/* Copyright (c) 2016, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "FG: %s: " fmt, __func__ #include "fg-core.h" #include "fg-reg.h" /* Generic definitions */ #define RETRY_COUNT 3 #define BYTES_PER_SRAM_WORD 4 enum { FG_READ = 0, FG_WRITE, }; static int fg_set_address(struct fg_chip *chip, u16 address) { u8 buffer[2]; int rc; buffer[0] = address & 0xFF; /* MSB has to be written zero */ buffer[1] = 0; rc = fg_write(chip, MEM_IF_ADDR_LSB(chip), buffer, 2); if (rc < 0) { pr_err("failed to write to 0x%04X, rc=%d\n", MEM_IF_ADDR_LSB(chip), rc); return rc; } return rc; } static int fg_config_access_mode(struct fg_chip *chip, bool access, bool burst) { int rc; u8 intf_ctl = 0; intf_ctl = ((access == FG_WRITE) ? IMA_WR_EN_BIT : 0) | (burst ? MEM_ACS_BURST_BIT : 0); rc = fg_masked_write(chip, MEM_IF_IMA_CTL(chip), IMA_CTL_MASK, intf_ctl); if (rc < 0) { pr_err("failed to write to 0x%04x, rc=%d\n", MEM_IF_IMA_CTL(chip), rc); return -EIO; } return rc; } static int fg_run_iacs_clear_sequence(struct fg_chip *chip) { u8 val, hw_sts, exp_sts; int rc, tries = 250; /* * Values to write for running IACS clear sequence comes from * hardware documentation. */ rc = fg_masked_write(chip, MEM_IF_IMA_CFG(chip), IACS_CLR_BIT | STATIC_CLK_EN_BIT, IACS_CLR_BIT | STATIC_CLK_EN_BIT); if (rc < 0) { pr_err("failed to write 0x%04x, rc=%d\n", MEM_IF_IMA_CFG(chip), rc); return rc; } rc = fg_config_access_mode(chip, FG_READ, false); if (rc < 0) { pr_err("failed to write to 0x%04x, rc=%d\n", MEM_IF_IMA_CTL(chip), rc); return rc; } rc = fg_masked_write(chip, MEM_IF_MEM_INTF_CFG(chip), MEM_ACCESS_REQ_BIT | IACS_SLCT_BIT, MEM_ACCESS_REQ_BIT | IACS_SLCT_BIT); if (rc < 0) { pr_err("failed to set ima_req_access bit rc=%d\n", rc); return rc; } /* Delay for the clock to reach FG */ usleep_range(35, 40); while (1) { val = 0; rc = fg_write(chip, MEM_IF_ADDR_MSB(chip), &val, 1); if (rc < 0) { pr_err("failed to write 0x%04x, rc=%d\n", MEM_IF_ADDR_MSB(chip), rc); return rc; } val = 0; rc = fg_write(chip, MEM_IF_WR_DATA3(chip), &val, 1); if (rc < 0) { pr_err("failed to write 0x%04x, rc=%d\n", MEM_IF_WR_DATA3(chip), rc); return rc; } rc = fg_read(chip, MEM_IF_RD_DATA3(chip), &val, 1); if (rc < 0) { pr_err("failed to read 0x%04x, rc=%d\n", MEM_IF_RD_DATA3(chip), rc); return rc; } /* Delay for IMA hardware to clear */ usleep_range(35, 40); rc = fg_read(chip, MEM_IF_IMA_HW_STS(chip), &hw_sts, 1); if (rc < 0) { pr_err("failed to read ima_hw_sts rc=%d\n", rc); return rc; } if (hw_sts != 0) continue; rc = fg_read(chip, MEM_IF_IMA_EXP_STS(chip), &exp_sts, 1); if (rc < 0) { pr_err("failed to read ima_exp_sts rc=%d\n", rc); return rc; } if (exp_sts == 0 || !(--tries)) break; } if (!tries) pr_err("Failed to clear the error? hw_sts: %x exp_sts: %d\n", hw_sts, exp_sts); rc = fg_masked_write(chip, MEM_IF_IMA_CFG(chip), IACS_CLR_BIT, 0); if (rc < 0) { pr_err("failed to write 0x%04x, rc=%d\n", MEM_IF_IMA_CFG(chip), rc); return rc; } udelay(5); rc = fg_masked_write(chip, MEM_IF_MEM_INTF_CFG(chip), MEM_ACCESS_REQ_BIT | IACS_SLCT_BIT, 0); if (rc < 0) { pr_err("failed to write to 0x%04x, rc=%d\n", MEM_IF_MEM_INTF_CFG(chip), rc); return rc; } /* Delay before next transaction is attempted */ usleep_range(35, 40); fg_dbg(chip, FG_SRAM_READ | FG_SRAM_WRITE, "IACS clear sequence complete\n"); return rc; } int fg_clear_dma_errors_if_any(struct fg_chip *chip) { int rc; u8 dma_sts; rc = fg_read(chip, MEM_IF_DMA_STS(chip), &dma_sts, 1); if (rc < 0) { pr_err("failed to read addr=0x%04x, rc=%d\n", MEM_IF_DMA_STS(chip), rc); return rc; } fg_dbg(chip, FG_STATUS, "dma_sts: %x\n", dma_sts); if (dma_sts & (DMA_WRITE_ERROR_BIT | DMA_READ_ERROR_BIT)) { rc = fg_masked_write(chip, MEM_IF_DMA_CTL(chip), DMA_CLEAR_LOG_BIT, DMA_CLEAR_LOG_BIT); if (rc < 0) { pr_err("failed to write addr=0x%04x, rc=%d\n", MEM_IF_DMA_CTL(chip), rc); return rc; } } return 0; } int fg_clear_ima_errors_if_any(struct fg_chip *chip, bool check_hw_sts) { int rc = 0; u8 err_sts, exp_sts = 0, hw_sts = 0; bool run_err_clr_seq = false; rc = fg_read(chip, MEM_IF_IMA_EXP_STS(chip), &exp_sts, 1); if (rc < 0) { pr_err("failed to read ima_exp_sts rc=%d\n", rc); return rc; } rc = fg_read(chip, MEM_IF_IMA_HW_STS(chip), &hw_sts, 1); if (rc < 0) { pr_err("failed to read ima_hw_sts rc=%d\n", rc); return rc; } rc = fg_read(chip, MEM_IF_IMA_ERR_STS(chip), &err_sts, 1); if (rc < 0) { pr_err("failed to read ima_err_sts rc=%d\n", rc); return rc; } fg_dbg(chip, FG_SRAM_READ | FG_SRAM_WRITE, "ima_err_sts=%x ima_exp_sts=%x ima_hw_sts=%x\n", err_sts, exp_sts, hw_sts); if (check_hw_sts) { /* * Lower nibble should be equal to upper nibble before SRAM * transactions begins from SW side. If they are unequal, then * the error clear sequence should be run irrespective of IMA * exception errors. */ if ((hw_sts & 0x0F) != hw_sts >> 4) { pr_err("IMA HW not in correct state, hw_sts=%x\n", hw_sts); run_err_clr_seq = true; } } if (exp_sts & (IACS_ERR_BIT | XCT_TYPE_ERR_BIT | DATA_RD_ERR_BIT | DATA_WR_ERR_BIT | ADDR_BURST_WRAP_BIT | ADDR_STABLE_ERR_BIT)) { pr_err("IMA exception bit set, exp_sts=%x\n", exp_sts); run_err_clr_seq = true; } if (run_err_clr_seq) { /* clear the error */ rc = fg_run_iacs_clear_sequence(chip); if (rc < 0) { pr_err("failed to run iacs clear sequence rc=%d\n", rc); return rc; } /* Retry again as there was an error in the transaction */ return -EAGAIN; } return rc; } static int fg_check_iacs_ready(struct fg_chip *chip) { int rc = 0, tries = 250; u8 ima_opr_sts = 0; /* * Additional delay to make sure IACS ready bit is set after * Read/Write operation. */ usleep_range(30, 35); while (1) { rc = fg_read(chip, MEM_IF_IMA_OPR_STS(chip), &ima_opr_sts, 1); if (rc < 0) { pr_err("failed to read 0x%04x, rc=%d\n", MEM_IF_IMA_OPR_STS(chip), rc); return rc; } if (ima_opr_sts & IACS_RDY_BIT) break; if (!(--tries)) break; /* delay for iacs_ready to be asserted */ usleep_range(5000, 7000); } if (!tries) { pr_err("IACS_RDY not set\n"); /* check for error condition */ rc = fg_clear_ima_errors_if_any(chip, false); if (rc < 0) { pr_err("Failed to check for ima errors rc=%d\n", rc); return rc; } return -EBUSY; } return 0; } static int __fg_interleaved_mem_write(struct fg_chip *chip, u16 address, int offset, u8 *val, int len) { int rc = 0, i; u8 *ptr = val, byte_enable = 0, num_bytes = 0; fg_dbg(chip, FG_SRAM_WRITE, "length %d addr=%02X offset=%d\n", len, address, offset); while (len > 0) { num_bytes = (offset + len) > BYTES_PER_SRAM_WORD ? (BYTES_PER_SRAM_WORD - offset) : len; /* write to byte_enable */ for (i = offset; i < (offset + num_bytes); i++) byte_enable |= BIT(i); rc = fg_write(chip, MEM_IF_IMA_BYTE_EN(chip), &byte_enable, 1); if (rc < 0) { pr_err("Unable to write to byte_en_reg rc=%d\n", rc); return rc; } /* write data */ rc = fg_write(chip, MEM_IF_WR_DATA0(chip) + offset, ptr, num_bytes); if (rc < 0) { pr_err("failed to write to 0x%04x, rc=%d\n", MEM_IF_WR_DATA0(chip) + offset, rc); return rc; } /* * The last-byte WR_DATA3 starts the write transaction. * Write a dummy value to WR_DATA3 if it does not have * valid data. This dummy data is not written to the * SRAM as byte_en for WR_DATA3 is not set. */ if (!(byte_enable & BIT(3))) { u8 dummy_byte = 0x0; rc = fg_write(chip, MEM_IF_WR_DATA3(chip), &dummy_byte, 1); if (rc < 0) { pr_err("failed to write dummy-data to WR_DATA3 rc=%d\n", rc); return rc; } } /* check for error condition */ rc = fg_clear_ima_errors_if_any(chip, false); if (rc < 0) { pr_err("Failed to check for ima errors rc=%d\n", rc); return rc; } ptr += num_bytes; len -= num_bytes; offset = byte_enable = 0; rc = fg_check_iacs_ready(chip); if (rc < 0) { pr_debug("IACS_RDY failed rc=%d\n", rc); return rc; } } return rc; } static int __fg_interleaved_mem_read(struct fg_chip *chip, u16 address, int offset, u8 *val, int len) { int rc = 0, total_len; u8 *rd_data = val, num_bytes; char str[DEBUG_PRINT_BUFFER_SIZE]; fg_dbg(chip, FG_SRAM_READ, "length %d addr=%02X\n", len, address); total_len = len; while (len > 0) { num_bytes = (offset + len) > BYTES_PER_SRAM_WORD ? (BYTES_PER_SRAM_WORD - offset) : len; rc = fg_read(chip, MEM_IF_RD_DATA0(chip) + offset, rd_data, num_bytes); if (rc < 0) { pr_err("failed to read 0x%04x, rc=%d\n", MEM_IF_RD_DATA0(chip) + offset, rc); return rc; } rd_data += num_bytes; len -= num_bytes; offset = 0; /* check for error condition */ rc = fg_clear_ima_errors_if_any(chip, false); if (rc < 0) { pr_err("Failed to check for ima errors rc=%d\n", rc); return rc; } if (len && len < BYTES_PER_SRAM_WORD) { /* * Move to single mode. Changing address is not * required here as it must be in burst mode. Address * will get incremented internally by FG HW once the MSB * of RD_DATA is read. */ rc = fg_config_access_mode(chip, FG_READ, 0); if (rc < 0) { pr_err("failed to move to single mode rc=%d\n", rc); return -EIO; } } rc = fg_check_iacs_ready(chip); if (rc < 0) { pr_debug("IACS_RDY failed rc=%d\n", rc); return rc; } } if (*chip->debug_mask & FG_SRAM_READ) { fill_string(str, DEBUG_PRINT_BUFFER_SIZE, val, total_len); pr_info("data read: %s\n", str); } return rc; } static int fg_get_mem_access_status(struct fg_chip *chip, bool *status) { int rc; u8 mem_if_sts; rc = fg_read(chip, MEM_IF_MEM_INTF_CFG(chip), &mem_if_sts, 1); if (rc < 0) { pr_err("failed to read rif_mem status rc=%d\n", rc); return rc; } *status = mem_if_sts & MEM_ACCESS_REQ_BIT; return 0; } static bool is_mem_access_available(struct fg_chip *chip, int access) { bool rif_mem_sts = true; int rc, time_count = 0; while (1) { rc = fg_get_mem_access_status(chip, &rif_mem_sts); if (rc < 0) return rc; /* This is an inverting logic */ if (!rif_mem_sts) break; fg_dbg(chip, FG_SRAM_READ | FG_SRAM_WRITE, "MEM_ACCESS_REQ is not clear yet for IMA_%s\n", access ? "write" : "read"); /* * Try this no more than 4 times. If MEM_ACCESS_REQ is not * clear, then return an error instead of waiting for it again. */ if (time_count > 4) { pr_err("Tried 4 times(~16ms) polling MEM_ACCESS_REQ\n"); return false; } /* Wait for 4ms before reading MEM_ACCESS_REQ again */ usleep_range(4000, 4100); time_count++; } return true; } static int fg_interleaved_mem_config(struct fg_chip *chip, u8 *val, u16 address, int offset, int len, bool access) { int rc = 0; if (!is_mem_access_available(chip, access)) return -EBUSY; /* configure for IMA access */ rc = fg_masked_write(chip, MEM_IF_MEM_INTF_CFG(chip), MEM_ACCESS_REQ_BIT | IACS_SLCT_BIT, MEM_ACCESS_REQ_BIT | IACS_SLCT_BIT); if (rc < 0) { pr_err("failed to set ima_req_access bit rc=%d\n", rc); return rc; } /* configure for the read/write, single/burst mode */ rc = fg_config_access_mode(chip, access, (offset + len) > 4); if (rc < 0) { pr_err("failed to set memory access rc = %d\n", rc); return rc; } rc = fg_check_iacs_ready(chip); if (rc < 0) { pr_err_ratelimited("IACS_RDY failed rc=%d\n", rc); return rc; } rc = fg_set_address(chip, address); if (rc < 0) { pr_err("failed to set address rc = %d\n", rc); return rc; } if (access == FG_READ) { rc = fg_check_iacs_ready(chip); if (rc < 0) { pr_debug("IACS_RDY failed rc=%d\n", rc); return rc; } } return rc; } static int fg_get_beat_count(struct fg_chip *chip, u8 *count) { int rc; rc = fg_read(chip, MEM_IF_FG_BEAT_COUNT(chip), count, 1); *count &= BEAT_COUNT_MASK; return rc; } int fg_interleaved_mem_read(struct fg_chip *chip, u16 address, u8 offset, u8 *val, int len) { int rc = 0; u8 start_beat_count, end_beat_count, count = 0; bool retry_once = false; if (offset > 3) { pr_err("offset too large %d\n", offset); return -EINVAL; } retry: rc = fg_interleaved_mem_config(chip, val, address, offset, len, FG_READ); if (rc < 0) { pr_err("failed to configure SRAM for IMA rc = %d\n", rc); goto out; } /* read the start beat count */ rc = fg_get_beat_count(chip, &start_beat_count); if (rc < 0) { pr_err("failed to read beat count rc=%d\n", rc); goto out; } /* read data */ rc = __fg_interleaved_mem_read(chip, address, offset, val, len); if (rc < 0) { if ((rc == -EAGAIN) && (count < RETRY_COUNT)) { count++; pr_err("IMA access failed retry_count = %d\n", count); goto retry; } pr_err("failed to read SRAM address rc = %d\n", rc); goto out; } /* read the end beat count */ rc = fg_get_beat_count(chip, &end_beat_count); if (rc < 0) { pr_err("failed to read beat count rc=%d\n", rc); goto out; } fg_dbg(chip, FG_SRAM_READ, "Start beat_count = %x End beat_count = %x\n", start_beat_count, end_beat_count); if (start_beat_count != end_beat_count && !retry_once) { fg_dbg(chip, FG_SRAM_READ, "Beat count(%d/%d) do not match - retry transaction\n", start_beat_count, end_beat_count); retry_once = true; } out: /* Release IMA access */ rc = fg_masked_write(chip, MEM_IF_MEM_INTF_CFG(chip), MEM_ACCESS_REQ_BIT | IACS_SLCT_BIT, 0); if (rc < 0) { pr_err("failed to reset IMA access bit rc = %d\n", rc); return rc; } if (retry_once) { retry_once = false; goto retry; } return rc; } int fg_interleaved_mem_write(struct fg_chip *chip, u16 address, u8 offset, u8 *val, int len, bool atomic_access) { int rc = 0; u8 start_beat_count, end_beat_count, count = 0; if (offset > 3) { pr_err("offset too large %d\n", offset); return -EINVAL; } retry: rc = fg_interleaved_mem_config(chip, val, address, offset, len, FG_WRITE); if (rc < 0) { pr_err("failed to configure SRAM for IMA rc = %d\n", rc); goto out; } /* read the start beat count */ rc = fg_get_beat_count(chip, &start_beat_count); if (rc < 0) { pr_err("failed to read beat count rc=%d\n", rc); goto out; } /* write data */ rc = __fg_interleaved_mem_write(chip, address, offset, val, len); if (rc < 0) { if ((rc == -EAGAIN) && (count < RETRY_COUNT)) { count++; pr_err("IMA access failed retry_count = %d\n", count); goto retry; } pr_err("failed to write SRAM address rc = %d\n", rc); goto out; } /* read the end beat count */ rc = fg_get_beat_count(chip, &end_beat_count); if (rc < 0) { pr_err("failed to read beat count rc=%d\n", rc); goto out; } if (atomic_access && start_beat_count != end_beat_count) pr_err("Start beat_count = %x End beat_count = %x\n", start_beat_count, end_beat_count); out: /* Release IMA access */ rc = fg_masked_write(chip, MEM_IF_MEM_INTF_CFG(chip), MEM_ACCESS_REQ_BIT | IACS_SLCT_BIT, 0); if (rc < 0) pr_err("failed to reset IMA access bit rc = %d\n", rc); return rc; } int fg_ima_init(struct fg_chip *chip) { int rc; /* * Change the FG_MEM_INT interrupt to track IACS_READY * condition instead of end-of-transaction. This makes sure * that the next transaction starts only after the hw is ready. */ rc = fg_masked_write(chip, MEM_IF_IMA_CFG(chip), IACS_INTR_SRC_SLCT_BIT, IACS_INTR_SRC_SLCT_BIT); if (rc < 0) { pr_err("failed to configure interrupt source %d\n", rc); return rc; } /* Clear DMA errors if any before clearing IMA errors */ rc = fg_clear_dma_errors_if_any(chip); if (rc < 0) { pr_err("Error in checking DMA errors rc:%d\n", rc); return rc; } /* Clear IMA errors if any before SRAM transactions can begin */ rc = fg_clear_ima_errors_if_any(chip, true); if (rc < 0 && rc != -EAGAIN) { pr_err("Error in checking IMA errors rc:%d\n", rc); return rc; } return 0; }