state); if (ret < 0) goto handled; if (!bq25890_state_changed(bq, &state)) goto handled; bq25890_handle_state_change(bq, &state); mutex_lock(&bq->lock); bq->state = state; mutex_unlock(&bq->lock); power_supply_changed(bq->charger); handled: return IRQ_HANDLED; } static int bq25890_chip_reset(struct bq25890_device *bq) { int ret; int rst_check_counter = 10; ret = bq25890_field_write(bq, F_REG_RST, 1); if (ret < 0) return ret; do { ret = bq25890_field_read(bq, F_REG_RST); if (ret < 0) return ret; usleep_range(5, 10); } while (ret == 1 && --rst_check_counter); if (!rst_check_counter) return -ETIMEDOUT; return 0; } static int bq25890_hw_init(struct bq25890_device *bq) { int ret; int i; struct bq25890_state state; const struct { enum bq25890_fields id; u32 value; } init_data[] = { {F_ICHG, bq->init_data.ichg}, {F_VREG, bq->init_data.vreg}, {F_ITERM, bq->init_data.iterm}, {F_IPRECHG, bq->init_data.iprechg}, {F_SYSVMIN, bq->init_data.sysvmin}, {F_BOOSTV, bq->init_data.boostv}, {F_BOOSTI, bq->init_data.boosti}, {F_BOOSTF, bq->init_data.boostf}, {F_EN_ILIM, bq->init_data.ilim_en}, {F_TREG, bq->init_data.treg} }; ret = bq25890_chip_reset(bq); if (ret < 0) return ret; /* disable watchdog */ ret = bq25890_field_write(bq, F_WD, 0); if (ret < 0) return ret; /* initialize currents/voltages and other parameters */ for (i = 0; i < ARRAY_SIZE(init_data); i++) { ret = bq25890_field_write(bq, init_data[i].id, init_data[i].value); if (ret < 0) return ret; } /* Configure ADC for continuous conversions. This does not enable it. */ ret = bq25890_field_write(bq, F_CONV_RATE, 1); if (ret < 0) return ret; ret = bq25890_get_chip_state(bq, &state); if (ret < 0) return ret; mutex_lock(&bq->lock); bq->state = state; mutex_unlock(&bq->lock); return 0; } static enum power_supply_property bq25890_power_supply_props[] = { POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, }; static char *bq25890_charger_supplied_to[] = { "main-battery", }; static const struct power_supply_desc bq25890_power_supply_desc = { .name = "bq25890-charger", .type = POWER_SUPPLY_TYPE_USB, .properties = bq25890_power_supply_props, .num_properties = ARRAY_SIZE(bq25890_power_supply_props), .get_property = bq25890_power_supply_get_property, }; static int bq25890_power_supply_init(struct bq25890_device *bq) { struct power_supply_config psy_cfg = { .drv_data = bq, }; psy_cfg.supplied_to = bq25890_charger_supplied_to; psy_cfg.num_supplicants = ARRAY_SIZE(bq25890_charger_supplied_to); bq->charger = power_supply_register(bq->dev, &bq25890_power_supply_desc, &psy_cfg); return PTR_ERR_OR_ZERO(bq->charger); } static void bq25890_usb_work(struct work_struct *data) { int ret; struct bq25890_device *bq = container_of(data, struct bq25890_device, usb_work); switch (bq->usb_event) { case USB_EVENT_ID: /* Enable boost mode */ ret = bq25890_field_write(bq, F_OTG_CFG, 1); if (ret < 0) goto error; break; case USB_EVENT_NONE: /* Disable boost mode */ ret = bq25890_field_write(bq, F_OTG_CFG, 0); if (ret < 0) goto error; power_supply_changed(bq->charger); break; } return; error: dev_err(bq->dev, "Error switching to boost/charger mode.\n"); } static int bq25890_usb_notifier(struct notifier_block *nb, unsigned long val, void *priv) { struct bq25890_device *bq = container_of(nb, struct bq25890_device, usb_nb); bq->usb_event = val; queue_work(system_power_efficient_wq, &bq->usb_work); return NOTIFY_OK; } static int bq25890_irq_probe(struct bq25890_device *bq) { struct gpio_desc *irq; irq = devm_gpiod_get_index(bq->dev, BQ25890_IRQ_PIN, 0, GPIOD_IN); if (IS_ERR(irq)) { dev_err(bq->dev, "Could not probe irq pin.\n"); return PTR_ERR(irq); } return gpiod_to_irq(irq); } static int bq25890_fw_read_u32_props(struct bq25890_device *bq) { int ret; u32 property; int i; struct bq25890_init_data *init = &bq->init_data; struct { char *name; bool optional; enum bq25890_table_ids tbl_id; u8 *conv_data; /* holds converted value from given property */ } props[] = { /* required properties */ {"ti,charge-current", false, TBL_ICHG, &init->ichg}, {"ti,battery-regulation-voltage", false, TBL_VREG, &init->vreg}, {"ti,termination-current", false, TBL_ITERM, &init->iterm}, {"ti,precharge-current", false, TBL_ITERM, &init->iprechg}, {"ti,minimum-sys-voltage", false, TBL_SYSVMIN, &init->sysvmin}, {"ti,boost-voltage", false, TBL_BOOSTV, &init->boostv}, {"ti,boost-max-current", false, TBL_BOOSTI, &init->boosti}, /* optional properties */ {"ti,thermal-regulation-threshold", true, TBL_TREG, &init->treg} }; /* initialize data for optional properties */ init->treg = 3; /* 120 degrees Celsius */ for (i = 0; i < ARRAY_SIZE(props); i++) { ret = device_property_read_u32(bq->dev, props[i].name, &property); if (ret < 0) { if (props[i].optional) continue; return ret; } *props[i].conv_data = bq25890_find_idx(property, props[i].tbl_id); } return 0; } static int bq25890_fw_probe(struct bq25890_device *bq) { int ret; struct bq25890_init_data *init = &bq->init_data; ret = bq25890_fw_read_u32_props(bq); if (ret < 0) return ret; init->ilim_en = device_property_read_bool(bq->dev, "ti,use-ilim-pin"); init->boostf = device_property_read_bool(bq->dev, "ti,boost-low-freq"); return 0; } static int bq25890_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent); struct device *dev = &client->dev; struct bq25890_device *bq; int ret; int i; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { dev_err(dev, "No support for SMBUS_BYTE_DATA\n"); return -ENODEV; } bq = devm_kzalloc(dev, sizeof(*bq), GFP_KERNEL); if (!bq) return -ENOMEM; bq->client = client; bq->dev = dev; mutex_init(&bq->lock); bq->rmap = devm_regmap_init_i2c(client, &bq25890_regmap_config); if (IS_ERR(bq->rmap)) { dev_err(dev, "failed to allocate register map\n"); return PTR_ERR(bq->rmap); } for (i = 0; i < ARRAY_SIZE(bq25890_reg_fields); i++) { const struct reg_field *reg_fields = bq25890_reg_fields; bq->rmap_fields[i] = devm_regmap_field_alloc(dev, bq->rmap, reg_fields[i]); if (IS_ERR(bq->rmap_fields[i])) { dev_err(dev, "cannot allocate regmap field\n"); return PTR_ERR(bq->rmap_fields[i]); } } i2c_set_clientdata(client, bq); bq->chip_id = bq25890_field_read(bq, F_PN); if (bq->chip_id < 0) { dev_err(dev, "Cannot read chip ID.\n"); return bq->chip_id; } if (bq->chip_id != BQ25890_ID) { dev_err(dev, "Chip with ID=%d, not supported!\n", bq->chip_id); return -ENODEV; } if (!dev->platform_data) { ret = bq25890_fw_probe(bq); if (ret < 0) { dev_err(dev, "Cannot read device properties.\n"); return ret; } } else { return -ENODEV; } ret = bq25890_hw_init(bq); if (ret < 0) { dev_err(dev, "Cannot initialize the chip.\n"); return ret; } if (client->irq <= 0) client->irq = bq25890_irq_probe(bq); if (client->irq < 0) { dev_err(dev, "No irq resource found.\n"); return client->irq; } /* OTG reporting */ bq->usb_phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2); if (!IS_ERR_OR_NULL(bq->usb_phy)) { INIT_WORK(&bq->usb_work, bq25890_usb_work); bq->usb_nb.notifier_call = bq25890_usb_notifier; usb_register_notifier(bq->usb_phy, &bq->usb_nb); } ret = devm_request_threaded_irq(dev, client->irq, NULL, bq25890_irq_handler_thread, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, BQ25890_IRQ_PIN, bq); if (ret) goto irq_fail; ret = bq25890_power_supply_init(bq); if (ret < 0) { dev_err(dev, "Failed to register power supply\n"); goto irq_fail; } return 0; irq_fail: if (!IS_ERR_OR_NULL(bq->usb_phy)) usb_unregister_notifier(bq->usb_phy, &bq->usb_nb); return ret; } static int bq25890_remove(struct i2c_client *client) { struct bq25890_device *bq = i2c_get_clientdata(client); power_supply_unregister(bq->charger); if (!IS_ERR_OR_NULL(bq->usb_phy)) usb_unregister_notifier(bq->usb_phy, &bq->usb_nb); /* reset all registers to default values */ bq25890_chip_reset(bq); return 0; } #ifdef CONFIG_PM_SLEEP static int bq25890_suspend(struct device *dev) { struct bq25890_device *bq = dev_get_drvdata(dev); /* * If charger is removed, while in suspend, make sure ADC is diabled * since it consumes slightly more power. */ return bq25890_field_write(bq, F_CONV_START, 0); } static int bq25890_resume(struct device *dev) { int ret; struct bq25890_state state; struct bq25890_device *bq = dev_get_drvdata(dev); ret = bq25890_get_chip_state(bq, &state); if (ret < 0) return ret; mutex_lock(&bq->lock); bq->state = state; mutex_unlock(&bq->lock); /* Re-enable ADC only if charger is plugged in. */ if (state.online) { ret = bq25890_field_write(bq, F_CONV_START, 1); if (ret < 0) return ret; } /* signal userspace, maybe state changed while suspended */ power_supply_changed(bq->charger); return 0; } #endif static const struct dev_pm_ops bq25890_pm = { SET_SYSTEM_SLEEP_PM_OPS(bq25890_suspend, bq25890_resume) }; static const struct i2c_device_id bq25890_i2c_ids[] = { { "bq25890", 0 }, {}, }; MODULE_DEVICE_TABLE(i2c, bq25890_i2c_ids); static const struct of_device_id bq25890_of_match[] = { { .compatible = "ti,bq25890", }, { }, }; MODULE_DEVICE_TABLE(of, bq25890_of_match); static const struct acpi_device_id bq25890_acpi_match[] = { {"BQ258900", 0}, {}, }; MODULE_DEVICE_TABLE(acpi, bq25890_acpi_match); static struct i2c_driver bq25890_driver = { .driver = { .name = "bq25890-charger", .of_match_table = of_match_ptr(bq25890_of_match), .acpi_match_table = ACPI_PTR(bq25890_acpi_match), .pm = &bq25890_pm, }, .probe = bq25890_probe, .remove = bq25890_remove, .id_table = bq25890_i2c_ids, }; module_i2c_driver(bq25890_driver); MODULE_AUTHOR("Laurentiu Palcu "); MODULE_DESCRIPTION("bq25890 charger driver"); MODULE_LICENSE("GPL");