/* * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ /* * This file contains utility functions to be used by platform specific CPR3 * regulator drivers. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include "cpr3-regulator.h" #define BYTES_PER_FUSE_ROW 8 #define MAX_FUSE_ROW_BIT 63 #define CPR3_CONSECUTIVE_UP_DOWN_MIN 0 #define CPR3_CONSECUTIVE_UP_DOWN_MAX 15 #define CPR3_UP_DOWN_THRESHOLD_MIN 0 #define CPR3_UP_DOWN_THRESHOLD_MAX 31 #define CPR3_STEP_QUOT_MIN 0 #define CPR3_STEP_QUOT_MAX 63 #define CPR3_IDLE_CLOCKS_MIN 0 #define CPR3_IDLE_CLOCKS_MAX 31 /* This constant has units of uV/mV so 1000 corresponds to 100%. */ #define CPR3_AGING_DERATE_UNITY 1000 /** * cpr3_allocate_regulators() - allocate and initialize CPR3 regulators for a * given thread based upon device tree data * @thread: Pointer to the CPR3 thread * * This function allocates the thread->vreg array based upon the number of * device tree regulator subnodes. It also initializes generic elements of each * regulator struct such as name, of_node, and thread. * * Return: 0 on success, errno on failure */ static int cpr3_allocate_regulators(struct cpr3_thread *thread) { struct device_node *node; int i, rc; thread->vreg_count = 0; for_each_available_child_of_node(thread->of_node, node) { thread->vreg_count++; } thread->vreg = devm_kcalloc(thread->ctrl->dev, thread->vreg_count, sizeof(*thread->vreg), GFP_KERNEL); if (!thread->vreg) return -ENOMEM; i = 0; for_each_available_child_of_node(thread->of_node, node) { thread->vreg[i].of_node = node; thread->vreg[i].thread = thread; rc = of_property_read_string(node, "regulator-name", &thread->vreg[i].name); if (rc) { dev_err(thread->ctrl->dev, "could not find regulator name, rc=%d\n", rc); return rc; } i++; } return 0; } /** * cpr3_allocate_threads() - allocate and initialize CPR3 threads for a given * controller based upon device tree data * @ctrl: Pointer to the CPR3 controller * @min_thread_id: Minimum allowed hardware thread ID for this controller * @max_thread_id: Maximum allowed hardware thread ID for this controller * * This function allocates the ctrl->thread array based upon the number of * device tree thread subnodes. It also initializes generic elements of each * thread struct such as thread_id, of_node, ctrl, and vreg array. * * Return: 0 on success, errno on failure */ int cpr3_allocate_threads(struct cpr3_controller *ctrl, u32 min_thread_id, u32 max_thread_id) { struct device *dev = ctrl->dev; struct device_node *thread_node; int i, j, rc; ctrl->thread_count = 0; for_each_available_child_of_node(dev->of_node, thread_node) { ctrl->thread_count++; } ctrl->thread = devm_kcalloc(dev, ctrl->thread_count, sizeof(*ctrl->thread), GFP_KERNEL); if (!ctrl->thread) return -ENOMEM; i = 0; for_each_available_child_of_node(dev->of_node, thread_node) { ctrl->thread[i].of_node = thread_node; ctrl->thread[i].ctrl = ctrl; rc = of_property_read_u32(thread_node, "qcom,cpr-thread-id", &ctrl->thread[i].thread_id); if (rc) { dev_err(dev, "could not read DT property qcom,cpr-thread-id, rc=%d\n", rc); return rc; } if (ctrl->thread[i].thread_id < min_thread_id || ctrl->thread[i].thread_id > max_thread_id) { dev_err(dev, "invalid thread id = %u; not within [%u, %u]\n", ctrl->thread[i].thread_id, min_thread_id, max_thread_id); return -EINVAL; } /* Verify that the thread ID is unique for all child nodes. */ for (j = 0; j < i; j++) { if (ctrl->thread[j].thread_id == ctrl->thread[i].thread_id) { dev_err(dev, "duplicate thread id = %u found\n", ctrl->thread[i].thread_id); return -EINVAL; } } rc = cpr3_allocate_regulators(&ctrl->thread[i]); if (rc) return rc; i++; } return 0; } /** * cpr3_map_fuse_base() - ioremap the base address of the fuse region * @ctrl: Pointer to the CPR3 controller * @pdev: Platform device pointer for the CPR3 controller * * Return: 0 on success, errno on failure */ int cpr3_map_fuse_base(struct cpr3_controller *ctrl, struct platform_device *pdev) { struct resource *res; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fuse_base"); if (!res || !res->start) { dev_err(&pdev->dev, "fuse base address is missing\n"); return -ENXIO; } ctrl->fuse_base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); return 0; } /** * cpr3_read_fuse_param() - reads a CPR3 fuse parameter out of eFuses * @fuse_base_addr: Virtual memory address of the eFuse base address * @param: Null terminated array of fuse param segments to read * from * @param_value: Output with value read from the eFuses * * This function reads from each of the parameter segments listed in the param * array and concatenates their values together. Reading stops when an element * is reached which has all 0 struct values. The total number of bits specified * for the fuse parameter across all segments must be less than or equal to 64. * * Return: 0 on success, errno on failure */ int cpr3_read_fuse_param(void __iomem *fuse_base_addr, const struct cpr3_fuse_param *param, u64 *param_value) { u64 fuse_val, val; int bits; int bits_total = 0; *param_value = 0; while (param->row || param->bit_start || param->bit_end) { if (param->bit_start > param->bit_end || param->bit_end > MAX_FUSE_ROW_BIT) { pr_err("Invalid fuse parameter segment: row=%u, start=%u, end=%u\n", param->row, param->bit_start, param->bit_end); return -EINVAL; } bits = param->bit_end - param->bit_start + 1; if (bits_total + bits > 64) { pr_err("Invalid fuse parameter segments; total bits = %d\n", bits_total + bits); return -EINVAL; } fuse_val = readq_relaxed(fuse_base_addr + param->row * BYTES_PER_FUSE_ROW); val = (fuse_val >> param->bit_start) & ((1ULL << bits) - 1); *param_value |= val << bits_total; bits_total += bits; param++; } return 0; } /** * cpr3_convert_open_loop_voltage_fuse() - converts an open loop voltage fuse * value into an absolute voltage with units of microvolts * @ref_volt: Reference voltage in microvolts * @step_volt: The step size in microvolts of the fuse LSB * @fuse: Open loop voltage fuse value * @fuse_len: The bit length of the fuse value * * The MSB of the fuse parameter corresponds to a sign bit. If it is set, then * the lower bits correspond to the number of steps to go down from the * reference voltage. If it is not set, then the lower bits correspond to the * number of steps to go up from the reference voltage. */ int cpr3_convert_open_loop_voltage_fuse(int ref_volt, int step_volt, u32 fuse, int fuse_len) { int sign, steps; sign = (fuse & (1 << (fuse_len - 1))) ? -1 : 1; steps = fuse & ((1 << (fuse_len - 1)) - 1); return ref_volt + sign * steps * step_volt; } /** * cpr3_interpolate() - performs linear interpolation * @x1 Lower known x value * @y1 Lower known y value * @x2 Upper known x value * @y2 Upper known y value * @x Intermediate x value * * Returns y where (x, y) falls on the line between (x1, y1) and (x2, y2). * It is required that x1 < x2, y1 <= y2, and x1 <= x <= x2. If these * conditions are not met, then y2 will be returned. */ u64 cpr3_interpolate(u64 x1, u64 y1, u64 x2, u64 y2, u64 x) { u64 temp; if (x1 >= x2 || y1 > y2 || x1 > x || x > x2) return y2; temp = (x2 - x) * (y2 - y1); do_div(temp, (u32)(x2 - x1)); return y2 - temp; } /** * cpr3_parse_array_property() - fill an array from a portion of the values * specified for a device tree property * @vreg: Pointer to the CPR3 regulator * @prop_name: The name of the device tree property to read from * @tuple_size: The number of elements in each tuple * @out: Output data array which must be of size tuple_size * * cpr3_parse_common_corner_data() must be called for vreg before this function * is called so that fuse combo and speed bin size elements are initialized. * * Three formats are supported for the device tree property: * 1. Length == tuple_size * (reading begins at index 0) * 2. Length == tuple_size * vreg->fuse_combos_supported * (reading begins at index tuple_size * vreg->fuse_combo) * 3. Length == tuple_size * vreg->speed_bins_supported * (reading begins at index tuple_size * vreg->speed_bin_fuse) * * All other property lengths are treated as errors. * * Return: 0 on success, errno on failure */ int cpr3_parse_array_property(struct cpr3_regulator *vreg, const char *prop_name, int tuple_size, u32 *out) { struct device_node *node = vreg->of_node; int len = 0; int i, offset, rc; if (!of_find_property(node, prop_name, &len)) { cpr3_err(vreg, "property %s is missing\n", prop_name); return -EINVAL; } if (len == tuple_size * sizeof(u32)) { offset = 0; } else if (len == tuple_size * vreg->fuse_combos_supported * sizeof(u32)) { offset = tuple_size * vreg->fuse_combo; } else if (vreg->speed_bins_supported > 0 && len == tuple_size * vreg->speed_bins_supported * sizeof(u32)) { offset = tuple_size * vreg->speed_bin_fuse; } else { if (vreg->speed_bins_supported > 0) cpr3_err(vreg, "property %s has invalid length=%d, should be %zu, %zu, or %zu\n", prop_name, len, tuple_size * sizeof(u32), tuple_size * vreg->speed_bins_supported * sizeof(u32), tuple_size * vreg->fuse_combos_supported * sizeof(u32)); else cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n", prop_name, len, tuple_size * sizeof(u32), tuple_size * vreg->fuse_combos_supported * sizeof(u32)); return -EINVAL; } for (i = 0; i < tuple_size; i++) { rc = of_property_read_u32_index(node, prop_name, offset + i, &out[i]); if (rc) { cpr3_err(vreg, "error reading property %s, rc=%d\n", prop_name, rc); return rc; } } return 0; } /** * cpr3_parse_corner_array_property() - fill a per-corner array from a portion * of the values specified for a device tree property * @vreg: Pointer to the CPR3 regulator * @prop_name: The name of the device tree property to read from * @tuple_size: The number of elements in each per-corner tuple * @out: Output data array which must be of size: * tuple_size * vreg->corner_count * * cpr3_parse_common_corner_data() must be called for vreg before this function * is called so that fuse combo and speed bin size elements are initialized. * * Three formats are supported for the device tree property: * 1. Length == tuple_size * vreg->corner_count * (reading begins at index 0) * 2. Length == tuple_size * vreg->fuse_combo_corner_sum * (reading begins at index tuple_size * vreg->fuse_combo_offset) * 3. Length == tuple_size * vreg->speed_bin_corner_sum * (reading begins at index tuple_size * vreg->speed_bin_offset) * * All other property lengths are treated as errors. * * Return: 0 on success, errno on failure */ int cpr3_parse_corner_array_property(struct cpr3_regulator *vreg, const char *prop_name, int tuple_size, u32 *out) { struct device_node *node = vreg->of_node; int len = 0; int i, offset, rc; if (!of_find_property(node, prop_name, &len)) { cpr3_err(vreg, "property %s is missing\n", prop_name); return -EINVAL; } if (len == tuple_size * vreg->corner_count * sizeof(u32)) { offset = 0; } else if (len == tuple_size * vreg->fuse_combo_corner_sum * sizeof(u32)) { offset = tuple_size * vreg->fuse_combo_offset; } else if (vreg->speed_bin_corner_sum > 0 && len == tuple_size * vreg->speed_bin_corner_sum * sizeof(u32)) { offset = tuple_size * vreg->speed_bin_offset; } else { if (vreg->speed_bin_corner_sum > 0) cpr3_err(vreg, "property %s has invalid length=%d, should be %zu, %zu, or %zu\n", prop_name, len, tuple_size * vreg->corner_count * sizeof(u32), tuple_size * vreg->speed_bin_corner_sum * sizeof(u32), tuple_size * vreg->fuse_combo_corner_sum * sizeof(u32)); else cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n", prop_name, len, tuple_size * vreg->corner_count * sizeof(u32), tuple_size * vreg->fuse_combo_corner_sum * sizeof(u32)); return -EINVAL; } for (i = 0; i < tuple_size * vreg->corner_count; i++) { rc = of_property_read_u32_index(node, prop_name, offset + i, &out[i]); if (rc) { cpr3_err(vreg, "error reading property %s, rc=%d\n", prop_name, rc); return rc; } } return 0; } /** * cpr3_parse_corner_band_array_property() - fill a per-corner band array * from a portion of the values specified for a device tree * property * @vreg: Pointer to the CPR3 regulator * @prop_name: The name of the device tree property to read from * @tuple_size: The number of elements in each per-corner band tuple * @out: Output data array which must be of size: * tuple_size * vreg->corner_band_count * * cpr3_parse_common_corner_data() must be called for vreg before this function * is called so that fuse combo and speed bin size elements are initialized. * In addition, corner band fuse combo and speed bin sum and offset elements * must be initialized prior to executing this function. * * Three formats are supported for the device tree property: * 1. Length == tuple_size * vreg->corner_band_count * (reading begins at index 0) * 2. Length == tuple_size * vreg->fuse_combo_corner_band_sum * (reading begins at index tuple_size * * vreg->fuse_combo_corner_band_offset) * 3. Length == tuple_size * vreg->speed_bin_corner_band_sum * (reading begins at index tuple_size * * vreg->speed_bin_corner_band_offset) * * All other property lengths are treated as errors. * * Return: 0 on success, errno on failure */ int cpr3_parse_corner_band_array_property(struct cpr3_regulator *vreg, const char *prop_name, int tuple_size, u32 *out) { struct device_node *node = vreg->of_node; int len = 0; int i, offset, rc; if (!of_find_property(node, prop_name, &len)) { cpr3_err(vreg, "property %s is missing\n", prop_name); return -EINVAL; } if (len == tuple_size * vreg->corner_band_count * sizeof(u32)) { offset = 0; } else if (len == tuple_size * vreg->fuse_combo_corner_band_sum * sizeof(u32)) { offset = tuple_size * vreg->fuse_combo_corner_band_offset; } else if (vreg->speed_bin_corner_band_sum > 0 && len == tuple_size * vreg->speed_bin_corner_band_sum * sizeof(u32)) { offset = tuple_size * vreg->speed_bin_corner_band_offset; } else { if (vreg->speed_bin_corner_band_sum > 0) cpr3_err(vreg, "property %s has invalid length=%d, should be %zu, %zu, or %zu\n", prop_name, len, tuple_size * vreg->corner_band_count * sizeof(u32), tuple_size * vreg->speed_bin_corner_band_sum * sizeof(u32), tuple_size * vreg->fuse_combo_corner_band_sum * sizeof(u32)); else cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n", prop_name, len, tuple_size * vreg->corner_band_count * sizeof(u32), tuple_size * vreg->fuse_combo_corner_band_sum * sizeof(u32)); return -EINVAL; } for (i = 0; i < tuple_size * vreg->corner_band_count; i++) { rc = of_property_read_u32_index(node, prop_name, offset + i, &out[i]); if (rc) { cpr3_err(vreg, "error reading property %s, rc=%d\n", prop_name, rc); return rc; } } return 0; } /** * cpr3_parse_common_corner_data() - parse common CPR3 properties relating to * the corners supported by a CPR3 regulator from device tree * @vreg: Pointer to the CPR3 regulator * * This function reads, validates, and utilizes the following device tree * properties: qcom,cpr-fuse-corners, qcom,cpr-fuse-combos, qcom,cpr-speed-bins, * qcom,cpr-speed-bin-corners, qcom,cpr-corners, qcom,cpr-voltage-ceiling, * qcom,cpr-voltage-floor, qcom,corner-frequencies, * and qcom,cpr-corner-fmax-map. * * It initializes these CPR3 regulator elements: corner, corner_count, * fuse_combos_supported, fuse_corner_map, and speed_bins_supported. It * initializes these elements for each corner: ceiling_volt, floor_volt, * proc_freq, and cpr_fuse_corner. * * It requires that the following CPR3 regulator elements be initialized before * being called: fuse_corner_count, fuse_combo, and speed_bin_fuse. * * Return: 0 on success, errno on failure */ int cpr3_parse_common_corner_data(struct cpr3_regulator *vreg) { struct device_node *node = vreg->of_node; struct cpr3_controller *ctrl = vreg->thread->ctrl; u32 max_fuse_combos, fuse_corners, aging_allowed = 0; u32 max_speed_bins = 0; u32 *combo_corners; u32 *speed_bin_corners; u32 *temp; int i, j, rc; rc = of_property_read_u32(node, "qcom,cpr-fuse-corners", &fuse_corners); if (rc) { cpr3_err(vreg, "error reading property qcom,cpr-fuse-corners, rc=%d\n", rc); return rc; } if (vreg->fuse_corner_count != fuse_corners) { cpr3_err(vreg, "device tree config supports %d fuse corners but the hardware has %d fuse corners\n", fuse_corners, vreg->fuse_corner_count); return -EINVAL; } rc = of_property_read_u32(node, "qcom,cpr-fuse-combos", &max_fuse_combos); if (rc) { cpr3_err(vreg, "error reading property qcom,cpr-fuse-combos, rc=%d\n", rc); return rc; } /* * Sanity check against arbitrarily large value to avoid excessive * memory allocation. */ if (max_fuse_combos > 100 || max_fuse_combos == 0) { cpr3_err(vreg, "qcom,cpr-fuse-combos is invalid: %u\n", max_fuse_combos); return -EINVAL; } if (vreg->fuse_combo >= max_fuse_combos) { cpr3_err(vreg, "device tree config supports fuse combos 0-%u but the hardware has combo %d\n", max_fuse_combos - 1, vreg->fuse_combo); BUG_ON(1); return -EINVAL; } vreg->fuse_combos_supported = max_fuse_combos; of_property_read_u32(node, "qcom,cpr-speed-bins", &max_speed_bins); /* * Sanity check against arbitrarily large value to avoid excessive * memory allocation. */ if (max_speed_bins > 100) { cpr3_err(vreg, "qcom,cpr-speed-bins is invalid: %u\n", max_speed_bins); return -EINVAL; } if (max_speed_bins && vreg->speed_bin_fuse >= max_speed_bins) { cpr3_err(vreg, "device tree config supports speed bins 0-%u but the hardware has speed bin %d\n", max_speed_bins - 1, vreg->speed_bin_fuse); BUG(); return -EINVAL; } vreg->speed_bins_supported = max_speed_bins; combo_corners = kcalloc(vreg->fuse_combos_supported, sizeof(*combo_corners), GFP_KERNEL); if (!combo_corners) return -ENOMEM; rc = of_property_read_u32_array(node, "qcom,cpr-corners", combo_corners, vreg->fuse_combos_supported); if (rc == -EOVERFLOW) { /* Single value case */ rc = of_property_read_u32(node, "qcom,cpr-corners", combo_corners); for (i = 1; i < vreg->fuse_combos_supported; i++) combo_corners[i] = combo_corners[0]; } if (rc) { cpr3_err(vreg, "error reading property qcom,cpr-corners, rc=%d\n", rc); kfree(combo_corners); return rc; } vreg->fuse_combo_offset = 0; vreg->fuse_combo_corner_sum = 0; for (i = 0; i < vreg->fuse_combos_supported; i++) { vreg->fuse_combo_corner_sum += combo_corners[i]; if (i < vreg->fuse_combo) vreg->fuse_combo_offset += combo_corners[i]; } vreg->corner_count = combo_corners[vreg->fuse_combo]; kfree(combo_corners); vreg->speed_bin_offset = 0; vreg->speed_bin_corner_sum = 0; if (vreg->speed_bins_supported > 0) { speed_bin_corners = kcalloc(vreg->speed_bins_supported, sizeof(*speed_bin_corners), GFP_KERNEL); if (!speed_bin_corners) return -ENOMEM; rc = of_property_read_u32_array(node, "qcom,cpr-speed-bin-corners", speed_bin_corners, vreg->speed_bins_supported); if (rc) { cpr3_err(vreg, "error reading property qcom,cpr-speed-bin-corners, rc=%d\n", rc); kfree(speed_bin_corners); return rc; } for (i = 0; i < vreg->speed_bins_supported; i++) { vreg->speed_bin_corner_sum += speed_bin_corners[i]; if (i < vreg->speed_bin_fuse) vreg->speed_bin_offset += speed_bin_corners[i]; } if (speed_bin_corners[vreg->speed_bin_fuse] != vreg->corner_count) { cpr3_err(vreg, "qcom,cpr-corners and qcom,cpr-speed-bin-corners conflict on number of corners: %d vs %u\n", vreg->corner_count, speed_bin_corners[vreg->speed_bin_fuse]); kfree(speed_bin_corners); return -EINVAL; } kfree(speed_bin_corners); } /* * For CPRh compliant controllers two additional corners are * allocated to correspond to the APM crossover voltage and the MEM ACC * crossover voltage. */ vreg->corner = devm_kcalloc(ctrl->dev, ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH ? vreg->corner_count + 2 : vreg->corner_count, sizeof(*vreg->corner), GFP_KERNEL); temp = kcalloc(vreg->corner_count, sizeof(*temp), GFP_KERNEL); if (!vreg->corner || !temp) return -ENOMEM; rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-voltage-ceiling", 1, temp); if (rc) goto free_temp; for (i = 0; i < vreg->corner_count; i++) { vreg->corner[i].ceiling_volt = CPR3_ROUND(temp[i], ctrl->step_volt); vreg->corner[i].abs_ceiling_volt = vreg->corner[i].ceiling_volt; } rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-voltage-floor", 1, temp); if (rc) goto free_temp; for (i = 0; i < vreg->corner_count; i++) vreg->corner[i].floor_volt = CPR3_ROUND(temp[i], ctrl->step_volt); /* Validate ceiling and floor values */ for (i = 0; i < vreg->corner_count; i++) { if (vreg->corner[i].floor_volt > vreg->corner[i].ceiling_volt) { cpr3_err(vreg, "CPR floor[%d]=%d > ceiling[%d]=%d uV\n", i, vreg->corner[i].floor_volt, i, vreg->corner[i].ceiling_volt); rc = -EINVAL; goto free_temp; } } /* Load optional system-supply voltages */ if (of_find_property(vreg->of_node, "qcom,system-voltage", NULL)) { rc = cpr3_parse_corner_array_property(vreg, "qcom,system-voltage", 1, temp); if (rc) goto free_temp; for (i = 0; i < vreg->corner_count; i++) vreg->corner[i].system_volt = temp[i]; } rc = cpr3_parse_corner_array_property(vreg, "qcom,corner-frequencies", 1, temp); if (rc) goto free_temp; for (i = 0; i < vreg->corner_count; i++) vreg->corner[i].proc_freq = temp[i]; /* Validate frequencies */ for (i = 1; i < vreg->corner_count; i++) { if (vreg->corner[i].proc_freq < vreg->corner[i - 1].proc_freq) { cpr3_err(vreg, "invalid frequency: freq[%d]=%u < freq[%d]=%u\n", i, vreg->corner[i].proc_freq, i - 1, vreg->corner[i - 1].proc_freq); rc = -EINVAL; goto free_temp; } } vreg->fuse_corner_map = devm_kcalloc(ctrl->dev, vreg->fuse_corner_count, sizeof(*vreg->fuse_corner_map), GFP_KERNEL); if (!vreg->fuse_corner_map) { rc = -ENOMEM; goto free_temp; } rc = cpr3_parse_array_property(vreg, "qcom,cpr-corner-fmax-map", vreg->fuse_corner_count, temp); if (rc) goto free_temp; for (i = 0; i < vreg->fuse_corner_count; i++) { vreg->fuse_corner_map[i] = temp[i] - CPR3_CORNER_OFFSET; if (temp[i] < CPR3_CORNER_OFFSET || temp[i] > vreg->corner_count + CPR3_CORNER_OFFSET) { cpr3_err(vreg, "invalid corner value specified in qcom,cpr-corner-fmax-map: %u\n", temp[i]); rc = -EINVAL; goto free_temp; } else if (i > 0 && temp[i - 1] >= temp[i]) { cpr3_err(vreg, "invalid corner %u less than or equal to previous corner %u\n", temp[i], temp[i - 1]); rc = -EINVAL; goto free_temp; } } if (temp[vreg->fuse_corner_count - 1] != vreg->corner_count) cpr3_debug(vreg, "Note: highest Fmax corner %u in qcom,cpr-corner-fmax-map does not match highest supported corner %d\n", temp[vreg->fuse_corner_count - 1], vreg->corner_count); for (i = 0; i < vreg->corner_count; i++) { for (j = 0; j < vreg->fuse_corner_count; j++) { if (i + CPR3_CORNER_OFFSET <= temp[j]) { vreg->corner[i].cpr_fuse_corner = j; break; } } if (j == vreg->fuse_corner_count) { /* * Handle the case where the highest fuse corner maps * to a corner below the highest corner. */ vreg->corner[i].cpr_fuse_corner = vreg->fuse_corner_count - 1; } } if (of_find_property(vreg->of_node, "qcom,allow-aging-voltage-adjustment", NULL)) { rc = cpr3_parse_array_property(vreg, "qcom,allow-aging-voltage-adjustment", 1, &aging_allowed); if (rc) goto free_temp; vreg->aging_allowed = aging_allowed; } if (of_find_property(vreg->of_node, "qcom,allow-aging-open-loop-voltage-adjustment", NULL)) { rc = cpr3_parse_array_property(vreg, "qcom,allow-aging-open-loop-voltage-adjustment", 1, &aging_allowed); if (rc) goto free_temp; vreg->aging_allow_open_loop_adj = aging_allowed; } if (vreg->aging_allowed) { if (ctrl->aging_ref_volt <= 0) { cpr3_err(ctrl, "qcom,cpr-aging-ref-voltage must be specified\n"); rc = -EINVAL; goto free_temp; } rc = cpr3_parse_array_property(vreg, "qcom,cpr-aging-max-voltage-adjustment", 1, &vreg->aging_max_adjust_volt); if (rc) goto free_temp; rc = cpr3_parse_array_property(vreg, "qcom,cpr-aging-ref-corner", 1, &vreg->aging_corner); if (rc) { goto free_temp; } else if (vreg->aging_corner < CPR3_CORNER_OFFSET || vreg->aging_corner > vreg->corner_count - 1 + CPR3_CORNER_OFFSET) { cpr3_err(vreg, "aging reference corner=%d not in range [%d, %d]\n", vreg->aging_corner, CPR3_CORNER_OFFSET, vreg->corner_count - 1 + CPR3_CORNER_OFFSET); rc = -EINVAL; goto free_temp; } vreg->aging_corner -= CPR3_CORNER_OFFSET; if (of_find_property(vreg->of_node, "qcom,cpr-aging-derate", NULL)) { rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-aging-derate", 1, temp); if (rc) goto free_temp; for (i = 0; i < vreg->corner_count; i++) vreg->corner[i].aging_derate = temp[i]; } else { for (i = 0; i < vreg->corner_count; i++) vreg->corner[i].aging_derate = CPR3_AGING_DERATE_UNITY; } } free_temp: kfree(temp); return rc; } /** * cpr3_parse_thread_u32() - parse the specified property from the CPR3 thread's * device tree node and verify that it is within the allowed limits * @thread: Pointer to the CPR3 thread * @propname: The name of the device tree property to read * @out_value: The output pointer to fill with the value read * @value_min: The minimum allowed property value * @value_max: The maximum allowed property value * * This function prints a verbose error message if the property is missing or * has a value which is not within the specified range. * * Return: 0 on success, errno on failure */ int cpr3_parse_thread_u32(struct cpr3_thread *thread, const char *propname, u32 *out_value, u32 value_min, u32 value_max) { int rc; rc = of_property_read_u32(thread->of_node, propname, out_value); if (rc) { cpr3_err(thread->ctrl, "thread %u error reading property %s, rc=%d\n", thread->thread_id, propname, rc); return rc; } if (*out_value < value_min || *out_value > value_max) { cpr3_err(thread->ctrl, "thread %u %s=%u is invalid; allowed range: [%u, %u]\n", thread->thread_id, propname, *out_value, value_min, value_max); return -EINVAL; } return 0; } /** * cpr3_parse_ctrl_u32() - parse the specified property from the CPR3 * controller's device tree node and verify that it is within the * allowed limits * @ctrl: Pointer to the CPR3 controller * @propname: The name of the device tree property to read * @out_value: The output pointer to fill with the value read * @value_min: The minimum allowed property value * @value_max: The maximum allowed property value * * This function prints a verbose error message if the property is missing or * has a value which is not within the specified range. * * Return: 0 on success, errno on failure */ int cpr3_parse_ctrl_u32(struct cpr3_controller *ctrl, const char *propname, u32 *out_value, u32 value_min, u32 value_max) { int rc; rc = of_property_read_u32(ctrl->dev->of_node, propname, out_value); if (rc) { cpr3_err(ctrl, "error reading property %s, rc=%d\n", propname, rc); return rc; } if (*out_value < value_min || *out_value > value_max) { cpr3_err(ctrl, "%s=%u is invalid; allowed range: [%u, %u]\n", propname, *out_value, value_min, value_max); return -EINVAL; } return 0; } /** * cpr3_parse_common_thread_data() - parse common CPR3 thread properties from * device tree * @thread: Pointer to the CPR3 thread * * Return: 0 on success, errno on failure */ int cpr3_parse_common_thread_data(struct cpr3_thread *thread) { int rc; rc = cpr3_parse_thread_u32(thread, "qcom,cpr-consecutive-up", &thread->consecutive_up, CPR3_CONSECUTIVE_UP_DOWN_MIN, CPR3_CONSECUTIVE_UP_DOWN_MAX); if (rc) return rc; rc = cpr3_parse_thread_u32(thread, "qcom,cpr-consecutive-down", &thread->consecutive_down, CPR3_CONSECUTIVE_UP_DOWN_MIN, CPR3_CONSECUTIVE_UP_DOWN_MAX); if (rc) return rc; rc = cpr3_parse_thread_u32(thread, "qcom,cpr-up-threshold", &thread->up_threshold, CPR3_UP_DOWN_THRESHOLD_MIN, CPR3_UP_DOWN_THRESHOLD_MAX); if (rc) return rc; rc = cpr3_parse_thread_u32(thread, "qcom,cpr-down-threshold", &thread->down_threshold, CPR3_UP_DOWN_THRESHOLD_MIN, CPR3_UP_DOWN_THRESHOLD_MAX); if (rc) return rc; return rc; } /** * cpr3_parse_irq_affinity() - parse CPR IRQ affinity information * @ctrl: Pointer to the CPR3 controller * * Return: 0 on success, errno on failure */ static int cpr3_parse_irq_affinity(struct cpr3_controller *ctrl) { struct device_node *cpu_node; int i, cpu; int len = 0; if (!of_find_property(ctrl->dev->of_node, "qcom,cpr-interrupt-affinity", &len)) { /* No IRQ affinity required */ return 0; } len /= sizeof(u32); for (i = 0; i < len; i++) { cpu_node = of_parse_phandle(ctrl->dev->of_node, "qcom,cpr-interrupt-affinity", i); if (!cpu_node) { cpr3_err(ctrl, "could not find CPU node %d\n", i); return -EINVAL; } for_each_possible_cpu(cpu) { if (of_get_cpu_node(cpu, NULL) == cpu_node) { cpumask_set_cpu(cpu, &ctrl->irq_affinity_mask); break; } } of_node_put(cpu_node); } return 0; } static int cpr3_panic_notifier_init(struct cpr3_controller *ctrl) { struct device_node *node = ctrl->dev->of_node; struct cpr3_panic_regs_info *panic_regs_info; struct cpr3_reg_info *regs; int i, reg_count, len, rc = 0; if (!of_find_property(node, "qcom,cpr-panic-reg-addr-list", &len)) { /* panic register address list not specified */ return rc; } reg_count = len / sizeof(u32); if (!reg_count) { cpr3_err(ctrl, "qcom,cpr-panic-reg-addr-list has invalid len = %d\n", len); return -EINVAL; } if (!of_find_property(node, "qcom,cpr-panic-reg-name-list", NULL)) { cpr3_err(ctrl, "property qcom,cpr-panic-reg-name-list not specified\n"); return -EINVAL; } len = of_property_count_strings(node, "qcom,cpr-panic-reg-name-list"); if (reg_count != len) { cpr3_err(ctrl, "qcom,cpr-panic-reg-name-list should have %d strings\n", reg_count); return -EINVAL; } panic_regs_info = devm_kzalloc(ctrl->dev, sizeof(*panic_regs_info), GFP_KERNEL); if (!panic_regs_info) return -ENOMEM; regs = devm_kcalloc(ctrl->dev, reg_count, sizeof(*regs), GFP_KERNEL); if (!regs) return -ENOMEM; for (i = 0; i < reg_count; i++) { rc = of_property_read_string_index(node, "qcom,cpr-panic-reg-name-list", i, &(regs[i].name)); if (rc) { cpr3_err(ctrl, "error reading property qcom,cpr-panic-reg-name-list, rc=%d\n", rc); return rc; } rc = of_property_read_u32_index(node, "qcom,cpr-panic-reg-addr-list", i, &(regs[i].addr)); if (rc) { cpr3_err(ctrl, "error reading property qcom,cpr-panic-reg-addr-list, rc=%d\n", rc); return rc; } regs[i].virt_addr = devm_ioremap(ctrl->dev, regs[i].addr, 0x4); if (!regs[i].virt_addr) { pr_err("Unable to map panic register addr 0x%08x\n", regs[i].addr); return -EINVAL; } regs[i].value = 0xFFFFFFFF; } panic_regs_info->reg_count = reg_count; panic_regs_info->regs = regs; ctrl->panic_regs_info = panic_regs_info; return rc; } /** * cpr3_parse_common_ctrl_data() - parse common CPR3 controller properties from * device tree * @ctrl: Pointer to the CPR3 controller * * Return: 0 on success, errno on failure */ int cpr3_parse_common_ctrl_data(struct cpr3_controller *ctrl) { int rc; rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-sensor-time", &ctrl->sensor_time, 0, UINT_MAX); if (rc) return rc; rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-loop-time", &ctrl->loop_time, 0, UINT_MAX); if (rc) return rc; rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-idle-cycles", &ctrl->idle_clocks, CPR3_IDLE_CLOCKS_MIN, CPR3_IDLE_CLOCKS_MAX); if (rc) return rc; rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-step-quot-init-min", &ctrl->step_quot_init_min, CPR3_STEP_QUOT_MIN, CPR3_STEP_QUOT_MAX); if (rc) return rc; rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-step-quot-init-max", &ctrl->step_quot_init_max, CPR3_STEP_QUOT_MIN, CPR3_STEP_QUOT_MAX); if (rc) return rc; rc = of_property_read_u32(ctrl->dev->of_node, "qcom,voltage-step", &ctrl->step_volt); if (rc) { cpr3_err(ctrl, "error reading property qcom,voltage-step, rc=%d\n", rc); return rc; } if (ctrl->step_volt <= 0) { cpr3_err(ctrl, "qcom,voltage-step=%d is invalid\n", ctrl->step_volt); return -EINVAL; } rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-count-mode", &ctrl->count_mode, CPR3_COUNT_MODE_ALL_AT_ONCE_MIN, CPR3_COUNT_MODE_STAGGERED); if (rc) return rc; /* Count repeat is optional */ ctrl->count_repeat = 0; of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-count-repeat", &ctrl->count_repeat); ctrl->cpr_allowed_sw = of_property_read_bool(ctrl->dev->of_node, "qcom,cpr-enable"); rc = cpr3_parse_irq_affinity(ctrl); if (rc) return rc; /* Aging reference voltage is optional */ ctrl->aging_ref_volt = 0; of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-aging-ref-voltage", &ctrl->aging_ref_volt); /* Aging possible bitmask is optional */ ctrl->aging_possible_mask = 0; of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-aging-allowed-reg-mask", &ctrl->aging_possible_mask); if (ctrl->aging_possible_mask) { /* * Aging possible register value required if bitmask is * specified */ rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-aging-allowed-reg-value", &ctrl->aging_possible_val, 0, UINT_MAX); if (rc) return rc; } if (of_find_property(ctrl->dev->of_node, "clock-names", NULL)) { ctrl->core_clk = devm_clk_get(ctrl->dev, "core_clk"); if (IS_ERR(ctrl->core_clk)) { rc = PTR_ERR(ctrl->core_clk); if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "unable request core clock, rc=%d\n", rc); return rc; } } rc = cpr3_panic_notifier_init(ctrl); if (rc) return rc; if (of_find_property(ctrl->dev->of_node, "vdd-supply", NULL)) { ctrl->vdd_regulator = devm_regulator_get(ctrl->dev, "vdd"); if (IS_ERR(ctrl->vdd_regulator)) { rc = PTR_ERR(ctrl->vdd_regulator); if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "unable to request vdd regulator, rc=%d\n", rc); return rc; } } else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) { /* vdd-supply is optional for CPRh controllers. */ ctrl->vdd_regulator = NULL; } else { cpr3_err(ctrl, "vdd supply is not defined\n"); return -ENODEV; } /* * Reset step_quot to default on each loop_en = 0 transition is * optional. */ ctrl->reset_step_quot_loop_en = of_property_read_bool(ctrl->dev->of_node, "qcom,cpr-reset-step-quot-loop-en"); /* * Regulator device handles are not necessary for CPRh controllers * since communication with the regulators is completely managed * in hardware. */ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) return rc; ctrl->system_regulator = devm_regulator_get_optional(ctrl->dev, "system"); if (IS_ERR(ctrl->system_regulator)) { rc = PTR_ERR(ctrl->system_regulator); if (rc != -EPROBE_DEFER) { rc = 0; ctrl->system_regulator = NULL; } else { return rc; } } ctrl->mem_acc_regulator = devm_regulator_get_optional(ctrl->dev, "mem-acc"); if (IS_ERR(ctrl->mem_acc_regulator)) { rc = PTR_ERR(ctrl->mem_acc_regulator); if (rc != -EPROBE_DEFER) { rc = 0; ctrl->mem_acc_regulator = NULL; } else { return rc; } } return rc; } /** * cpr3_limit_open_loop_voltages() - modify the open-loop voltage of each corner * so that it fits within the floor to ceiling * voltage range of the corner * @vreg: Pointer to the CPR3 regulator * * This function clips the open-loop voltage for each corner so that it is * limited to the floor to ceiling range. It also rounds each open-loop voltage * so that it corresponds to a set point available to the underlying regulator. * * Return: 0 on success, errno on failure */ int cpr3_limit_open_loop_voltages(struct cpr3_regulator *vreg) { int i, volt; cpr3_debug(vreg, "open-loop voltages after trimming and rounding:\n"); for (i = 0; i < vreg->corner_count; i++) { volt = CPR3_ROUND(vreg->corner[i].open_loop_volt, vreg->thread->ctrl->step_volt); if (volt < vreg->corner[i].floor_volt) volt = vreg->corner[i].floor_volt; else if (volt > vreg->corner[i].ceiling_volt) volt = vreg->corner[i].ceiling_volt; vreg->corner[i].open_loop_volt = volt; cpr3_debug(vreg, "corner[%2d]: open-loop=%d uV\n", i, volt); } return 0; } /** * cpr3_open_loop_voltage_as_ceiling() - configures the ceiling voltage for each * corner to equal the open-loop voltage if the relevant device * tree property is found for the CPR3 regulator * @vreg: Pointer to the CPR3 regulator * * This function assumes that the the open-loop voltage for each corner has * already been rounded to the nearest allowed set point and that it falls * within the floor to ceiling range. * * Return: none */ void cpr3_open_loop_voltage_as_ceiling(struct cpr3_regulator *vreg) { int i; if (!of_property_read_bool(vreg->of_node, "qcom,cpr-scaled-open-loop-voltage-as-ceiling")) return; for (i = 0; i < vreg->corner_count; i++) vreg->corner[i].ceiling_volt = vreg->corner[i].open_loop_volt; } /** * cpr3_limit_floor_voltages() - raise the floor voltage of each corner so that * the optional maximum floor to ceiling voltage range specified in * device tree is satisfied * @vreg: Pointer to the CPR3 regulator * * This function also ensures that the open-loop voltage for each corner falls * within the final floor to ceiling voltage range and that floor voltages * increase monotonically. * * Return: 0 on success, errno on failure */ int cpr3_limit_floor_voltages(struct cpr3_regulator *vreg) { char *prop = "qcom,cpr-floor-to-ceiling-max-range"; int i, floor_new; u32 *floor_range; int rc = 0; if (!of_find_property(vreg->of_node, prop, NULL)) goto enforce_monotonicity; floor_range = kcalloc(vreg->corner_count, sizeof(*floor_range), GFP_KERNEL); if (!floor_range) return -ENOMEM; rc = cpr3_parse_corner_array_property(vreg, prop, 1, floor_range); if (rc) goto free_floor_adjust; for (i = 0; i < vreg->corner_count; i++) { if ((s32)floor_range[i] >= 0) { floor_new = CPR3_ROUND(vreg->corner[i].ceiling_volt - floor_range[i], vreg->thread->ctrl->step_volt); vreg->corner[i].floor_volt = max(floor_new, vreg->corner[i].floor_volt); if (vreg->corner[i].open_loop_volt < vreg->corner[i].floor_volt) vreg->corner[i].open_loop_volt = vreg->corner[i].floor_volt; } } free_floor_adjust: kfree(floor_range); enforce_monotonicity: /* Ensure that floor voltages increase monotonically. */ for (i = 1; i < vreg->corner_count; i++) { if (vreg->corner[i].floor_volt < vreg->corner[i - 1].floor_volt) { cpr3_debug(vreg, "corner %d floor voltage=%d uV < corner %d voltage=%d uV; overriding: corner %d voltage=%d\n", i, vreg->corner[i].floor_volt, i - 1, vreg->corner[i - 1].floor_volt, i, vreg->corner[i - 1].floor_volt); vreg->corner[i].floor_volt = vreg->corner[i - 1].floor_volt; if (vreg->corner[i].open_loop_volt < vreg->corner[i].floor_volt) vreg->corner[i].open_loop_volt = vreg->corner[i].floor_volt; if (vreg->corner[i].ceiling_volt < vreg->corner[i].floor_volt) vreg->corner[i].ceiling_volt = vreg->corner[i].floor_volt; } } return rc; } /** * cpr3_print_quots() - print CPR target quotients into the kernel log for * debugging purposes * @vreg: Pointer to the CPR3 regulator * * Return: none */ void cpr3_print_quots(struct cpr3_regulator *vreg) { int i, j, pos; size_t buflen; char *buf; buflen = sizeof(*buf) * CPR3_RO_COUNT * (MAX_CHARS_PER_INT + 2); buf = kzalloc(buflen, GFP_KERNEL); if (!buf) return; for (i = 0; i < vreg->corner_count; i++) { for (j = 0, pos = 0; j < CPR3_RO_COUNT; j++) pos += scnprintf(buf + pos, buflen - pos, " %u", vreg->corner[i].target_quot[j]); cpr3_debug(vreg, "target quots[%2d]:%s\n", i, buf); } kfree(buf); } /** * cpr3_adjust_fused_open_loop_voltages() - adjust the fused open-loop voltages * for each fuse corner according to device tree values * @vreg: Pointer to the CPR3 regulator * @fuse_volt: Pointer to an array of the fused open-loop voltage * values * * Voltage values in fuse_volt are modified in place. * * Return: 0 on success, errno on failure */ int cpr3_adjust_fused_open_loop_voltages(struct cpr3_regulator *vreg, int *fuse_volt) { int i, rc, prev_volt; int *volt_adjust; if (!of_find_property(vreg->of_node, "qcom,cpr-open-loop-voltage-fuse-adjustment", NULL)) { /* No adjustment required. */ return 0; } volt_adjust = kcalloc(vreg->fuse_corner_count, sizeof(*volt_adjust), GFP_KERNEL); if (!volt_adjust) return -ENOMEM; rc = cpr3_parse_array_property(vreg, "qcom,cpr-open-loop-voltage-fuse-adjustment", vreg->fuse_corner_count, volt_adjust); if (rc) { cpr3_err(vreg, "could not load open-loop fused voltage adjustments, rc=%d\n", rc); goto done; } for (i = 0; i < vreg->fuse_corner_count; i++) { if (volt_adjust[i]) { prev_volt = fuse_volt[i]; fuse_volt[i] += volt_adjust[i]; cpr3_debug(vreg, "adjusted fuse corner %d open-loop voltage: %d --> %d uV\n", i, prev_volt, fuse_volt[i]); } } done: kfree(volt_adjust); return rc; } /** * cpr3_adjust_open_loop_voltages() - adjust the open-loop voltages for each * corner according to device tree values * @vreg: Pointer to the CPR3 regulator * * Return: 0 on success, errno on failure */ int cpr3_adjust_open_loop_voltages(struct cpr3_regulator *vreg) { int i, rc, prev_volt, min_volt; int *volt_adjust, *volt_diff; if (!of_find_property(vreg->of_node, "qcom,cpr-open-loop-voltage-adjustment", NULL)) { /* No adjustment required. */ return 0; } volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust), GFP_KERNEL); volt_diff = kcalloc(vreg->corner_count, sizeof(*volt_diff), GFP_KERNEL); if (!volt_adjust || !volt_diff) { rc = -ENOMEM; goto done; } rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-open-loop-voltage-adjustment", 1, volt_adjust); if (rc) { cpr3_err(vreg, "could not load open-loop voltage adjustments, rc=%d\n", rc); goto done; } for (i = 0; i < vreg->corner_count; i++) { if (volt_adjust[i]) { prev_volt = vreg->corner[i].open_loop_volt; vreg->corner[i].open_loop_volt += volt_adjust[i]; cpr3_debug(vreg, "adjusted corner %d open-loop voltage: %d --> %d uV\n", i, prev_volt, vreg->corner[i].open_loop_volt); } } if (of_find_property(vreg->of_node, "qcom,cpr-open-loop-voltage-min-diff", NULL)) { rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-open-loop-voltage-min-diff", 1, volt_diff); if (rc) { cpr3_err(vreg, "could not load minimum open-loop voltage differences, rc=%d\n", rc); goto done; } } /* * Ensure that open-loop voltages increase monotonically with respect * to configurable minimum allowed differences. */ for (i = 1; i < vreg->corner_count; i++) { min_volt = vreg->corner[i - 1].open_loop_volt + volt_diff[i]; if (vreg->corner[i].open_loop_volt < min_volt) { cpr3_debug(vreg, "adjusted corner %d open-loop voltage=%d uV < corner %d voltage=%d uV + min diff=%d uV; overriding: corner %d voltage=%d\n", i, vreg->corner[i].open_loop_volt, i - 1, vreg->corner[i - 1].open_loop_volt, volt_diff[i], i, min_volt); vreg->corner[i].open_loop_volt = min_volt; } } done: kfree(volt_diff); kfree(volt_adjust); return rc; } /** * cpr3_quot_adjustment() - returns the quotient adjustment value resulting from * the specified voltage adjustment and RO scaling factor * @ro_scale: The CPR ring oscillator (RO) scaling factor with units * of QUOT/V * @volt_adjust: The amount to adjust the voltage by in units of * microvolts. This value may be positive or negative. */ int cpr3_quot_adjustment(int ro_scale, int volt_adjust) { unsigned long long temp; int quot_adjust; int sign = 1; if (ro_scale < 0) { sign = -sign; ro_scale = -ro_scale; } if (volt_adjust < 0) { sign = -sign; volt_adjust = -volt_adjust; } temp = (unsigned long long)ro_scale * (unsigned long long)volt_adjust; do_div(temp, 1000000); quot_adjust = temp; quot_adjust *= sign; return quot_adjust; } /** * cpr3_voltage_adjustment() - returns the voltage adjustment value resulting * from the specified quotient adjustment and RO scaling factor * @ro_scale: The CPR ring oscillator (RO) scaling factor with units * of QUOT/V * @quot_adjust: The amount to adjust the quotient by in units of * QUOT. This value may be positive or negative. */ int cpr3_voltage_adjustment(int ro_scale, int quot_adjust) { unsigned long long temp; int volt_adjust; int sign = 1; if (ro_scale < 0) { sign = -sign; ro_scale = -ro_scale; } if (quot_adjust < 0) { sign = -sign; quot_adjust = -quot_adjust; } if (ro_scale == 0) return 0; temp = (unsigned long long)quot_adjust * 1000000; do_div(temp, ro_scale); volt_adjust = temp; volt_adjust *= sign; return volt_adjust; } /** * cpr3_parse_closed_loop_voltage_adjustments() - load per-fuse-corner and * per-corner closed-loop adjustment values from device tree * @vreg: Pointer to the CPR3 regulator * @ro_sel: Array of ring oscillator values selected for each * fuse corner * @volt_adjust: Pointer to array which will be filled with the * per-corner closed-loop adjustment voltages * @volt_adjust_fuse: Pointer to array which will be filled with the * per-fuse-corner closed-loop adjustment voltages * @ro_scale: Pointer to array which will be filled with the * per-fuse-corner RO scaling factor values with units of * QUOT/V * * Return: 0 on success, errno on failure */ int cpr3_parse_closed_loop_voltage_adjustments( struct cpr3_regulator *vreg, u64 *ro_sel, int *volt_adjust, int *volt_adjust_fuse, int *ro_scale) { int i, rc; u32 *ro_all_scale; if (!of_find_property(vreg->of_node, "qcom,cpr-closed-loop-voltage-adjustment", NULL) && !of_find_property(vreg->of_node, "qcom,cpr-closed-loop-voltage-fuse-adjustment", NULL) && !vreg->aging_allowed) { /* No adjustment required. */ return 0; } else if (!of_find_property(vreg->of_node, "qcom,cpr-ro-scaling-factor", NULL)) { cpr3_err(vreg, "qcom,cpr-ro-scaling-factor is required for closed-loop voltage adjustment, but is missing\n"); return -EINVAL; } ro_all_scale = kcalloc(vreg->fuse_corner_count * CPR3_RO_COUNT, sizeof(*ro_all_scale), GFP_KERNEL); if (!ro_all_scale) return -ENOMEM; rc = cpr3_parse_array_property(vreg, "qcom,cpr-ro-scaling-factor", vreg->fuse_corner_count * CPR3_RO_COUNT, ro_all_scale); if (rc) { cpr3_err(vreg, "could not load RO scaling factors, rc=%d\n", rc); goto done; } for (i = 0; i < vreg->fuse_corner_count; i++) ro_scale[i] = ro_all_scale[i * CPR3_RO_COUNT + ro_sel[i]]; for (i = 0; i < vreg->corner_count; i++) memcpy(vreg->corner[i].ro_scale, &ro_all_scale[vreg->corner[i].cpr_fuse_corner * CPR3_RO_COUNT], sizeof(*ro_all_scale) * CPR3_RO_COUNT); if (of_find_property(vreg->of_node, "qcom,cpr-closed-loop-voltage-fuse-adjustment", NULL)) { rc = cpr3_parse_array_property(vreg, "qcom,cpr-closed-loop-voltage-fuse-adjustment", vreg->fuse_corner_count, volt_adjust_fuse); if (rc) { cpr3_err(vreg, "could not load closed-loop fused voltage adjustments, rc=%d\n", rc); goto done; } } if (of_find_property(vreg->of_node, "qcom,cpr-closed-loop-voltage-adjustment", NULL)) { rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-closed-loop-voltage-adjustment", 1, volt_adjust); if (rc) { cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n", rc); goto done; } } done: kfree(ro_all_scale); return rc; } /** * cpr3_apm_init() - initialize APM data for a CPR3 controller * @ctrl: Pointer to the CPR3 controller * * This function loads memory array power mux (APM) data from device tree * if it is present and requests a handle to the appropriate APM controller * device. * * Return: 0 on success, errno on failure */ int cpr3_apm_init(struct cpr3_controller *ctrl) { struct device_node *node = ctrl->dev->of_node; int rc; if (!of_find_property(node, "qcom,apm-ctrl", NULL)) { /* No APM used */ return 0; } ctrl->apm = msm_apm_ctrl_dev_get(ctrl->dev); if (IS_ERR(ctrl->apm)) { rc = PTR_ERR(ctrl->apm); if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "APM get failed, rc=%d\n", rc); return rc; } rc = of_property_read_u32(node, "qcom,apm-threshold-voltage", &ctrl->apm_threshold_volt); if (rc) { cpr3_err(ctrl, "error reading qcom,apm-threshold-voltage, rc=%d\n", rc); return rc; } ctrl->apm_threshold_volt = CPR3_ROUND(ctrl->apm_threshold_volt, ctrl->step_volt); /* No error check since this is an optional property. */ of_property_read_u32(node, "qcom,apm-hysteresis-voltage", &ctrl->apm_adj_volt); ctrl->apm_adj_volt = CPR3_ROUND(ctrl->apm_adj_volt, ctrl->step_volt); ctrl->apm_high_supply = MSM_APM_SUPPLY_APCC; ctrl->apm_low_supply = MSM_APM_SUPPLY_MX; return 0; } /** * cpr3_mem_acc_init() - initialize mem-acc regulator data for * a CPR3 regulator * @ctrl: Pointer to the CPR3 controller * * Return: 0 on success, errno on failure */ int cpr3_mem_acc_init(struct cpr3_regulator *vreg) { struct cpr3_controller *ctrl = vreg->thread->ctrl; u32 *temp; int i, rc; if (!ctrl->mem_acc_regulator) { cpr3_info(ctrl, "not using memory accelerator regulator\n"); return 0; } temp = kcalloc(vreg->corner_count, sizeof(*temp), GFP_KERNEL); if (!temp) return -ENOMEM; rc = cpr3_parse_corner_array_property(vreg, "qcom,mem-acc-voltage", 1, temp); if (rc) { cpr3_err(ctrl, "could not load mem-acc corners, rc=%d\n", rc); } else { for (i = 0; i < vreg->corner_count; i++) vreg->corner[i].mem_acc_volt = temp[i]; } kfree(temp); return rc; } /** * cpr4_load_core_and_temp_adj() - parse amount of voltage adjustment for * per-online-core and per-temperature voltage adjustment for a * given corner or corner band from device tree. * @vreg: Pointer to the CPR3 regulator * @num: Corner number or corner band number * @use_corner_band: Boolean indicating if the CPR3 regulator supports * adjustments per corner band * * Return: 0 on success, errno on failure */ static int cpr4_load_core_and_temp_adj(struct cpr3_regulator *vreg, int num, bool use_corner_band) { struct cpr3_controller *ctrl = vreg->thread->ctrl; struct cpr4_sdelta *sdelta; int sdelta_size, i, j, pos, rc = 0; char str[75]; size_t buflen; char *buf; sdelta = use_corner_band ? vreg->corner_band[num].sdelta : vreg->corner[num].sdelta; if (!sdelta->allow_core_count_adj && !sdelta->allow_temp_adj) { /* corner doesn't need sdelta table */ sdelta->max_core_count = 0; sdelta->temp_band_count = 0; return rc; } sdelta_size = sdelta->max_core_count * sdelta->temp_band_count; snprintf(str, sizeof(str), use_corner_band ? "corner_band=%d core_config_count=%d temp_band_count=%d sdelta_size=%d\n" : "corner=%d core_config_count=%d temp_band_count=%d sdelta_size=%d\n", num, sdelta->max_core_count, sdelta->temp_band_count, sdelta_size); cpr3_debug(vreg, "%s", str); sdelta->table = devm_kcalloc(ctrl->dev, sdelta_size, sizeof(*sdelta->table), GFP_KERNEL); if (!sdelta->table) return -ENOMEM; snprintf(str, sizeof(str), use_corner_band ? "qcom,cpr-corner-band%d-temp-core-voltage-adjustment" : "qcom,cpr-corner%d-temp-core-voltage-adjustment", num + CPR3_CORNER_OFFSET); rc = cpr3_parse_array_property(vreg, str, sdelta_size, sdelta->table); if (rc) { cpr3_err(vreg, "could not load %s, rc=%d\n", str, rc); return rc; } /* * Convert sdelta margins from uV to PMIC steps and apply negation to * follow the SDELTA register semantics. */ for (i = 0; i < sdelta_size; i++) sdelta->table[i] = -(sdelta->table[i] / ctrl->step_volt); buflen = sizeof(*buf) * sdelta_size * (MAX_CHARS_PER_INT + 2); buf = kzalloc(buflen, GFP_KERNEL); if (!buf) return rc; for (i = 0; i < sdelta->max_core_count; i++) { for (j = 0, pos = 0; j < sdelta->temp_band_count; j++) pos += scnprintf(buf + pos, buflen - pos, " %u", sdelta->table[i * sdelta->temp_band_count + j]); cpr3_debug(vreg, "sdelta[%d]:%s\n", i, buf); } kfree(buf); return rc; } /** * cpr4_parse_core_count_temp_voltage_adj() - parse configuration data for * per-online-core and per-temperature voltage adjustment for * a CPR3 regulator from device tree. * @vreg: Pointer to the CPR3 regulator * @use_corner_band: Boolean indicating if the CPR3 regulator supports * adjustments per corner band * * This function supports parsing of per-online-core and per-temperature * adjustments per corner or per corner band. CPR controllers which support * corner bands apply the same adjustments to all corners within a corner band. * * Return: 0 on success, errno on failure */ int cpr4_parse_core_count_temp_voltage_adj( struct cpr3_regulator *vreg, bool use_corner_band) { struct cpr3_controller *ctrl = vreg->thread->ctrl; struct device_node *node = vreg->of_node; struct cpr3_corner *corner; struct cpr4_sdelta *sdelta; int i, sdelta_table_count, rc = 0; int *allow_core_count_adj = NULL, *allow_temp_adj = NULL; char prop_str[75]; if (of_find_property(node, use_corner_band ? "qcom,corner-band-allow-temp-adjustment" : "qcom,corner-allow-temp-adjustment", NULL)) { if (!ctrl->allow_temp_adj) { cpr3_err(ctrl, "Temperature adjustment configurations missing\n"); return -EINVAL; } vreg->allow_temp_adj = true; } if (of_find_property(node, use_corner_band ? "qcom,corner-band-allow-core-count-adjustment" : "qcom,corner-allow-core-count-adjustment", NULL)) { rc = of_property_read_u32(node, "qcom,max-core-count", &vreg->max_core_count); if (rc) { cpr3_err(vreg, "error reading qcom,max-core-count, rc=%d\n", rc); return -EINVAL; } vreg->allow_core_count_adj = true; ctrl->allow_core_count_adj = true; } if (!vreg->allow_temp_adj && !vreg->allow_core_count_adj) { /* * Both per-online-core and temperature based adjustments are * disabled for this regulator. */ return 0; } else if (!vreg->allow_core_count_adj) { /* * Only per-temperature voltage adjusments are allowed. * Keep max core count value as 1 to allocate SDELTA. */ vreg->max_core_count = 1; } if (vreg->allow_core_count_adj) { allow_core_count_adj = kcalloc(vreg->corner_count, sizeof(*allow_core_count_adj), GFP_KERNEL); if (!allow_core_count_adj) return -ENOMEM; snprintf(prop_str, sizeof(prop_str), use_corner_band ? "qcom,corner-band-allow-core-count-adjustment" : "qcom,corner-allow-core-count-adjustment"); rc = use_corner_band ? cpr3_parse_corner_band_array_property(vreg, prop_str, 1, allow_core_count_adj) : cpr3_parse_corner_array_property(vreg, prop_str, 1, allow_core_count_adj); if (rc) { cpr3_err(vreg, "error reading %s, rc=%d\n", prop_str, rc); goto done; } } if (vreg->allow_temp_adj) { allow_temp_adj = kcalloc(vreg->corner_count, sizeof(*allow_temp_adj), GFP_KERNEL); if (!allow_temp_adj) { rc = -ENOMEM; goto done; } snprintf(prop_str, sizeof(prop_str), use_corner_band ? "qcom,corner-band-allow-temp-adjustment" : "qcom,corner-allow-temp-adjustment"); rc = use_corner_band ? cpr3_parse_corner_band_array_property(vreg, prop_str, 1, allow_temp_adj) : cpr3_parse_corner_array_property(vreg, prop_str, 1, allow_temp_adj); if (rc) { cpr3_err(vreg, "error reading %s, rc=%d\n", prop_str, rc); goto done; } } sdelta_table_count = use_corner_band ? vreg->corner_band_count : vreg->corner_count; for (i = 0; i < sdelta_table_count; i++) { sdelta = devm_kzalloc(ctrl->dev, sizeof(*corner->sdelta), GFP_KERNEL); if (!sdelta) { rc = -ENOMEM; goto done; } if (allow_core_count_adj) sdelta->allow_core_count_adj = allow_core_count_adj[i]; if (allow_temp_adj) sdelta->allow_temp_adj = allow_temp_adj[i]; sdelta->max_core_count = vreg->max_core_count; sdelta->temp_band_count = ctrl->temp_band_count; if (use_corner_band) vreg->corner_band[i].sdelta = sdelta; else vreg->corner[i].sdelta = sdelta; rc = cpr4_load_core_and_temp_adj(vreg, i, use_corner_band); if (rc) { cpr3_err(vreg, "corner/band %d core and temp adjustment loading failed, rc=%d\n", i, rc); goto done; } } done: kfree(allow_core_count_adj); kfree(allow_temp_adj); return rc; } /** * cprh_adjust_voltages_for_apm() - adjust per-corner floor and ceiling voltages * so that they do not overlap the APM threshold voltage. * @vreg: Pointer to the CPR3 regulator * * The memory array power mux (APM) must be configured for a specific supply * based upon where the VDD voltage lies with respect to the APM threshold * voltage. When using CPR hardware closed-loop, the voltage may vary anywhere * between the floor and ceiling voltage without software notification. * Therefore, it is required that the floor to ceiling range for every corner * not intersect the APM threshold voltage. This function adjusts the floor to * ceiling range for each corner which violates this requirement. * * The following algorithm is applied: * if floor < threshold <= ceiling: * if open_loop >= threshold, then floor = threshold - adj * else ceiling = threshold - step * where: * adj = APM hysteresis voltage established to minimize the number of * corners with artificially increased floor voltages * step = voltage in microvolts of a single step of the VDD supply * * The open-loop voltage is also bounded by the new floor or ceiling value as * needed. * * Return: none */ void cprh_adjust_voltages_for_apm(struct cpr3_regulator *vreg) { struct cpr3_controller *ctrl = vreg->thread->ctrl; struct cpr3_corner *corner; int i, adj, threshold, prev_ceiling, prev_floor, prev_open_loop; if (!ctrl->apm_threshold_volt) { /* APM not being used. */ return; } ctrl->apm_threshold_volt = CPR3_ROUND(ctrl->apm_threshold_volt, ctrl->step_volt); ctrl->apm_adj_volt = CPR3_ROUND(ctrl->apm_adj_volt, ctrl->step_volt); threshold = ctrl->apm_threshold_volt; adj = ctrl->apm_adj_volt; for (i = 0; i < vreg->corner_count; i++) { corner = &vreg->corner[i]; if (threshold <= corner->floor_volt || threshold > corner->ceiling_volt) continue; prev_floor = corner->floor_volt; prev_ceiling = corner->ceiling_volt; prev_open_loop = corner->open_loop_volt; if (corner->open_loop_volt >= threshold) { corner->floor_volt = max(corner->floor_volt, threshold - adj); if (corner->open_loop_volt < corner->floor_volt) corner->open_loop_volt = corner->floor_volt; } else { corner->ceiling_volt = threshold - ctrl->step_volt; } if (corner->floor_volt != prev_floor || corner->ceiling_volt != prev_ceiling || corner->open_loop_volt != prev_open_loop) cpr3_debug(vreg, "APM threshold=%d, APM adj=%d changed corner %d voltages; prev: floor=%d, ceiling=%d, open-loop=%d; new: floor=%d, ceiling=%d, open-loop=%d\n", threshold, adj, i, prev_floor, prev_ceiling, prev_open_loop, corner->floor_volt, corner->ceiling_volt, corner->open_loop_volt); } } /** * cprh_adjust_voltages_for_mem_acc() - adjust per-corner floor and ceiling * voltages so that they do not intersect the MEM ACC threshold * voltage * @vreg: Pointer to the CPR3 regulator * * The following algorithm is applied: * if floor < threshold <= ceiling: * if open_loop >= threshold, then floor = threshold * else ceiling = threshold - step * where: * step = voltage in microvolts of a single step of the VDD supply * * The open-loop voltage is also bounded by the new floor or ceiling value as * needed. * * Return: none */ void cprh_adjust_voltages_for_mem_acc(struct cpr3_regulator *vreg) { struct cpr3_controller *ctrl = vreg->thread->ctrl; struct cpr3_corner *corner; int i, threshold, prev_ceiling, prev_floor, prev_open_loop; if (!ctrl->mem_acc_threshold_volt) { /* MEM ACC not being used. */ return; } ctrl->mem_acc_threshold_volt = CPR3_ROUND(ctrl->mem_acc_threshold_volt, ctrl->step_volt); threshold = ctrl->mem_acc_threshold_volt; for (i = 0; i < vreg->corner_count; i++) { corner = &vreg->corner[i]; if (threshold <= corner->floor_volt || threshold > corner->ceiling_volt) continue; prev_floor = corner->floor_volt; prev_ceiling = corner->ceiling_volt; prev_open_loop = corner->open_loop_volt; if (corner->open_loop_volt >= threshold) { corner->floor_volt = max(corner->floor_volt, threshold); if (corner->open_loop_volt < corner->floor_volt) corner->open_loop_volt = corner->floor_volt; } else { corner->ceiling_volt = threshold - ctrl->step_volt; } if (corner->floor_volt != prev_floor || corner->ceiling_volt != prev_ceiling || corner->open_loop_volt != prev_open_loop) cpr3_debug(vreg, "MEM ACC threshold=%d changed corner %d voltages; prev: floor=%d, ceiling=%d, open-loop=%d; new: floor=%d, ceiling=%d, open-loop=%d\n", threshold, i, prev_floor, prev_ceiling, prev_open_loop, corner->floor_volt, corner->ceiling_volt, corner->open_loop_volt); } } /** * cpr3_apply_closed_loop_offset_voltages() - modify the closed-loop voltage * adjustments by the amounts that are needed for this * fuse combo * @vreg: Pointer to the CPR3 regulator * @volt_adjust: Array of closed-loop voltage adjustment values of length * vreg->corner_count which is further adjusted based upon * offset voltage fuse values. * @fuse_volt_adjust: Fused closed-loop voltage adjustment values of length * vreg->fuse_corner_count. * * Return: 0 on success, errno on failure */ static int cpr3_apply_closed_loop_offset_voltages(struct cpr3_regulator *vreg, int *volt_adjust, int *fuse_volt_adjust) { u32 *corner_map; int rc = 0, i; if (!of_find_property(vreg->of_node, "qcom,cpr-fused-closed-loop-voltage-adjustment-map", NULL)) { /* No closed-loop offset required. */ return 0; } corner_map = kcalloc(vreg->corner_count, sizeof(*corner_map), GFP_KERNEL); if (!corner_map) return -ENOMEM; rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-fused-closed-loop-voltage-adjustment-map", 1, corner_map); if (rc) goto done; for (i = 0; i < vreg->corner_count; i++) { if (corner_map[i] == 0) { continue; } else if (corner_map[i] > vreg->fuse_corner_count) { cpr3_err(vreg, "corner %d mapped to invalid fuse corner: %u\n", i, corner_map[i]); rc = -EINVAL; goto done; } volt_adjust[i] += fuse_volt_adjust[corner_map[i] - 1]; } done: kfree(corner_map); return rc; } /** * cpr3_enforce_inc_quotient_monotonicity() - Ensure that target quotients * increase monotonically from lower to higher corners * @vreg: Pointer to the CPR3 regulator * * Return: 0 on success, errno on failure */ static void cpr3_enforce_inc_quotient_monotonicity(struct cpr3_regulator *vreg) { int i, j; for (i = 1; i < vreg->corner_count; i++) { for (j = 0; j < CPR3_RO_COUNT; j++) { if (vreg->corner[i].target_quot[j] && vreg->corner[i].target_quot[j] < vreg->corner[i - 1].target_quot[j]) { cpr3_debug(vreg, "corner %d RO%u target quot=%u < corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n", i, j, vreg->corner[i].target_quot[j], i - 1, j, vreg->corner[i - 1].target_quot[j], i, j, vreg->corner[i - 1].target_quot[j]); vreg->corner[i].target_quot[j] = vreg->corner[i - 1].target_quot[j]; } } } } /** * cpr3_enforce_dec_quotient_monotonicity() - Ensure that target quotients * decrease monotonically from higher to lower corners * @vreg: Pointer to the CPR3 regulator * * Return: 0 on success, errno on failure */ static void cpr3_enforce_dec_quotient_monotonicity(struct cpr3_regulator *vreg) { int i, j; for (i = vreg->corner_count - 2; i >= 0; i--) { for (j = 0; j < CPR3_RO_COUNT; j++) { if (vreg->corner[i + 1].target_quot[j] && vreg->corner[i].target_quot[j] > vreg->corner[i + 1].target_quot[j]) { cpr3_debug(vreg, "corner %d RO%u target quot=%u > corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n", i, j, vreg->corner[i].target_quot[j], i + 1, j, vreg->corner[i + 1].target_quot[j], i, j, vreg->corner[i + 1].target_quot[j]); vreg->corner[i].target_quot[j] = vreg->corner[i + 1].target_quot[j]; } } } } /** * _cpr3_adjust_target_quotients() - adjust the target quotients for each * corner of the regulator according to input adjustment and * scaling arrays * @vreg: Pointer to the CPR3 regulator * @volt_adjust: Pointer to an array of closed-loop voltage adjustments * with units of microvolts. The array must have * vreg->corner_count number of elements. * @ro_scale: Pointer to a flattened 2D array of RO scaling factors. * The array must have an inner dimension of CPR3_RO_COUNT * and an outer dimension of vreg->corner_count * @label: Null terminated string providing a label for the type * of adjustment. * * Return: true if any corners received a positive voltage adjustment (> 0), * else false */ static bool _cpr3_adjust_target_quotients(struct cpr3_regulator *vreg, const int *volt_adjust, const int *ro_scale, const char *label) { int i, j, quot_adjust; bool is_increasing = false; u32 prev_quot; for (i = 0; i < vreg->corner_count; i++) { for (j = 0; j < CPR3_RO_COUNT; j++) { if (vreg->corner[i].target_quot[j]) { quot_adjust = cpr3_quot_adjustment( ro_scale[i * CPR3_RO_COUNT + j], volt_adjust[i]); if (quot_adjust) { prev_quot = vreg->corner[i]. target_quot[j]; vreg->corner[i].target_quot[j] += quot_adjust; cpr3_debug(vreg, "adjusted corner %d RO%d target quot %s: %u --> %u (%d uV)\n", i, j, label, prev_quot, vreg->corner[i].target_quot[j], volt_adjust[i]); } } } if (volt_adjust[i] > 0) is_increasing = true; } return is_increasing; } /** * cpr3_adjust_target_quotients() - adjust the target quotients for each * corner according to device tree values and fuse values * @vreg: Pointer to the CPR3 regulator * @fuse_volt_adjust: Fused closed-loop voltage adjustment values of length * vreg->fuse_corner_count. This parameter could be null * pointer when no fused adjustments are needed. * * Return: 0 on success, errno on failure */ int cpr3_adjust_target_quotients(struct cpr3_regulator *vreg, int *fuse_volt_adjust) { int i, rc; int *volt_adjust, *ro_scale; bool explicit_adjustment, fused_adjustment, is_increasing; explicit_adjustment = of_find_property(vreg->of_node, "qcom,cpr-closed-loop-voltage-adjustment", NULL); fused_adjustment = of_find_property(vreg->of_node, "qcom,cpr-fused-closed-loop-voltage-adjustment-map", NULL); if (!explicit_adjustment && !fused_adjustment && !vreg->aging_allowed) { /* No adjustment required. */ return 0; } else if (!of_find_property(vreg->of_node, "qcom,cpr-ro-scaling-factor", NULL)) { cpr3_err(vreg, "qcom,cpr-ro-scaling-factor is required for closed-loop voltage adjustment, but is missing\n"); return -EINVAL; } volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust), GFP_KERNEL); ro_scale = kcalloc(vreg->corner_count * CPR3_RO_COUNT, sizeof(*ro_scale), GFP_KERNEL); if (!volt_adjust || !ro_scale) { rc = -ENOMEM; goto done; } rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-ro-scaling-factor", CPR3_RO_COUNT, ro_scale); if (rc) { cpr3_err(vreg, "could not load RO scaling factors, rc=%d\n", rc); goto done; } for (i = 0; i < vreg->corner_count; i++) memcpy(vreg->corner[i].ro_scale, &ro_scale[i * CPR3_RO_COUNT], sizeof(*ro_scale) * CPR3_RO_COUNT); if (explicit_adjustment) { rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-closed-loop-voltage-adjustment", 1, volt_adjust); if (rc) { cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n", rc); goto done; } _cpr3_adjust_target_quotients(vreg, volt_adjust, ro_scale, "from DT"); cpr3_enforce_inc_quotient_monotonicity(vreg); } if (fused_adjustment && fuse_volt_adjust) { memset(volt_adjust, 0, sizeof(*volt_adjust) * vreg->corner_count); rc = cpr3_apply_closed_loop_offset_voltages(vreg, volt_adjust, fuse_volt_adjust); if (rc) { cpr3_err(vreg, "could not apply fused closed-loop voltage reductions, rc=%d\n", rc); goto done; } is_increasing = _cpr3_adjust_target_quotients(vreg, volt_adjust, ro_scale, "from fuse"); if (is_increasing) cpr3_enforce_inc_quotient_monotonicity(vreg); else cpr3_enforce_dec_quotient_monotonicity(vreg); } done: kfree(volt_adjust); kfree(ro_scale); return rc; }