/* Copyright (c) 2012-2017, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ /* * Qualcomm Technologies, Inc. QPNP Pulse Width Modulation (PWM) driver * * The HW module is also called LPG (Light Pattern Generator). */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #define QPNP_LPG_DRIVER_NAME "qcom,qpnp-pwm" #define QPNP_LPG_CHANNEL_BASE "qpnp-lpg-channel-base" #define QPNP_LPG_LUT_BASE "qpnp-lpg-lut-base" #define QPNP_PWM_MODE_ONLY_SUB_TYPE 0x0B #define QPNP_LPG_CHAN_SUB_TYPE 0x2 #define QPNP_LPG_S_CHAN_SUB_TYPE 0x11 /* LPG Control for LPG_PATTERN_CONFIG */ #define QPNP_RAMP_DIRECTION_SHIFT 4 #define QPNP_RAMP_DIRECTION_MASK 0x10 #define QPNP_PATTERN_REPEAT_SHIFT 3 #define QPNP_PATTERN_REPEAT_MASK 0x08 #define QPNP_RAMP_TOGGLE_SHIFT 2 #define QPNP_RAMP_TOGGLE_MASK 0x04 #define QPNP_EN_PAUSE_HI_SHIFT 1 #define QPNP_EN_PAUSE_HI_MASK 0x02 #define QPNP_EN_PAUSE_LO_MASK 0x01 /* LPG Control for LPG_PWM_SIZE_CLK */ #define QPNP_PWM_SIZE_SHIFT_SUB_TYPE 2 #define QPNP_PWM_SIZE_MASK_SUB_TYPE 0x4 #define QPNP_PWM_FREQ_CLK_SELECT_MASK_SUB_TYPE 0x03 #define QPNP_PWM_SIZE_9_BIT_SUB_TYPE 0x01 #define QPNP_SET_PWM_CLK_SUB_TYPE(val, clk, pwm_size) \ do { \ val = (clk + 1) & QPNP_PWM_FREQ_CLK_SELECT_MASK_SUB_TYPE; \ val |= (((pwm_size > 6 ? QPNP_PWM_SIZE_9_BIT_SUB_TYPE : 0) << \ QPNP_PWM_SIZE_SHIFT_SUB_TYPE) & QPNP_PWM_SIZE_MASK_SUB_TYPE); \ } while (0) #define QPNP_GET_PWM_SIZE_SUB_TYPE(reg) ((reg & QPNP_PWM_SIZE_MASK_SUB_TYPE) \ >> QPNP_PWM_SIZE_SHIFT_SUB_TYPE) #define QPNP_PWM_SIZE_SHIFT 4 #define QPNP_PWM_SIZE_MASK 0x30 #define QPNP_PWM_FREQ_CLK_SELECT_MASK 0x03 #define QPNP_MIN_PWM_BIT_SIZE 6 #define QPNP_MAX_PWM_BIT_SIZE 9 #define QPNP_PWM_SIZES_SUPPORTED 10 #define QPNP_SET_PWM_CLK(val, clk, pwm_size) \ do { \ val = (clk + 1) & QPNP_PWM_FREQ_CLK_SELECT_MASK; \ val |= (((pwm_size - QPNP_MIN_PWM_BIT_SIZE) << \ QPNP_PWM_SIZE_SHIFT) & QPNP_PWM_SIZE_MASK); \ } while (0) #define QPNP_GET_PWM_SIZE(reg) ((reg & QPNP_PWM_SIZE_MASK) \ >> QPNP_PWM_SIZE_SHIFT) /* LPG Control for LPG_PWM_FREQ_PREDIV_CLK */ #define QPNP_PWM_FREQ_PRE_DIVIDE_SHIFT 5 #define QPNP_PWM_FREQ_PRE_DIVIDE_MASK 0x60 #define QPNP_PWM_FREQ_EXP_MASK 0x07 #define QPNP_SET_PWM_FREQ_PREDIV(val, pre_div, pre_div_exp) \ do { \ val = (pre_div << QPNP_PWM_FREQ_PRE_DIVIDE_SHIFT) & \ QPNP_PWM_FREQ_PRE_DIVIDE_MASK; \ val |= (pre_div_exp & QPNP_PWM_FREQ_EXP_MASK); \ } while (0) /* LPG Control for LPG_PWM_TYPE_CONFIG */ #define QPNP_EN_GLITCH_REMOVAL_SHIFT 5 #define QPNP_EN_GLITCH_REMOVAL_MASK 0x20 #define QPNP_EN_FULL_SCALE_SHIFT 3 #define QPNP_EN_FULL_SCALE_MASK 0x08 #define QPNP_EN_PHASE_STAGGER_SHIFT 2 #define QPNP_EN_PHASE_STAGGER_MASK 0x04 #define QPNP_PHASE_STAGGER_MASK 0x03 /* LPG Control for PWM_VALUE_LSB */ #define QPNP_PWM_VALUE_LSB_MASK 0xFF /* LPG Control for PWM_VALUE_MSB */ #define QPNP_PWM_VALUE_MSB_SHIFT 8 #define QPNP_PWM_VALUE_MSB_MASK 0x01 /* LPG Control for ENABLE_CONTROL */ #define QPNP_EN_PWM_HIGH_SHIFT 7 #define QPNP_EN_PWM_HIGH_MASK 0x80 #define QPNP_EN_PWM_LO_SHIFT 6 #define QPNP_EN_PWM_LO_MASK 0x40 #define QPNP_EN_PWM_OUTPUT_SHIFT 5 #define QPNP_EN_PWM_OUTPUT_MASK 0x20 #define QPNP_PWM_SRC_SELECT_SHIFT 2 #define QPNP_PWM_SRC_SELECT_MASK 0x04 #define QPNP_PWM_EN_RAMP_GEN_SHIFT 1 #define QPNP_PWM_EN_RAMP_GEN_MASK 0x02 /* LPG Control for PWM_SYNC */ #define QPNP_PWM_SYNC_VALUE 0x01 #define QPNP_PWM_SYNC_MASK 0x01 /* LPG Control for RAMP_CONTROL */ #define QPNP_RAMP_START_MASK 0x01 #define QPNP_ENABLE_LUT_V0(value) (value |= QPNP_RAMP_START_MASK) #define QPNP_DISABLE_LUT_V0(value) (value &= ~QPNP_RAMP_START_MASK) #define QPNP_ENABLE_LUT_V1(value, id) (value |= BIT(id)) /* LPG Control for RAMP_STEP_DURATION_LSB */ #define QPNP_RAMP_STEP_DURATION_LSB_MASK 0xFF /* LPG Control for RAMP_STEP_DURATION_MSB */ #define QPNP_RAMP_STEP_DURATION_MSB_SHIFT 8 #define QPNP_RAMP_STEP_DURATION_MSB_MASK 0x01 #define QPNP_PWM_1KHZ 1024 #define QPNP_GET_RAMP_STEP_DURATION(ramp_time_ms) \ ((ramp_time_ms * QPNP_PWM_1KHZ) / 1000) /* LPG Control for PAUSE_HI_MULTIPLIER_LSB */ #define QPNP_PAUSE_HI_MULTIPLIER_LSB_MASK 0xFF /* LPG Control for PAUSE_HI_MULTIPLIER_MSB */ #define QPNP_PAUSE_HI_MULTIPLIER_MSB_SHIFT 8 #define QPNP_PAUSE_HI_MULTIPLIER_MSB_MASK 0x1F /* LPG Control for PAUSE_LO_MULTIPLIER_LSB */ #define QPNP_PAUSE_LO_MULTIPLIER_LSB_MASK 0xFF /* LPG Control for PAUSE_LO_MULTIPLIER_MSB */ #define QPNP_PAUSE_LO_MULTIPLIER_MSB_SHIFT 8 #define QPNP_PAUSE_LO_MULTIPLIER_MSB_MASK 0x1F /* LPG Control for HI_INDEX */ #define QPNP_HI_INDEX_MASK 0x3F /* LPG Control for LO_INDEX */ #define QPNP_LO_INDEX_MASK 0x3F /* LPG DTEST */ #define QPNP_LPG_DTEST_LINE_MAX 4 #define QPNP_LPG_DTEST_OUTPUT_MAX 5 #define QPNP_LPG_DTEST_OUTPUT_MASK 0x07 /* PWM DTEST */ #define QPNP_PWM_DTEST_LINE_MAX 2 #define QPNP_PWM_DTEST_OUTPUT_MAX 2 #define QPNP_PWM_DTEST_OUTPUT_MASK 0x03 #define NUM_CLOCKS 3 #define QPNP_PWM_M_MAX 7 #define NSEC_1024HZ (NSEC_PER_SEC / 1024) #define NSEC_32768HZ (NSEC_PER_SEC / 32768) #define NSEC_19P2MHZ (NSEC_PER_SEC / 19200000) #define NUM_LPG_PRE_DIVIDE 4 #define PRE_DIVIDE_1 1 #define PRE_DIVIDE_3 3 #define PRE_DIVIDE_5 5 #define PRE_DIVIDE_6 6 #define SPMI_LPG_REG_BASE_OFFSET 0x40 #define SPMI_LPG_REVISION2_OFFSET 0x1 #define SPMI_LPG_REV1_RAMP_CONTROL_OFFSET 0x86 #define SPMI_LPG_SUB_TYPE_OFFSET 0x5 #define SPMI_LPG_PWM_SYNC 0x7 #define SPMI_LPG_REG_ADDR(b, n) (b + SPMI_LPG_REG_BASE_OFFSET + (n)) #define SPMI_MAX_BUF_LEN 8 #define QPNP_PWM_LUT_NOT_SUPPORTED 0x1 /* Supported PWM sizes */ #define QPNP_PWM_SIZE_6_BIT 6 #define QPNP_PWM_SIZE_7_BIT 7 #define QPNP_PWM_SIZE_8_BIT 8 #define QPNP_PWM_SIZE_9_BIT 9 #define QPNP_PWM_SIZE_6_9_BIT 0x9 #define QPNP_PWM_SIZE_7_8_BIT 0x6 #define QPNP_PWM_SIZE_6_7_9_BIT 0xB /* * Registers that don't need to be cached are defined below from an offset * of SPMI_LPG_REG_BASE_OFFSET. */ #define QPNP_LPG_SEC_ACCESS 0x90 #define QPNP_LPG_DTEST 0xA2 /* Supported time levels */ enum time_level { LVL_NSEC, LVL_USEC, }; /* LPG revisions */ enum qpnp_lpg_revision { QPNP_LPG_REVISION_0 = 0x0, QPNP_LPG_REVISION_1 = 0x1, }; /* LPG LUT MODE STATE */ enum qpnp_lut_state { QPNP_LUT_ENABLE = 0x0, QPNP_LUT_DISABLE = 0x1, }; /* PWM MODE STATE */ enum qpnp_pwm_state { QPNP_PWM_ENABLE = 0x0, QPNP_PWM_DISABLE = 0x1, }; /* SPMI LPG registers */ enum qpnp_lpg_registers_list { QPNP_LPG_PATTERN_CONFIG, QPNP_LPG_PWM_SIZE_CLK, QPNP_LPG_PWM_FREQ_PREDIV_CLK, QPNP_LPG_PWM_TYPE_CONFIG, QPNP_PWM_VALUE_LSB, QPNP_PWM_VALUE_MSB, QPNP_ENABLE_CONTROL, QPNP_RAMP_CONTROL, QPNP_RAMP_STEP_DURATION_LSB = QPNP_RAMP_CONTROL + 9, QPNP_RAMP_STEP_DURATION_MSB, QPNP_PAUSE_HI_MULTIPLIER_LSB, QPNP_PAUSE_HI_MULTIPLIER_MSB, QPNP_PAUSE_LO_MULTIPLIER_LSB, QPNP_PAUSE_LO_MULTIPLIER_MSB, QPNP_HI_INDEX, QPNP_LO_INDEX, QPNP_TOTAL_LPG_SPMI_REGISTERS }; /* * Formula from HSID, * pause_time (hi/lo) = (pause_cnt- 1)*(ramp_ms) * OR, * pause_cnt = (pause_time / ramp_ms) + 1 */ #define QPNP_SET_PAUSE_CNT(to_pause_cnt, from_pause, ramp_ms) \ (to_pause_cnt = (from_pause / (ramp_ms ? ramp_ms : 1)) + 1) static unsigned int pt_t[NUM_LPG_PRE_DIVIDE][NUM_CLOCKS] = { { PRE_DIVIDE_1 * NSEC_1024HZ, PRE_DIVIDE_1 * NSEC_32768HZ, PRE_DIVIDE_1 * NSEC_19P2MHZ, }, { PRE_DIVIDE_3 * NSEC_1024HZ, PRE_DIVIDE_3 * NSEC_32768HZ, PRE_DIVIDE_3 * NSEC_19P2MHZ, }, { PRE_DIVIDE_5 * NSEC_1024HZ, PRE_DIVIDE_5 * NSEC_32768HZ, PRE_DIVIDE_5 * NSEC_19P2MHZ, }, { PRE_DIVIDE_6 * NSEC_1024HZ, PRE_DIVIDE_6 * NSEC_32768HZ, PRE_DIVIDE_6 * NSEC_19P2MHZ, }, }; struct qpnp_lut_config { u8 *duty_pct_list; int list_len; int ramp_index; int lo_index; int hi_index; int lut_pause_hi_cnt; int lut_pause_lo_cnt; int ramp_step_ms; bool ramp_direction; bool pattern_repeat; bool ramp_toggle; bool enable_pause_hi; bool enable_pause_lo; }; struct qpnp_lpg_config { struct qpnp_lut_config lut_config; u16 base_addr; u16 lut_base_addr; u16 lut_size; }; struct _qpnp_pwm_config { int pwm_value; int pwm_period; /* in microseconds */ int pwm_duty; /* in microseconds */ struct pwm_period_config period; int supported_sizes; int force_pwm_size; }; /* Public facing structure */ struct qpnp_pwm_chip { struct platform_device *pdev; struct regmap *regmap; struct pwm_chip chip; bool enabled; struct _qpnp_pwm_config pwm_config; struct qpnp_lpg_config lpg_config; spinlock_t lpg_lock; enum qpnp_lpg_revision revision; u8 sub_type; u32 flags; u8 qpnp_lpg_registers[QPNP_TOTAL_LPG_SPMI_REGISTERS]; int channel_id; const char *channel_owner; u32 dtest_line; u32 dtest_output; bool in_test_mode; }; /* Internal functions */ static inline struct qpnp_pwm_chip *qpnp_pwm_from_pwm_dev( struct pwm_device *pwm) { return container_of(pwm->chip, struct qpnp_pwm_chip, chip); } static inline struct qpnp_pwm_chip *qpnp_pwm_from_pwm_chip( struct pwm_chip *chip) { return container_of(chip, struct qpnp_pwm_chip, chip); } static inline void qpnp_set_pattern_config(u8 *val, struct qpnp_lut_config *lut_config) { *val = lut_config->enable_pause_lo & QPNP_EN_PAUSE_LO_MASK; *val |= (lut_config->enable_pause_hi << QPNP_EN_PAUSE_HI_SHIFT) & QPNP_EN_PAUSE_HI_MASK; *val |= (lut_config->ramp_toggle << QPNP_RAMP_TOGGLE_SHIFT) & QPNP_RAMP_TOGGLE_MASK; *val |= (lut_config->pattern_repeat << QPNP_PATTERN_REPEAT_SHIFT) & QPNP_PATTERN_REPEAT_MASK; *val |= (lut_config->ramp_direction << QPNP_RAMP_DIRECTION_SHIFT) & QPNP_RAMP_DIRECTION_MASK; } static inline void qpnp_set_pwm_type_config(u8 *val, bool glitch, bool full_scale, bool en_phase, bool phase) { *val = phase; *val |= (en_phase << QPNP_EN_PHASE_STAGGER_SHIFT) & QPNP_EN_PHASE_STAGGER_MASK; *val |= (full_scale << QPNP_EN_FULL_SCALE_SHIFT) & QPNP_EN_FULL_SCALE_MASK; *val |= (glitch << QPNP_EN_GLITCH_REMOVAL_SHIFT) & QPNP_EN_GLITCH_REMOVAL_MASK; } static int qpnp_set_control(struct qpnp_pwm_chip *chip, bool pwm_hi, bool pwm_lo, bool pwm_out, bool pwm_src, bool ramp_gen) { int value; value = (ramp_gen << QPNP_PWM_EN_RAMP_GEN_SHIFT) | (pwm_src << QPNP_PWM_SRC_SELECT_SHIFT) | (pwm_lo << QPNP_EN_PWM_LO_SHIFT) | (pwm_hi << QPNP_EN_PWM_HIGH_SHIFT); if (chip->sub_type != QPNP_LPG_S_CHAN_SUB_TYPE) value |= (pwm_out << QPNP_EN_PWM_OUTPUT_SHIFT); return value; } #define QPNP_ENABLE_LUT_CONTROL(chip) \ qpnp_set_control((chip), 0, 0, 0, 0, 1) #define QPNP_ENABLE_PWM_CONTROL(chip) \ qpnp_set_control((chip), 0, 0, 0, 1, 0) #define QPNP_ENABLE_PWM_MODE(chip) \ qpnp_set_control((chip), 1, 1, 1, 1, 0) #define QPNP_ENABLE_PWM_MODE_GPLED_CHANNEL(chip) \ qpnp_set_control((chip), 1, 1, 1, 1, 1) #define QPNP_ENABLE_LPG_MODE(chip) \ qpnp_set_control((chip), 1, 1, 1, 0, 1) #define QPNP_DISABLE_PWM_MODE(chip) \ qpnp_set_control((chip), 0, 0, 0, 1, 0) #define QPNP_DISABLE_LPG_MODE(chip) \ qpnp_set_control((chip), 0, 0, 0, 0, 1) #define QPNP_IS_PWM_CONFIG_SELECTED(val) (val & QPNP_PWM_SRC_SELECT_MASK) #define QPNP_ENABLE_PWM_MODE_ONLY_SUB_TYPE 0x80 #define QPNP_DISABLE_PWM_MODE_ONLY_SUB_TYPE 0x0 #define QPNP_PWM_MODE_ONLY_ENABLE_DISABLE_MASK_SUB_TYPE 0x80 static inline void qpnp_convert_to_lut_flags(int *flags, struct qpnp_lut_config *l_config) { *flags = ((l_config->ramp_direction ? PM_PWM_LUT_RAMP_UP : 0) | (l_config->pattern_repeat ? PM_PWM_LUT_LOOP : 0)| (l_config->ramp_toggle ? PM_PWM_LUT_REVERSE : 0) | (l_config->enable_pause_hi ? PM_PWM_LUT_PAUSE_HI_EN : 0) | (l_config->enable_pause_lo ? PM_PWM_LUT_PAUSE_LO_EN : 0)); } static inline void qpnp_set_lut_params(struct lut_params *l_params, struct qpnp_lut_config *l_config, int s_idx, int size) { l_params->start_idx = s_idx; l_params->idx_len = size; l_params->lut_pause_hi = l_config->lut_pause_hi_cnt; l_params->lut_pause_lo = l_config->lut_pause_lo_cnt; l_params->ramp_step_ms = l_config->ramp_step_ms; qpnp_convert_to_lut_flags(&l_params->flags, l_config); } static void qpnp_lpg_save(u8 *u8p, u8 mask, u8 val) { *u8p &= ~mask; *u8p |= val & mask; } static int qpnp_lpg_save_and_write(u8 value, u8 mask, u8 *reg, u16 addr, u16 size, struct qpnp_pwm_chip *chip) { qpnp_lpg_save(reg, mask, value); return regmap_bulk_write(chip->regmap, addr, reg, size); } /* * PWM Frequency = Clock Frequency / (N * T) * or * PWM Period = Clock Period * (N * T) * where * N = 2^9 or 2^6 for 9-bit or 6-bit PWM size * T = Pre-divide * 2^m, where m = 0..7 (exponent) * * This is the formula to figure out m for the best pre-divide and clock: * (PWM Period / N) = (Pre-divide * Clock Period) * 2^m */ static void qpnp_lpg_calc_period(enum time_level tm_lvl, unsigned int period_value, struct qpnp_pwm_chip *chip) { int n, m, clk, div; int best_m, best_div, best_clk; unsigned int last_err, cur_err, min_err; unsigned int tmp_p, period_n; int supported_sizes = chip->pwm_config.supported_sizes; int force_pwm_size = chip->pwm_config.force_pwm_size; struct pwm_period_config *period = &chip->pwm_config.period; /* PWM Period / N */ if (supported_sizes == QPNP_PWM_SIZE_7_8_BIT) n = 7; else n = 6; if (tm_lvl == LVL_USEC) { if (period_value < ((unsigned int)(-1) / NSEC_PER_USEC)) { period_n = (period_value * NSEC_PER_USEC) >> n; } else { if (supported_sizes == QPNP_PWM_SIZE_7_8_BIT) n = 8; else n = 9; period_n = (period_value >> n) * NSEC_PER_USEC; } } else { period_n = period_value >> n; } if (force_pwm_size != 0) { if (n < force_pwm_size) period_n = period_n >> (force_pwm_size - n); else period_n = period_n << (n - force_pwm_size); n = force_pwm_size; pr_info("LPG channel '%d' pwm size is forced to=%d\n", chip->channel_id, n); } min_err = last_err = (unsigned int)(-1); best_m = 0; best_clk = 0; best_div = 0; for (clk = 0; clk < NUM_CLOCKS; clk++) { for (div = 0; div < NUM_LPG_PRE_DIVIDE; div++) { /* period_n = (PWM Period / N) */ /* tmp_p = (Pre-divide * Clock Period) * 2^m */ tmp_p = pt_t[div][clk]; for (m = 0; m <= QPNP_PWM_M_MAX; m++) { if (period_n > tmp_p) cur_err = period_n - tmp_p; else cur_err = tmp_p - period_n; if (cur_err < min_err) { min_err = cur_err; best_m = m; best_clk = clk; best_div = div; } if (m && cur_err > last_err) /* Break for bigger cur_err */ break; last_err = cur_err; tmp_p <<= 1; } } } /* Adapt to optimal pwm size, the higher the resolution the better */ if (!force_pwm_size) { if (supported_sizes == QPNP_PWM_SIZE_7_8_BIT) { if (n == 7 && best_m >= 1) { n += 1; best_m -= 1; } } else if (n == 6) { if (best_m >= 3) { n += 3; best_m -= 3; } else if (best_m >= 1 && ( chip->sub_type != QPNP_PWM_MODE_ONLY_SUB_TYPE && chip->sub_type != QPNP_LPG_S_CHAN_SUB_TYPE)) { n += 1; best_m -= 1; } } } period->pwm_size = n; period->clk = best_clk; period->pre_div = best_div; period->pre_div_exp = best_m; } static void qpnp_lpg_calc_pwm_value(struct _qpnp_pwm_config *pwm_config, unsigned int period_value, unsigned int duty_value) { unsigned int max_pwm_value, tmp; /* Figure out pwm_value with overflow handling */ tmp = 1 << (sizeof(tmp) * 8 - pwm_config->period.pwm_size); if (duty_value < tmp) { tmp = duty_value << pwm_config->period.pwm_size; pwm_config->pwm_value = tmp / period_value; } else { tmp = period_value >> pwm_config->period.pwm_size; pwm_config->pwm_value = duty_value / tmp; } max_pwm_value = (1 << pwm_config->period.pwm_size) - 1; if (pwm_config->pwm_value > max_pwm_value) pwm_config->pwm_value = max_pwm_value; pr_debug("pwm_value: %d\n", pwm_config->pwm_value); } static int qpnp_lpg_change_table(struct qpnp_pwm_chip *chip, int duty_pct[], int raw_value) { unsigned int pwm_value, max_pwm_value; struct qpnp_lut_config *lut = &chip->lpg_config.lut_config; int i, pwm_size, rc = 0; int burst_size = SPMI_MAX_BUF_LEN; int list_len = lut->list_len << 1; int offset = (lut->lo_index << 1) - 2; pwm_size = QPNP_GET_PWM_SIZE( chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK]) + QPNP_MIN_PWM_BIT_SIZE; max_pwm_value = (1 << pwm_size) - 1; if (unlikely(lut->list_len != (lut->hi_index - lut->lo_index + 1))) { pr_err("LUT internal Data structure corruption detected\n"); pr_err("LUT list size: %d\n", lut->list_len); pr_err("However, index size is: %d\n", (lut->hi_index - lut->lo_index + 1)); return -EINVAL; } for (i = 0; i < lut->list_len; i++) { if (raw_value) pwm_value = duty_pct[i]; else pwm_value = (duty_pct[i] << pwm_size) / 100; if (pwm_value > max_pwm_value) pwm_value = max_pwm_value; if (chip->pwm_config.supported_sizes == QPNP_PWM_SIZE_7_8_BIT) { lut->duty_pct_list[i] = pwm_value; } else { lut->duty_pct_list[i*2] = pwm_value; lut->duty_pct_list[(i*2)+1] = (pwm_value >> QPNP_PWM_VALUE_MSB_SHIFT) & QPNP_PWM_VALUE_MSB_MASK; } } /* * For the Keypad Backlight Lookup Table (KPDBL_LUT), * offset is lo_index. */ if (chip->pwm_config.supported_sizes == QPNP_PWM_SIZE_7_8_BIT) offset = lut->lo_index; /* Write with max allowable burst mode, each entry is of two bytes */ for (i = 0; i < list_len; i += burst_size) { if (i + burst_size >= list_len) burst_size = list_len - i; rc = regmap_bulk_write(chip->regmap, chip->lpg_config.lut_base_addr + offset + i, lut->duty_pct_list + i, burst_size); } return rc; } static void qpnp_lpg_save_period(struct qpnp_pwm_chip *chip) { u8 mask, val; struct _qpnp_pwm_config *pwm_config = &chip->pwm_config; if (chip->sub_type == QPNP_PWM_MODE_ONLY_SUB_TYPE) { QPNP_SET_PWM_CLK_SUB_TYPE(val, pwm_config->period.clk, pwm_config->period.pwm_size); mask = QPNP_PWM_SIZE_MASK_SUB_TYPE | QPNP_PWM_FREQ_CLK_SELECT_MASK_SUB_TYPE; } else { QPNP_SET_PWM_CLK(val, pwm_config->period.clk, pwm_config->period.pwm_size); mask = QPNP_PWM_SIZE_MASK | QPNP_PWM_FREQ_CLK_SELECT_MASK; } qpnp_lpg_save(&chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK], mask, val); QPNP_SET_PWM_FREQ_PREDIV(val, pwm_config->period.pre_div, pwm_config->period.pre_div_exp); mask = QPNP_PWM_FREQ_PRE_DIVIDE_MASK | QPNP_PWM_FREQ_EXP_MASK; qpnp_lpg_save(&chip->qpnp_lpg_registers[QPNP_LPG_PWM_FREQ_PREDIV_CLK], mask, val); } static int qpnp_lpg_save_pwm_value(struct qpnp_pwm_chip *chip) { unsigned int max_pwm_value; int pwm_size; u8 mask, value; struct _qpnp_pwm_config *pwm_config = &chip->pwm_config; struct qpnp_lpg_config *lpg_config = &chip->lpg_config; int rc; if (chip->sub_type == QPNP_PWM_MODE_ONLY_SUB_TYPE) pwm_size = QPNP_GET_PWM_SIZE_SUB_TYPE( chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK]) ? QPNP_MAX_PWM_BIT_SIZE : QPNP_MIN_PWM_BIT_SIZE; else pwm_size = QPNP_GET_PWM_SIZE( chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK]) + QPNP_MIN_PWM_BIT_SIZE; max_pwm_value = (1 << pwm_size) - 1; if (pwm_config->pwm_value > max_pwm_value) pwm_config->pwm_value = max_pwm_value; value = pwm_config->pwm_value; mask = QPNP_PWM_VALUE_LSB_MASK; pr_debug("pwm_lsb value:%d\n", value & mask); rc = qpnp_lpg_save_and_write(value, mask, &chip->qpnp_lpg_registers[QPNP_PWM_VALUE_LSB], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_PWM_VALUE_LSB), 1, chip); if (rc) return rc; value = (pwm_config->pwm_value >> QPNP_PWM_VALUE_MSB_SHIFT) & QPNP_PWM_VALUE_MSB_MASK; mask = QPNP_PWM_VALUE_MSB_MASK; pr_debug("pwm_msb value:%d\n", value); rc = qpnp_lpg_save_and_write(value, mask, &chip->qpnp_lpg_registers[QPNP_PWM_VALUE_MSB], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_PWM_VALUE_MSB), 1, chip); if (rc) return rc; if (chip->sub_type == QPNP_PWM_MODE_ONLY_SUB_TYPE || chip->sub_type == QPNP_LPG_S_CHAN_SUB_TYPE) { value = QPNP_PWM_SYNC_VALUE & QPNP_PWM_SYNC_MASK; rc = regmap_write(chip->regmap, SPMI_LPG_REG_ADDR(lpg_config->base_addr, SPMI_LPG_PWM_SYNC), value); } return rc; } static int qpnp_lpg_configure_pattern(struct qpnp_pwm_chip *chip) { struct qpnp_lpg_config *lpg_config = &chip->lpg_config; struct qpnp_lut_config *lut_config = &lpg_config->lut_config; u8 value, mask; qpnp_set_pattern_config(&value, lut_config); mask = QPNP_RAMP_DIRECTION_MASK | QPNP_PATTERN_REPEAT_MASK | QPNP_RAMP_TOGGLE_MASK | QPNP_EN_PAUSE_HI_MASK | QPNP_EN_PAUSE_LO_MASK; return qpnp_lpg_save_and_write(value, mask, &chip->qpnp_lpg_registers[QPNP_LPG_PATTERN_CONFIG], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_LPG_PATTERN_CONFIG), 1, chip); } static int qpnp_lpg_glitch_removal(struct qpnp_pwm_chip *chip, bool enable) { struct qpnp_lpg_config *lpg_config = &chip->lpg_config; u8 value, mask; qpnp_set_pwm_type_config(&value, enable ? 1 : 0, 0, 0, 0); mask = QPNP_EN_GLITCH_REMOVAL_MASK | QPNP_EN_FULL_SCALE_MASK | QPNP_EN_PHASE_STAGGER_MASK | QPNP_PHASE_STAGGER_MASK; pr_debug("pwm_type_config: %d\n", value); return qpnp_lpg_save_and_write(value, mask, &chip->qpnp_lpg_registers[QPNP_LPG_PWM_TYPE_CONFIG], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_LPG_PWM_TYPE_CONFIG), 1, chip); } static int qpnp_lpg_configure_pwm(struct qpnp_pwm_chip *chip) { struct qpnp_lpg_config *lpg_config = &chip->lpg_config; int rc; pr_debug("pwm_size_clk: %d\n", chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK]); rc = regmap_write(chip->regmap, SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_LPG_PWM_SIZE_CLK), *&chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK]); if (rc) return rc; pr_debug("pwm_freq_prediv_clk: %d\n", chip->qpnp_lpg_registers[QPNP_LPG_PWM_FREQ_PREDIV_CLK]); rc = regmap_write(chip->regmap, SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_LPG_PWM_FREQ_PREDIV_CLK), *&chip->qpnp_lpg_registers[QPNP_LPG_PWM_FREQ_PREDIV_CLK]); if (rc) return rc; /* Disable glitch removal when LPG/PWM is configured */ rc = qpnp_lpg_glitch_removal(chip, false); if (rc) { pr_err("Error in disabling glitch control, rc=%d\n", rc); return rc; } return rc; } static int qpnp_configure_pwm_control(struct qpnp_pwm_chip *chip) { struct qpnp_lpg_config *lpg_config = &chip->lpg_config; u8 value, mask; if (chip->sub_type == QPNP_PWM_MODE_ONLY_SUB_TYPE) return 0; value = QPNP_ENABLE_PWM_CONTROL(chip); mask = QPNP_EN_PWM_HIGH_MASK | QPNP_EN_PWM_LO_MASK | QPNP_PWM_SRC_SELECT_MASK | QPNP_PWM_EN_RAMP_GEN_MASK; if (chip->sub_type != QPNP_LPG_S_CHAN_SUB_TYPE) mask |= QPNP_EN_PWM_OUTPUT_MASK; return qpnp_lpg_save_and_write(value, mask, &chip->qpnp_lpg_registers[QPNP_ENABLE_CONTROL], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_ENABLE_CONTROL), 1, chip); } static int qpnp_configure_lpg_control(struct qpnp_pwm_chip *chip) { struct qpnp_lpg_config *lpg_config = &chip->lpg_config; u8 value, mask; value = QPNP_ENABLE_LUT_CONTROL(chip); mask = QPNP_EN_PWM_HIGH_MASK | QPNP_EN_PWM_LO_MASK | QPNP_PWM_SRC_SELECT_MASK | QPNP_PWM_EN_RAMP_GEN_MASK; if (chip->sub_type != QPNP_LPG_S_CHAN_SUB_TYPE) mask |= QPNP_EN_PWM_OUTPUT_MASK; return qpnp_lpg_save_and_write(value, mask, &chip->qpnp_lpg_registers[QPNP_ENABLE_CONTROL], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_ENABLE_CONTROL), 1, chip); } static int qpnp_lpg_configure_ramp_step_duration(struct qpnp_pwm_chip *chip) { struct qpnp_lpg_config *lpg_config = &chip->lpg_config; struct qpnp_lut_config lut_config = lpg_config->lut_config; int rc, value; u8 val, mask; value = QPNP_GET_RAMP_STEP_DURATION(lut_config.ramp_step_ms); val = value & QPNP_RAMP_STEP_DURATION_LSB_MASK; mask = QPNP_RAMP_STEP_DURATION_LSB_MASK; rc = qpnp_lpg_save_and_write(val, mask, &chip->qpnp_lpg_registers[QPNP_RAMP_STEP_DURATION_LSB], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_RAMP_STEP_DURATION_LSB), 1, chip); if (rc) return rc; val = (value >> QPNP_RAMP_STEP_DURATION_MSB_SHIFT) & QPNP_RAMP_STEP_DURATION_MSB_MASK; mask = QPNP_RAMP_STEP_DURATION_MSB_MASK; return qpnp_lpg_save_and_write(val, mask, &chip->qpnp_lpg_registers[QPNP_RAMP_STEP_DURATION_MSB], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_RAMP_STEP_DURATION_MSB), 1, chip); } static int qpnp_lpg_configure_pause(struct qpnp_pwm_chip *chip) { struct qpnp_lpg_config *lpg_config = &chip->lpg_config; struct qpnp_lut_config lut_config = lpg_config->lut_config; u8 value, mask; int rc = 0; if (lut_config.enable_pause_hi) { value = lut_config.lut_pause_hi_cnt; mask = QPNP_PAUSE_HI_MULTIPLIER_LSB_MASK; rc = qpnp_lpg_save_and_write(value, mask, &chip->qpnp_lpg_registers[QPNP_PAUSE_HI_MULTIPLIER_LSB], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_PAUSE_HI_MULTIPLIER_LSB), 1, chip); if (rc) return rc; value = (lut_config.lut_pause_hi_cnt >> QPNP_PAUSE_HI_MULTIPLIER_MSB_SHIFT) & QPNP_PAUSE_HI_MULTIPLIER_MSB_MASK; mask = QPNP_PAUSE_HI_MULTIPLIER_MSB_MASK; rc = qpnp_lpg_save_and_write(value, mask, &chip->qpnp_lpg_registers[QPNP_PAUSE_HI_MULTIPLIER_MSB], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_PAUSE_HI_MULTIPLIER_MSB), 1, chip); } else { value = 0; mask = QPNP_PAUSE_HI_MULTIPLIER_LSB_MASK; rc = qpnp_lpg_save_and_write(value, mask, &chip->qpnp_lpg_registers[QPNP_PAUSE_HI_MULTIPLIER_LSB], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_PAUSE_HI_MULTIPLIER_LSB), 1, chip); if (rc) return rc; mask = QPNP_PAUSE_HI_MULTIPLIER_MSB_MASK; rc = qpnp_lpg_save_and_write(value, mask, &chip->qpnp_lpg_registers[QPNP_PAUSE_HI_MULTIPLIER_MSB], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_PAUSE_HI_MULTIPLIER_MSB), 1, chip); if (rc) return rc; } if (lut_config.enable_pause_lo) { value = lut_config.lut_pause_lo_cnt; mask = QPNP_PAUSE_LO_MULTIPLIER_LSB_MASK; rc = qpnp_lpg_save_and_write(value, mask, &chip->qpnp_lpg_registers[QPNP_PAUSE_LO_MULTIPLIER_LSB], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_PAUSE_LO_MULTIPLIER_LSB), 1, chip); if (rc) return rc; value = (lut_config.lut_pause_lo_cnt >> QPNP_PAUSE_LO_MULTIPLIER_MSB_SHIFT) & QPNP_PAUSE_LO_MULTIPLIER_MSB_MASK; mask = QPNP_PAUSE_LO_MULTIPLIER_MSB_MASK; rc = qpnp_lpg_save_and_write(value, mask, &chip->qpnp_lpg_registers[QPNP_PAUSE_LO_MULTIPLIER_MSB], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_PAUSE_LO_MULTIPLIER_MSB), 1, chip); } else { value = 0; mask = QPNP_PAUSE_LO_MULTIPLIER_LSB_MASK; rc = qpnp_lpg_save_and_write(value, mask, &chip->qpnp_lpg_registers[QPNP_PAUSE_LO_MULTIPLIER_LSB], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_PAUSE_LO_MULTIPLIER_LSB), 1, chip); if (rc) return rc; mask = QPNP_PAUSE_LO_MULTIPLIER_MSB_MASK; rc = qpnp_lpg_save_and_write(value, mask, &chip->qpnp_lpg_registers[QPNP_PAUSE_LO_MULTIPLIER_MSB], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_PAUSE_LO_MULTIPLIER_MSB), 1, chip); return rc; } return rc; } static int qpnp_lpg_configure_index(struct qpnp_pwm_chip *chip) { struct qpnp_lpg_config *lpg_config = &chip->lpg_config; struct qpnp_lut_config lut_config = lpg_config->lut_config; u8 value, mask; int rc = 0; value = lut_config.hi_index; mask = QPNP_HI_INDEX_MASK; rc = qpnp_lpg_save_and_write(value, mask, &chip->qpnp_lpg_registers[QPNP_HI_INDEX], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_HI_INDEX), 1, chip); if (rc) return rc; value = lut_config.lo_index; mask = QPNP_LO_INDEX_MASK; rc = qpnp_lpg_save_and_write(value, mask, &chip->qpnp_lpg_registers[QPNP_LO_INDEX], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_LO_INDEX), 1, chip); return rc; } static int qpnp_lpg_change_lut(struct qpnp_pwm_chip *chip) { int rc; rc = qpnp_lpg_configure_pattern(chip); if (rc) { pr_err("Failed to configure LUT pattern"); return rc; } rc = qpnp_lpg_configure_pwm(chip); if (rc) { pr_err("Failed to configure LUT pattern"); return rc; } rc = qpnp_configure_lpg_control(chip); if (rc) { pr_err("Failed to configure pause registers"); return rc; } rc = qpnp_lpg_configure_ramp_step_duration(chip); if (rc) { pr_err("Failed to configure duty time"); return rc; } rc = qpnp_lpg_configure_pause(chip); if (rc) { pr_err("Failed to configure pause registers"); return rc; } rc = qpnp_lpg_configure_index(chip); if (rc) { pr_err("Failed to configure index registers"); return rc; } return rc; } static int qpnp_dtest_config(struct qpnp_pwm_chip *chip, bool enable) { struct qpnp_lpg_config *lpg_config = &chip->lpg_config; u8 value; u8 mask; u16 addr; int rc = 0; value = 0xA5; addr = SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_LPG_SEC_ACCESS); rc = regmap_write(chip->regmap, addr, value); if (rc) { pr_err("Couldn't set the access for test mode\n"); return rc; } addr = SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_LPG_DTEST + chip->dtest_line - 1); if (chip->sub_type == QPNP_PWM_MODE_ONLY_SUB_TYPE) mask = QPNP_PWM_DTEST_OUTPUT_MASK; else mask = QPNP_LPG_DTEST_OUTPUT_MASK; if (enable) value = chip->dtest_output & mask; else value = 0; pr_debug("Setting TEST mode for channel %d addr:%x value: %x\n", chip->channel_id, addr, value); rc = regmap_write(chip->regmap, addr, value); return rc; } static int qpnp_lpg_configure_lut_state(struct qpnp_pwm_chip *chip, enum qpnp_lut_state state) { struct qpnp_lpg_config *lpg_config = &chip->lpg_config; u8 value1, value2, mask1, mask2; u8 *reg1, *reg2; u16 addr, addr1; int rc; bool test_enable; value1 = chip->qpnp_lpg_registers[QPNP_RAMP_CONTROL]; reg1 = &chip->qpnp_lpg_registers[QPNP_RAMP_CONTROL]; reg2 = &chip->qpnp_lpg_registers[QPNP_ENABLE_CONTROL]; mask2 = QPNP_EN_PWM_HIGH_MASK | QPNP_EN_PWM_LO_MASK | QPNP_PWM_SRC_SELECT_MASK | QPNP_PWM_EN_RAMP_GEN_MASK; if (chip->sub_type != QPNP_LPG_S_CHAN_SUB_TYPE) mask2 |= QPNP_EN_PWM_OUTPUT_MASK; if (chip->sub_type == QPNP_LPG_CHAN_SUB_TYPE && chip->revision == QPNP_LPG_REVISION_0) { if (state == QPNP_LUT_ENABLE) { QPNP_ENABLE_LUT_V0(value1); value2 = QPNP_ENABLE_LPG_MODE(chip); } else { QPNP_DISABLE_LUT_V0(value1); value2 = QPNP_DISABLE_LPG_MODE(chip); } mask1 = QPNP_RAMP_START_MASK; addr1 = SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_RAMP_CONTROL); } else if ((chip->sub_type == QPNP_LPG_CHAN_SUB_TYPE && chip->revision == QPNP_LPG_REVISION_1) || chip->sub_type == QPNP_LPG_S_CHAN_SUB_TYPE) { if (state == QPNP_LUT_ENABLE) { QPNP_ENABLE_LUT_V1(value1, lpg_config->lut_config.ramp_index); value2 = QPNP_ENABLE_LPG_MODE(chip); } else { value2 = QPNP_DISABLE_LPG_MODE(chip); } mask1 = value1; addr1 = lpg_config->lut_base_addr + SPMI_LPG_REV1_RAMP_CONTROL_OFFSET; } else { pr_err("Unsupported LPG subtype 0x%02x, revision 0x%02x\n", chip->sub_type, chip->revision); return -EINVAL; } addr = SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_ENABLE_CONTROL); if (chip->in_test_mode) { test_enable = (state == QPNP_LUT_ENABLE) ? 1 : 0; rc = qpnp_dtest_config(chip, test_enable); if (rc) pr_err("Failed to configure TEST mode\n"); } rc = qpnp_lpg_save_and_write(value2, mask2, reg2, addr, 1, chip); if (rc) return rc; if (state == QPNP_LUT_ENABLE || (chip->sub_type == QPNP_LPG_CHAN_SUB_TYPE && chip->revision == QPNP_LPG_REVISION_0)) rc = qpnp_lpg_save_and_write(value1, mask1, reg1, addr1, 1, chip); return rc; } static inline int qpnp_enable_pwm_mode(struct qpnp_pwm_chip *chip) { if (chip->pwm_config.supported_sizes == QPNP_PWM_SIZE_7_8_BIT) return QPNP_ENABLE_PWM_MODE_GPLED_CHANNEL(chip); return QPNP_ENABLE_PWM_MODE(chip); } static int qpnp_lpg_configure_pwm_state(struct qpnp_pwm_chip *chip, enum qpnp_pwm_state state) { struct qpnp_lpg_config *lpg_config = &chip->lpg_config; u8 value, mask; int rc; bool test_enable; if (chip->sub_type == QPNP_PWM_MODE_ONLY_SUB_TYPE) { if (state == QPNP_PWM_ENABLE) value = QPNP_ENABLE_PWM_MODE_ONLY_SUB_TYPE; else value = QPNP_DISABLE_PWM_MODE_ONLY_SUB_TYPE; mask = QPNP_PWM_MODE_ONLY_ENABLE_DISABLE_MASK_SUB_TYPE; } else { if (state == QPNP_PWM_ENABLE) value = qpnp_enable_pwm_mode(chip); else value = QPNP_DISABLE_PWM_MODE(chip); mask = QPNP_EN_PWM_HIGH_MASK | QPNP_EN_PWM_LO_MASK | QPNP_PWM_SRC_SELECT_MASK | QPNP_PWM_EN_RAMP_GEN_MASK; if (chip->sub_type != QPNP_LPG_S_CHAN_SUB_TYPE) mask |= QPNP_EN_PWM_OUTPUT_MASK; } if (chip->in_test_mode) { test_enable = (state == QPNP_PWM_ENABLE) ? 1 : 0; rc = qpnp_dtest_config(chip, test_enable); if (rc) pr_err("Failed to configure TEST mode\n"); } pr_debug("pwm_enable_control: %d\n", value); rc = qpnp_lpg_save_and_write(value, mask, &chip->qpnp_lpg_registers[QPNP_ENABLE_CONTROL], SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_ENABLE_CONTROL), 1, chip); if (rc) goto out; /* * Due to LPG hardware bug, in the PWM mode, having enabled PWM, * We have to write PWM values one more time. */ if (state == QPNP_PWM_ENABLE) return qpnp_lpg_save_pwm_value(chip); out: return rc; } static int _pwm_config(struct qpnp_pwm_chip *chip, enum time_level tm_lvl, int duty_value, int period_value) { int rc; struct _qpnp_pwm_config *pwm_config = &chip->pwm_config; struct pwm_period_config *period = &pwm_config->period; pwm_config->pwm_duty = (tm_lvl == LVL_USEC) ? duty_value : duty_value / NSEC_PER_USEC; qpnp_lpg_calc_pwm_value(pwm_config, period_value, duty_value); rc = qpnp_lpg_save_pwm_value(chip); if (rc) goto out; rc = qpnp_lpg_configure_pwm(chip); if (rc) goto out; rc = qpnp_configure_pwm_control(chip); if (rc) goto out; if (!rc && chip->enabled) { rc = qpnp_lpg_configure_pwm_state(chip, QPNP_PWM_ENABLE); if (rc) { pr_err("Error in configuring pwm state, rc=%d\n", rc); return rc; } /* Enable the glitch removal after PWM is enabled */ rc = qpnp_lpg_glitch_removal(chip, true); if (rc) { pr_err("Error in enabling glitch control, rc=%d\n", rc); return rc; } } pr_debug("duty/period=%u/%u %s: pwm_value=%d (of %d)\n", (unsigned int)duty_value, (unsigned int)period_value, (tm_lvl == LVL_USEC) ? "usec" : "nsec", pwm_config->pwm_value, 1 << period->pwm_size); out: return rc; } static int _pwm_lut_config(struct qpnp_pwm_chip *chip, int period_us, int duty_pct[], struct lut_params lut_params) { struct qpnp_lpg_config *lpg_config; struct qpnp_lut_config *lut_config; struct pwm_period_config *period; struct _qpnp_pwm_config *pwm_config; int start_idx = lut_params.start_idx; int len = lut_params.idx_len; int flags = lut_params.flags; int raw_lut, ramp_step_ms; int rc = 0; pwm_config = &chip->pwm_config; lpg_config = &chip->lpg_config; lut_config = &lpg_config->lut_config; period = &pwm_config->period; if (flags & PM_PWM_LUT_NO_TABLE) goto after_table_write; raw_lut = 0; if (flags & PM_PWM_LUT_USE_RAW_VALUE) raw_lut = 1; lut_config->list_len = len; lut_config->lo_index = start_idx + 1; lut_config->hi_index = start_idx + len; rc = qpnp_lpg_change_table(chip, duty_pct, raw_lut); if (rc) { pr_err("qpnp_lpg_change_table: rc=%d\n", rc); return -EINVAL; } after_table_write: ramp_step_ms = lut_params.ramp_step_ms; if (ramp_step_ms > PM_PWM_LUT_RAMP_STEP_TIME_MAX) ramp_step_ms = PM_PWM_LUT_RAMP_STEP_TIME_MAX; QPNP_SET_PAUSE_CNT(lut_config->lut_pause_lo_cnt, lut_params.lut_pause_lo, ramp_step_ms); if (lut_config->lut_pause_lo_cnt > PM_PWM_MAX_PAUSE_CNT) lut_config->lut_pause_lo_cnt = PM_PWM_MAX_PAUSE_CNT; QPNP_SET_PAUSE_CNT(lut_config->lut_pause_hi_cnt, lut_params.lut_pause_hi, ramp_step_ms); if (lut_config->lut_pause_hi_cnt > PM_PWM_MAX_PAUSE_CNT) lut_config->lut_pause_hi_cnt = PM_PWM_MAX_PAUSE_CNT; lut_config->ramp_step_ms = ramp_step_ms; lut_config->ramp_direction = !!(flags & PM_PWM_LUT_RAMP_UP); lut_config->pattern_repeat = !!(flags & PM_PWM_LUT_LOOP); lut_config->ramp_toggle = !!(flags & PM_PWM_LUT_REVERSE); lut_config->enable_pause_hi = !!(flags & PM_PWM_LUT_PAUSE_HI_EN); lut_config->enable_pause_lo = !!(flags & PM_PWM_LUT_PAUSE_LO_EN); rc = qpnp_lpg_change_lut(chip); if (!rc && chip->enabled) rc = qpnp_lpg_configure_lut_state(chip, QPNP_LUT_ENABLE); return rc; } static int _pwm_enable(struct qpnp_pwm_chip *chip) { int rc = 0; unsigned long flags; spin_lock_irqsave(&chip->lpg_lock, flags); if (QPNP_IS_PWM_CONFIG_SELECTED( chip->qpnp_lpg_registers[QPNP_ENABLE_CONTROL]) || chip->flags & QPNP_PWM_LUT_NOT_SUPPORTED) { rc = qpnp_lpg_configure_pwm_state(chip, QPNP_PWM_ENABLE); } else if (!(chip->flags & QPNP_PWM_LUT_NOT_SUPPORTED)) { rc = qpnp_lpg_configure_lut_state(chip, QPNP_LUT_ENABLE); } if (!rc) chip->enabled = true; spin_unlock_irqrestore(&chip->lpg_lock, flags); return rc; } /* APIs */ /** * qpnp_pwm_free - free a PWM device * @pwm_chip: the PWM chip * @pwm: the PWM device */ static void qpnp_pwm_free(struct pwm_chip *pwm_chip, struct pwm_device *pwm) { struct qpnp_pwm_chip *chip = qpnp_pwm_from_pwm_chip(pwm_chip); unsigned long flags; spin_lock_irqsave(&chip->lpg_lock, flags); qpnp_lpg_configure_pwm_state(chip, QPNP_PWM_DISABLE); if (!(chip->flags & QPNP_PWM_LUT_NOT_SUPPORTED)) qpnp_lpg_configure_lut_state(chip, QPNP_LUT_DISABLE); chip->enabled = false; spin_unlock_irqrestore(&chip->lpg_lock, flags); } /** * qpnp_pwm_config - change a PWM device configuration * @pwm: the PWM device * @period_ns: period in nanoseconds * @duty_ns: duty cycle in nanoseconds */ static int qpnp_pwm_config(struct pwm_chip *pwm_chip, struct pwm_device *pwm, int duty_ns, int period_ns) { int rc; unsigned long flags; struct qpnp_pwm_chip *chip = qpnp_pwm_from_pwm_chip(pwm_chip); int prev_period_us = chip->pwm_config.pwm_period; if ((unsigned int)period_ns < PM_PWM_PERIOD_MIN * NSEC_PER_USEC) { pr_err("Invalid pwm handle or parameters\n"); return -EINVAL; } spin_lock_irqsave(&chip->lpg_lock, flags); if (prev_period_us > INT_MAX / NSEC_PER_USEC || prev_period_us * NSEC_PER_USEC != period_ns) { qpnp_lpg_calc_period(LVL_NSEC, period_ns, chip); qpnp_lpg_save_period(chip); pwm->period = period_ns; chip->pwm_config.pwm_period = period_ns / NSEC_PER_USEC; } rc = _pwm_config(chip, LVL_NSEC, duty_ns, period_ns); spin_unlock_irqrestore(&chip->lpg_lock, flags); if (rc) pr_err("Failed to configure PWM mode\n"); return rc; } /** * qpnp_pwm_enable - start a PWM output toggling * @pwm_chip: the PWM chip * @pwm: the PWM device */ static int qpnp_pwm_enable(struct pwm_chip *pwm_chip, struct pwm_device *pwm) { int rc; struct qpnp_pwm_chip *chip = qpnp_pwm_from_pwm_chip(pwm_chip); rc = _pwm_enable(chip); if (rc) pr_err("Failed to enable PWM channel: %d\n", chip->channel_id); return rc; } /** * qpnp_pwm_disable - stop a PWM output toggling * @pwm_chip: the PWM chip * @pwm: the PWM device */ static void qpnp_pwm_disable(struct pwm_chip *pwm_chip, struct pwm_device *pwm) { struct qpnp_pwm_chip *chip = qpnp_pwm_from_pwm_chip(pwm_chip); unsigned long flags; int rc = 0; spin_lock_irqsave(&chip->lpg_lock, flags); if (QPNP_IS_PWM_CONFIG_SELECTED( chip->qpnp_lpg_registers[QPNP_ENABLE_CONTROL]) || chip->flags & QPNP_PWM_LUT_NOT_SUPPORTED) rc = qpnp_lpg_configure_pwm_state(chip, QPNP_PWM_DISABLE); else if (!(chip->flags & QPNP_PWM_LUT_NOT_SUPPORTED)) rc = qpnp_lpg_configure_lut_state(chip, QPNP_LUT_DISABLE); if (!rc) chip->enabled = false; spin_unlock_irqrestore(&chip->lpg_lock, flags); if (rc) pr_err("Failed to disable PWM channel: %d\n", chip->channel_id); } static int _pwm_change_mode(struct qpnp_pwm_chip *chip, enum pm_pwm_mode mode) { int rc; if (mode) rc = qpnp_configure_lpg_control(chip); else rc = qpnp_configure_pwm_control(chip); if (rc) pr_err("Failed to change the mode\n"); return rc; } /** * pwm_change_mode - Change the PWM mode configuration * @pwm: the PWM device * @mode: Mode selection value */ int pwm_change_mode(struct pwm_device *pwm, enum pm_pwm_mode mode) { int rc; unsigned long flags; struct qpnp_pwm_chip *chip; if (pwm == NULL || IS_ERR(pwm) || pwm->chip == NULL) { pr_err("Invalid pwm handle or no pwm_chip\n"); return -EINVAL; } if (mode < PM_PWM_MODE_PWM || mode > PM_PWM_MODE_LPG) { pr_err("Invalid mode value\n"); return -EINVAL; } chip = qpnp_pwm_from_pwm_dev(pwm); spin_lock_irqsave(&chip->lpg_lock, flags); rc = _pwm_change_mode(chip, mode); spin_unlock_irqrestore(&chip->lpg_lock, flags); return rc; } EXPORT_SYMBOL(pwm_change_mode); /** * pwm_config_period - change PWM period * * @pwm: the PWM device * @pwm_p: period in struct qpnp_lpg_period */ int pwm_config_period(struct pwm_device *pwm, struct pwm_period_config *period) { struct _qpnp_pwm_config *pwm_config; struct qpnp_lpg_config *lpg_config; struct qpnp_pwm_chip *chip; unsigned long flags; int rc = 0; if (pwm == NULL || IS_ERR(pwm) || period == NULL) return -EINVAL; if (pwm->chip == NULL) return -ENODEV; chip = qpnp_pwm_from_pwm_dev(pwm); pwm_config = &chip->pwm_config; lpg_config = &chip->lpg_config; spin_lock_irqsave(&chip->lpg_lock, flags); pwm_config->period.pwm_size = period->pwm_size; pwm_config->period.clk = period->clk; pwm_config->period.pre_div = period->pre_div; pwm_config->period.pre_div_exp = period->pre_div_exp; qpnp_lpg_save_period(chip); rc = regmap_write(chip->regmap, SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_LPG_PWM_SIZE_CLK), *&chip->qpnp_lpg_registers[QPNP_LPG_PWM_SIZE_CLK]); if (rc) { pr_err("Write failed: QPNP_LPG_PWM_SIZE_CLK register, rc: %d\n", rc); goto out_unlock; } rc = regmap_write(chip->regmap, SPMI_LPG_REG_ADDR(lpg_config->base_addr, QPNP_LPG_PWM_FREQ_PREDIV_CLK), *&chip->qpnp_lpg_registers[QPNP_LPG_PWM_FREQ_PREDIV_CLK]); if (rc) { pr_err("Failed to write to QPNP_LPG_PWM_FREQ_PREDIV_CLK\n"); pr_err("register, rc = %d\n", rc); } out_unlock: spin_unlock_irqrestore(&chip->lpg_lock, flags); return rc; } EXPORT_SYMBOL(pwm_config_period); /** * pwm_config_pwm_value - change a PWM device configuration * @pwm: the PWM device * @pwm_value: the duty cycle in raw PWM value (< 2^pwm_size) */ int pwm_config_pwm_value(struct pwm_device *pwm, int pwm_value) { struct qpnp_lpg_config *lpg_config; struct _qpnp_pwm_config *pwm_config; struct qpnp_pwm_chip *chip; unsigned long flags; int rc = 0; if (pwm == NULL || IS_ERR(pwm)) { pr_err("Invalid parameter passed\n"); return -EINVAL; } if (pwm->chip == NULL) { pr_err("Invalid device handle\n"); return -ENODEV; } chip = qpnp_pwm_from_pwm_dev(pwm); lpg_config = &chip->lpg_config; pwm_config = &chip->pwm_config; spin_lock_irqsave(&chip->lpg_lock, flags); if (pwm_config->pwm_value == pwm_value) goto out_unlock; pwm_config->pwm_value = pwm_value; rc = qpnp_lpg_save_pwm_value(chip); if (rc) pr_err("Could not update PWM value for channel %d rc=%d\n", chip->channel_id, rc); out_unlock: spin_unlock_irqrestore(&chip->lpg_lock, flags); return rc; } EXPORT_SYMBOL(pwm_config_pwm_value); /** * pwm_config_us - change a PWM device configuration * @pwm: the PWM device * @period_us: period in microseconds * @duty_us: duty cycle in microseconds */ int pwm_config_us(struct pwm_device *pwm, int duty_us, int period_us) { int rc; unsigned long flags; struct qpnp_pwm_chip *chip; if (pwm == NULL || IS_ERR(pwm) || duty_us > period_us || (unsigned int)period_us > PM_PWM_PERIOD_MAX || (unsigned int)period_us < PM_PWM_PERIOD_MIN) { pr_err("Invalid pwm handle or parameters\n"); return -EINVAL; } chip = qpnp_pwm_from_pwm_dev(pwm); spin_lock_irqsave(&chip->lpg_lock, flags); if (chip->pwm_config.pwm_period != period_us) { qpnp_lpg_calc_period(LVL_USEC, period_us, chip); qpnp_lpg_save_period(chip); chip->pwm_config.pwm_period = period_us; if ((unsigned int)period_us > (unsigned int)(-1) / NSEC_PER_USEC) pwm->period = 0; else pwm->period = (unsigned int)period_us * NSEC_PER_USEC; } rc = _pwm_config(chip, LVL_USEC, duty_us, period_us); spin_unlock_irqrestore(&chip->lpg_lock, flags); if (rc) pr_err("Failed to configure PWM mode\n"); return rc; } EXPORT_SYMBOL(pwm_config_us); /** * pwm_lut_config - change LPG LUT device configuration * @pwm: the PWM device * @period_us: period in micro second * @duty_pct: array of duty cycles in percent, like 20, 50. * @lut_params: Lookup table parameters */ int pwm_lut_config(struct pwm_device *pwm, int period_us, int duty_pct[], struct lut_params lut_params) { unsigned long flags; struct qpnp_pwm_chip *chip; int rc = 0; if (pwm == NULL || IS_ERR(pwm) || !lut_params.idx_len) { pr_err("Invalid pwm handle or idx_len=0\n"); return -EINVAL; } if (pwm->chip == NULL) return -ENODEV; if (duty_pct == NULL && !(lut_params.flags & PM_PWM_LUT_NO_TABLE)) { pr_err("Invalid duty_pct with flag\n"); return -EINVAL; } chip = qpnp_pwm_from_pwm_dev(pwm); if (chip->flags & QPNP_PWM_LUT_NOT_SUPPORTED) { pr_err("LUT mode isn't supported\n"); return -EINVAL; } if ((lut_params.start_idx + lut_params.idx_len) > chip->lpg_config.lut_size) { pr_err("Exceed LUT limit\n"); return -EINVAL; } if ((unsigned int)period_us > PM_PWM_PERIOD_MAX || (unsigned int)period_us < PM_PWM_PERIOD_MIN) { pr_err("Period out of range\n"); return -EINVAL; } spin_lock_irqsave(&chip->lpg_lock, flags); if (chip->pwm_config.pwm_period != period_us) { qpnp_lpg_calc_period(LVL_USEC, period_us, chip); qpnp_lpg_save_period(chip); chip->pwm_config.pwm_period = period_us; } rc = _pwm_lut_config(chip, period_us, duty_pct, lut_params); spin_unlock_irqrestore(&chip->lpg_lock, flags); if (rc) pr_err("Failed to configure LUT\n"); return rc; } EXPORT_SYMBOL(pwm_lut_config); static int qpnp_parse_pwm_dt_config(struct device_node *of_pwm_node, struct device_node *of_parent, struct qpnp_pwm_chip *chip) { int rc, period; rc = of_property_read_u32(of_parent, "qcom,period", (u32 *)&period); if (rc) { pr_err("node is missing PWM Period prop"); return rc; } rc = of_property_read_u32(of_pwm_node, "qcom,duty", &chip->pwm_config.pwm_duty); if (rc) { pr_err("node is missing PWM Duty prop"); return rc; } if (period < chip->pwm_config.pwm_duty || period > PM_PWM_PERIOD_MAX || period < PM_PWM_PERIOD_MIN) { pr_err("Invalid pwm period(%d) or duty(%d)\n", period, chip->pwm_config.pwm_duty); return -EINVAL; } qpnp_lpg_calc_period(LVL_USEC, period, chip); qpnp_lpg_save_period(chip); chip->pwm_config.pwm_period = period; rc = _pwm_config(chip, LVL_USEC, chip->pwm_config.pwm_duty, period); return rc; } static int qpnp_parse_lpg_dt_config(struct device_node *of_lpg_node, struct device_node *of_parent, struct qpnp_pwm_chip *chip) { int rc, period, list_size, start_idx, *duty_pct_list; struct qpnp_lpg_config *lpg_config = &chip->lpg_config; struct qpnp_lut_config *lut_config = &lpg_config->lut_config; struct lut_params lut_params; rc = of_property_read_u32(of_parent, "qcom,period", &period); if (rc) { pr_err("node is missing PWM Period prop\n"); return rc; } if (!of_get_property(of_lpg_node, "qcom,duty-percents", &list_size)) { pr_err("node is missing duty-pct list\n"); return rc; } rc = of_property_read_u32(of_lpg_node, "cell-index", &start_idx); if (rc) { pr_err("Missing start index\n"); return rc; } list_size /= sizeof(u32); if (list_size + start_idx > lpg_config->lut_size) { pr_err("duty pct list size overflows\n"); return -EINVAL; } duty_pct_list = kcalloc(list_size, sizeof(*duty_pct_list), GFP_KERNEL); if (!duty_pct_list) return -ENOMEM; rc = of_property_read_u32_array(of_lpg_node, "qcom,duty-percents", duty_pct_list, list_size); if (rc) { pr_err("invalid or missing property: qcom,duty-pcts-list\n"); goto out; } /* Read optional properties */ rc = of_property_read_u32(of_lpg_node, "qcom,ramp-step-duration", &lut_config->ramp_step_ms); if (rc && rc != -EINVAL) goto out; rc = of_property_read_u32(of_lpg_node, "qcom,lpg-lut-pause-hi", &lut_config->lut_pause_hi_cnt); if (rc && rc != -EINVAL) goto out; rc = of_property_read_u32(of_lpg_node, "qcom,lpg-lut-pause-lo", &lut_config->lut_pause_lo_cnt); if (rc && rc != -EINVAL) goto out; rc = of_property_read_u32(of_lpg_node, "qcom,lpg-lut-ramp-direction", (u32 *)&lut_config->ramp_direction); if (rc && rc != -EINVAL) goto out; rc = of_property_read_u32(of_lpg_node, "qcom,lpg-lut-pattern-repeat", (u32 *)&lut_config->pattern_repeat); if (rc && rc != -EINVAL) goto out; rc = of_property_read_u32(of_lpg_node, "qcom,lpg-lut-ramp-toggle", (u32 *)&lut_config->ramp_toggle); if (rc && rc != -EINVAL) goto out; rc = of_property_read_u32(of_lpg_node, "qcom,lpg-lut-enable-pause-hi", (u32 *)&lut_config->enable_pause_hi); if (rc && rc != -EINVAL) goto out; rc = of_property_read_u32(of_lpg_node, "qcom,lpg-lut-enable-pause-lo", (u32 *)&lut_config->enable_pause_lo); if (rc && rc != -EINVAL) goto out; rc = 0; qpnp_set_lut_params(&lut_params, lut_config, start_idx, list_size); _pwm_lut_config(chip, period, duty_pct_list, lut_params); out: kfree(duty_pct_list); return rc; } static int qpnp_lpg_get_rev_subtype(struct qpnp_pwm_chip *chip) { int rc; uint val; rc = regmap_read(chip->regmap, chip->lpg_config.base_addr + SPMI_LPG_SUB_TYPE_OFFSET, &val); if (rc) { pr_err("Couldn't read subtype rc: %d\n", rc); goto out; } chip->sub_type = (u8)val; rc = regmap_read(chip->regmap, chip->lpg_config.base_addr + SPMI_LPG_REVISION2_OFFSET, &val); if (rc) { pr_err("Couldn't read revision2 rc: %d\n", rc); goto out; } chip->revision = (u8)val; if (chip->revision < QPNP_LPG_REVISION_0 || chip->revision > QPNP_LPG_REVISION_1) { pr_err("Unknown LPG revision detected, rev:%d\n", chip->revision); rc = -EINVAL; goto out; } if (chip->sub_type != QPNP_PWM_MODE_ONLY_SUB_TYPE && chip->sub_type != QPNP_LPG_CHAN_SUB_TYPE && chip->sub_type != QPNP_LPG_S_CHAN_SUB_TYPE) { pr_err("Unknown LPG/PWM subtype detected, subtype:%d\n", chip->sub_type); rc = -EINVAL; } out: pr_debug("LPG rev 0x%02x subtype 0x%02x rc: %d\n", chip->revision, chip->sub_type, rc); return rc; } /* Fill in lpg device elements based on values found in device tree. */ static int qpnp_parse_dt_config(struct platform_device *pdev, struct qpnp_pwm_chip *chip) { int rc, enable, lut_entry_size, list_size, i; const char *label; const __be32 *prop; u32 size; struct device_node *node; int found_pwm_subnode = 0; int found_lpg_subnode = 0; struct device_node *of_node = pdev->dev.of_node; struct qpnp_lpg_config *lpg_config = &chip->lpg_config; struct qpnp_lut_config *lut_config = &lpg_config->lut_config; struct _qpnp_pwm_config *pwm_config = &chip->pwm_config; int force_pwm_size = 0; int pwm_size_list[QPNP_PWM_SIZES_SUPPORTED]; rc = of_property_read_u32(of_node, "qcom,channel-id", &chip->channel_id); if (rc) { dev_err(&pdev->dev, "%s: node is missing LPG channel id\n", __func__); return -EINVAL; } if (!of_get_property(of_node, "qcom,supported-sizes", &list_size)) { pr_err("Missing qcom,supported-size list\n"); return -EINVAL; } list_size /= sizeof(u32); if (list_size > QPNP_PWM_SIZES_SUPPORTED) { pr_err(" qcom,supported-size list is too big\n"); return -EINVAL; } rc = of_property_read_u32_array(of_node, "qcom,supported-sizes", pwm_size_list, list_size); if (rc) { pr_err("Invalid qcom,supported-size property\n"); return rc; } for (i = 0; i < list_size; i++) { pwm_config->supported_sizes |= (1 << (pwm_size_list[i] - QPNP_MIN_PWM_BIT_SIZE)); } if (!(pwm_config->supported_sizes == QPNP_PWM_SIZE_6_9_BIT || pwm_config->supported_sizes == QPNP_PWM_SIZE_7_8_BIT || pwm_config->supported_sizes == QPNP_PWM_SIZE_6_7_9_BIT)) { pr_err("PWM sizes list qcom,supported-size is not proper\n"); return -EINVAL; } /* * For cetrain LPG channels PWM size can be forced. So that * for every requested pwm period closest pwm frequency is * selected in qpnp_lpg_calc_period() for the forced pwm size. */ rc = of_property_read_u32(of_node, "qcom,force-pwm-size", &force_pwm_size); if (pwm_config->supported_sizes == QPNP_PWM_SIZE_7_8_BIT) { if (!(force_pwm_size == QPNP_PWM_SIZE_7_BIT || force_pwm_size == QPNP_PWM_SIZE_8_BIT)) force_pwm_size = 0; } else if (chip->sub_type == QPNP_PWM_MODE_ONLY_SUB_TYPE) { if (!(force_pwm_size == QPNP_PWM_SIZE_6_BIT || force_pwm_size == QPNP_PWM_SIZE_9_BIT)) force_pwm_size = 0; } else if (pwm_config->supported_sizes == QPNP_PWM_SIZE_6_7_9_BIT) { if (!(force_pwm_size == QPNP_PWM_SIZE_6_BIT || force_pwm_size == QPNP_PWM_SIZE_7_BIT || force_pwm_size == QPNP_PWM_SIZE_9_BIT)) force_pwm_size = 0; } pwm_config->force_pwm_size = force_pwm_size; prop = of_get_address_by_name(pdev->dev.of_node, QPNP_LPG_CHANNEL_BASE, 0, 0); if (!prop) { dev_err(&pdev->dev, "Couldnt find channel's base addr rc %d\n", rc); return rc; } lpg_config->base_addr = be32_to_cpu(*prop); rc = qpnp_lpg_get_rev_subtype(chip); if (rc) return rc; prop = of_get_address_by_name(pdev->dev.of_node, QPNP_LPG_LUT_BASE, 0, 0); if (!prop) { chip->flags |= QPNP_PWM_LUT_NOT_SUPPORTED; } else { lpg_config->lut_base_addr = be32_to_cpu(*prop); rc = of_property_read_u32(of_node, "qcom,lpg-lut-size", &size); if (rc < 0) { dev_err(&pdev->dev, "Error reading qcom,lpg-lut-size, rc=%d\n", rc); return rc; } /* * Each entry of LUT is of 2 bytes for generic LUT and of 1 byte * for KPDBL/GLED LUT. */ lpg_config->lut_size = size >> 1; lut_entry_size = sizeof(u16); if (pwm_config->supported_sizes == QPNP_PWM_SIZE_7_8_BIT) { lpg_config->lut_size = size; lut_entry_size = sizeof(u8); } lut_config->duty_pct_list = kcalloc(lpg_config->lut_size, lut_entry_size, GFP_KERNEL); if (!lut_config->duty_pct_list) return -ENOMEM; rc = of_property_read_u32(of_node, "qcom,ramp-index", &lut_config->ramp_index); if (rc) { pr_err("Missing LPG qcom,ramp-index property\n"); kfree(lut_config->duty_pct_list); return rc; } } rc = of_property_read_u32(of_node, "qcom,dtest-line", &chip->dtest_line); if (rc) { chip->in_test_mode = 0; } else { rc = of_property_read_u32(of_node, "qcom,dtest-output", &chip->dtest_output); if (rc) { pr_err("Missing DTEST output configuration\n"); return rc; } chip->in_test_mode = 1; } if (chip->in_test_mode) { if ((chip->sub_type == QPNP_PWM_MODE_ONLY_SUB_TYPE) && (chip->dtest_line > QPNP_PWM_DTEST_LINE_MAX || chip->dtest_output > QPNP_PWM_DTEST_OUTPUT_MAX)) { pr_err("DTEST line/output values are improper for PWM channel %d\n", chip->channel_id); return -EINVAL; } else if (chip->dtest_line > QPNP_LPG_DTEST_LINE_MAX || chip->dtest_output > QPNP_LPG_DTEST_OUTPUT_MAX) { pr_err("DTEST line/output values are improper for LPG channel %d\n", chip->channel_id); return -EINVAL; } } for_each_child_of_node(of_node, node) { rc = of_property_read_string(node, "label", &label); if (rc) { dev_err(&pdev->dev, "%s: Missing label property\n", __func__); goto out; } if (!strcmp(label, "pwm")) { rc = qpnp_parse_pwm_dt_config(node, of_node, chip); if (rc) goto out; found_pwm_subnode = 1; } else if (!strcmp(label, "lpg") && !(chip->flags & QPNP_PWM_LUT_NOT_SUPPORTED)) { rc = qpnp_parse_lpg_dt_config(node, of_node, chip); if (rc) goto out; found_lpg_subnode = 1; } else { dev_err(&pdev->dev, "%s: Invalid value for lable prop", __func__); } } rc = of_property_read_u32(of_node, "qcom,mode-select", &enable); if (rc) goto read_opt_props; if ((enable == PM_PWM_MODE_PWM && found_pwm_subnode == 0) || (enable == PM_PWM_MODE_LPG && found_lpg_subnode == 0)) { dev_err(&pdev->dev, "%s: Invalid mode select\n", __func__); rc = -EINVAL; goto out; } _pwm_change_mode(chip, enable); _pwm_enable(chip); read_opt_props: /* Initialize optional config parameters from DT if provided */ of_property_read_string(node, "qcom,channel-owner", &chip->channel_owner); return 0; out: kfree(lut_config->duty_pct_list); return rc; } static struct pwm_ops qpnp_pwm_ops = { .enable = qpnp_pwm_enable, .disable = qpnp_pwm_disable, .config = qpnp_pwm_config, .free = qpnp_pwm_free, .owner = THIS_MODULE, }; static int qpnp_pwm_probe(struct platform_device *pdev) { struct qpnp_pwm_chip *pwm_chip; int rc; pwm_chip = kzalloc(sizeof(*pwm_chip), GFP_KERNEL); if (pwm_chip == NULL) return -ENOMEM; pwm_chip->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!pwm_chip->regmap) { dev_err(&pdev->dev, "Couldn't get parent's regmap\n"); return -EINVAL; } spin_lock_init(&pwm_chip->lpg_lock); pwm_chip->pdev = pdev; dev_set_drvdata(&pdev->dev, pwm_chip); rc = qpnp_parse_dt_config(pdev, pwm_chip); if (rc) { pr_err("Failed parsing DT parameters, rc=%d\n", rc); goto failed_config; } pwm_chip->chip.dev = &pdev->dev; pwm_chip->chip.ops = &qpnp_pwm_ops; pwm_chip->chip.base = -1; pwm_chip->chip.npwm = 1; rc = pwmchip_add(&pwm_chip->chip); if (rc < 0) { pr_err("pwmchip_add() failed: %d\n", rc); goto failed_insert; } if (pwm_chip->channel_owner) pwm_chip->chip.pwms[0].label = pwm_chip->channel_owner; pr_debug("PWM device channel:%d probed successfully\n", pwm_chip->channel_id); return 0; failed_insert: kfree(pwm_chip->lpg_config.lut_config.duty_pct_list); failed_config: dev_set_drvdata(&pdev->dev, NULL); kfree(pwm_chip); return rc; } static int qpnp_pwm_remove(struct platform_device *pdev) { struct qpnp_pwm_chip *pwm_chip; struct qpnp_lpg_config *lpg_config; pwm_chip = dev_get_drvdata(&pdev->dev); dev_set_drvdata(&pdev->dev, NULL); if (pwm_chip) { lpg_config = &pwm_chip->lpg_config; pwmchip_remove(&pwm_chip->chip); kfree(lpg_config->lut_config.duty_pct_list); kfree(pwm_chip); } return 0; } static const struct of_device_id spmi_match_table[] = { { .compatible = QPNP_LPG_DRIVER_NAME, }, {} }; static const struct platform_device_id qpnp_lpg_id[] = { { QPNP_LPG_DRIVER_NAME, 0 }, { } }; MODULE_DEVICE_TABLE(spmi, qpnp_lpg_id); static struct platform_driver qpnp_lpg_driver = { .driver = { .name = QPNP_LPG_DRIVER_NAME, .of_match_table = spmi_match_table, .owner = THIS_MODULE, }, .probe = qpnp_pwm_probe, .remove = qpnp_pwm_remove, .id_table = qpnp_lpg_id, }; /** * qpnp_lpg_init() - register spmi driver for qpnp-lpg */ int __init qpnp_lpg_init(void) { return platform_driver_register(&qpnp_lpg_driver); } static void __exit qpnp_lpg_exit(void) { platform_driver_unregister(&qpnp_lpg_driver); } MODULE_DESCRIPTION("QPNP PMIC LPG driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:" QPNP_LPG_DRIVER_NAME); subsys_initcall(qpnp_lpg_init); module_exit(qpnp_lpg_exit);