/* * Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cpr3-regulator.h" #define MSM8998_KBSS_FUSE_CORNERS 4 #define SDM660_KBSS_FUSE_CORNERS 5 #define SDM630_POWER_KBSS_FUSE_CORNERS 3 #define SDM630_PERF_KBSS_FUSE_CORNERS 5 /** * struct cprh_kbss_fuses - KBSS specific fuse data * @ro_sel: Ring oscillator select fuse parameter value for each * fuse corner * @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value * for each fuse corner (raw, not converted to a voltage) * @target_quot: CPR target quotient fuse parameter value for each fuse * corner * @quot_offset: CPR target quotient offset fuse parameter value for each * fuse corner (raw, not unpacked) used for target quotient * interpolation * @speed_bin: Application processor speed bin fuse parameter value for * the given chip * @cpr_fusing_rev: CPR fusing revision fuse parameter value * @force_highest_corner: Flag indicating that all corners must operate * at the voltage of the highest corner. This is * applicable to MSM8998 only. * @aging_init_quot_diff: Initial quotient difference between CPR aging * min and max sensors measured at time of manufacturing * * This struct holds the values for all of the fuses read from memory. */ struct cprh_kbss_fuses { u64 *ro_sel; u64 *init_voltage; u64 *target_quot; u64 *quot_offset; u64 speed_bin; u64 cpr_fusing_rev; u64 force_highest_corner; u64 aging_init_quot_diff; }; /* * Fuse combos 0 - 7 map to CPR fusing revision 0 - 7 with speed bin fuse = 0. * Fuse combos 8 - 15 map to CPR fusing revision 0 - 7 with speed bin fuse = 1. * Fuse combos 16 - 23 map to CPR fusing revision 0 - 7 with speed bin fuse = 2. * Fuse combos 24 - 31 map to CPR fusing revision 0 - 7 with speed bin fuse = 3. * Fuse combos 32 - 39 map to CPR fusing revision 0 - 7 with speed bin fuse = 4. */ #define CPRH_MSM8998_KBSS_FUSE_COMBO_COUNT 32 #define CPRH_SDM660_KBSS_FUSE_COMBO_COUNT 40 #define CPRH_SDM630_KBSS_FUSE_COMBO_COUNT 32 /* * Constants which define the name of each fuse corner. */ enum cprh_msm8998_kbss_fuse_corner { CPRH_MSM8998_KBSS_FUSE_CORNER_LOWSVS = 0, CPRH_MSM8998_KBSS_FUSE_CORNER_SVS = 1, CPRH_MSM8998_KBSS_FUSE_CORNER_NOM = 2, CPRH_MSM8998_KBSS_FUSE_CORNER_TURBO_L1 = 3, }; static const char * const cprh_msm8998_kbss_fuse_corner_name[] = { [CPRH_MSM8998_KBSS_FUSE_CORNER_LOWSVS] = "LowSVS", [CPRH_MSM8998_KBSS_FUSE_CORNER_SVS] = "SVS", [CPRH_MSM8998_KBSS_FUSE_CORNER_NOM] = "NOM", [CPRH_MSM8998_KBSS_FUSE_CORNER_TURBO_L1] = "TURBO_L1", }; enum cprh_sdm660_power_kbss_fuse_corner { CPRH_SDM660_POWER_KBSS_FUSE_CORNER_LOWSVS = 0, CPRH_SDM660_POWER_KBSS_FUSE_CORNER_SVS = 1, CPRH_SDM660_POWER_KBSS_FUSE_CORNER_SVSPLUS = 2, CPRH_SDM660_POWER_KBSS_FUSE_CORNER_NOM = 3, CPRH_SDM660_POWER_KBSS_FUSE_CORNER_TURBO_L1 = 4, }; static const char * const cprh_sdm660_power_kbss_fuse_corner_name[] = { [CPRH_SDM660_POWER_KBSS_FUSE_CORNER_LOWSVS] = "LowSVS", [CPRH_SDM660_POWER_KBSS_FUSE_CORNER_SVS] = "SVS", [CPRH_SDM660_POWER_KBSS_FUSE_CORNER_SVSPLUS] = "SVSPLUS", [CPRH_SDM660_POWER_KBSS_FUSE_CORNER_NOM] = "NOM", [CPRH_SDM660_POWER_KBSS_FUSE_CORNER_TURBO_L1] = "TURBO_L1", }; enum cprh_sdm660_perf_kbss_fuse_corner { CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVS = 0, CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVSPLUS = 1, CPRH_SDM660_PERF_KBSS_FUSE_CORNER_NOM = 2, CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO = 3, CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO_L2 = 4, }; static const char * const cprh_sdm660_perf_kbss_fuse_corner_name[] = { [CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVS] = "SVS", [CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVSPLUS] = "SVSPLUS", [CPRH_SDM660_PERF_KBSS_FUSE_CORNER_NOM] = "NOM", [CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO] = "TURBO", [CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO_L2] = "TURBO_L2", }; enum cprh_sdm630_power_kbss_fuse_corner { CPRH_SDM630_POWER_KBSS_FUSE_CORNER_LOWSVS = 0, CPRH_SDM630_POWER_KBSS_FUSE_CORNER_SVSPLUS = 1, CPRH_SDM630_POWER_KBSS_FUSE_CORNER_TURBO_L1 = 2, }; static const char * const cprh_sdm630_power_kbss_fuse_corner_name[] = { [CPRH_SDM630_POWER_KBSS_FUSE_CORNER_LOWSVS] = "LowSVS", [CPRH_SDM630_POWER_KBSS_FUSE_CORNER_SVSPLUS] = "SVSPLUS", [CPRH_SDM630_POWER_KBSS_FUSE_CORNER_TURBO_L1] = "TURBO_L1", }; enum cprh_sdm630_perf_kbss_fuse_corner { CPRH_SDM630_PERF_KBSS_FUSE_CORNER_LOWSVS = 0, CPRH_SDM630_PERF_KBSS_FUSE_CORNER_SVSPLUS = 1, CPRH_SDM630_PERF_KBSS_FUSE_CORNER_NOM = 2, CPRH_SDM630_PERF_KBSS_FUSE_CORNER_TURBO = 3, CPRH_SDM630_PERF_KBSS_FUSE_CORNER_TURBO_L2 = 4, }; static const char * const cprh_sdm630_perf_kbss_fuse_corner_name[] = { [CPRH_SDM630_PERF_KBSS_FUSE_CORNER_LOWSVS] = "LowSVS", [CPRH_SDM630_PERF_KBSS_FUSE_CORNER_SVSPLUS] = "SVSPLUS", [CPRH_SDM630_PERF_KBSS_FUSE_CORNER_NOM] = "NOM", [CPRH_SDM630_PERF_KBSS_FUSE_CORNER_TURBO] = "TURBO", [CPRH_SDM630_PERF_KBSS_FUSE_CORNER_TURBO_L2] = "TURBO_L2", }; /* KBSS cluster IDs */ #define CPRH_KBSS_POWER_CLUSTER_ID 0 #define CPRH_KBSS_PERFORMANCE_CLUSTER_ID 1 /* KBSS controller IDs */ #define CPRH_KBSS_MIN_CONTROLLER_ID 0 #define CPRH_KBSS_MAX_CONTROLLER_ID 1 /* * MSM8998 KBSS fuse parameter locations: * * Structs are organized with the following dimensions: * Outer: 0 or 1 for power or performance cluster * Middle: 0 to 3 for fuse corners from lowest to highest corner * Inner: large enough to hold the longest set of parameter segments which * fully defines a fuse parameter, +1 (for NULL termination). * Each segment corresponds to a contiguous group of bits from a * single fuse row. These segments are concatentated together in * order to form the full fuse parameter value. The segments for * a given parameter may correspond to different fuse rows. * */ static const struct cpr3_fuse_param msm8998_kbss_ro_sel_param[2][MSM8998_KBSS_FUSE_CORNERS][2] = { [CPRH_KBSS_POWER_CLUSTER_ID] = { {{67, 12, 15}, {} }, {{67, 8, 11}, {} }, {{67, 4, 7}, {} }, {{67, 0, 3}, {} }, }, [CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = { {{69, 26, 29}, {} }, {{69, 22, 25}, {} }, {{69, 18, 21}, {} }, {{69, 14, 17}, {} }, }, }; static const struct cpr3_fuse_param sdm660_kbss_ro_sel_param[2][SDM660_KBSS_FUSE_CORNERS][3] = { [CPRH_KBSS_POWER_CLUSTER_ID] = { {{67, 12, 15}, {} }, {{67, 8, 11}, {} }, {{65, 56, 59}, {} }, {{67, 4, 7}, {} }, {{67, 0, 3}, {} }, }, [CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = { {{68, 61, 63}, {69, 0, 0} }, {{69, 1, 4}, {} }, {{68, 57, 60}, {} }, {{68, 53, 56}, {} }, {{66, 14, 17}, {} }, }, }; static const struct cpr3_fuse_param sdm630_kbss_ro_sel_param[2][SDM630_PERF_KBSS_FUSE_CORNERS][3] = { [CPRH_KBSS_POWER_CLUSTER_ID] = { {{67, 12, 15}, {} }, {{65, 56, 59}, {} }, {{67, 0, 3}, {} }, }, [CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = { {{68, 61, 63}, {69, 0, 0} }, {{69, 1, 4}, {} }, {{68, 57, 60}, {} }, {{68, 53, 56}, {} }, {{66, 14, 17}, {} }, }, }; static const struct cpr3_fuse_param msm8998_kbss_init_voltage_param[2][MSM8998_KBSS_FUSE_CORNERS][2] = { [CPRH_KBSS_POWER_CLUSTER_ID] = { {{67, 34, 39}, {} }, {{67, 28, 33}, {} }, {{67, 22, 27}, {} }, {{67, 16, 21}, {} }, }, [CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = { {{69, 48, 53}, {} }, {{69, 42, 47}, {} }, {{69, 36, 41}, {} }, {{69, 30, 35}, {} }, }, }; static const struct cpr3_fuse_param sdm660_kbss_init_voltage_param[2][SDM660_KBSS_FUSE_CORNERS][2] = { [CPRH_KBSS_POWER_CLUSTER_ID] = { {{67, 34, 39}, {} }, {{67, 28, 33}, {} }, {{71, 3, 8}, {} }, {{67, 22, 27}, {} }, {{67, 16, 21}, {} }, }, [CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = { {{69, 17, 22}, {} }, {{69, 23, 28}, {} }, {{69, 11, 16}, {} }, {{69, 5, 10}, {} }, {{70, 42, 47}, {} }, }, }; static const struct cpr3_fuse_param sdm630_kbss_init_voltage_param[2][SDM630_PERF_KBSS_FUSE_CORNERS][2] = { [CPRH_KBSS_POWER_CLUSTER_ID] = { {{67, 34, 39}, {} }, {{71, 3, 8}, {} }, {{67, 16, 21}, {} }, }, [CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = { {{69, 17, 22}, {} }, {{69, 23, 28}, {} }, {{69, 11, 16}, {} }, {{69, 5, 10}, {} }, {{70, 42, 47}, {} }, }, }; static const struct cpr3_fuse_param msm8998_kbss_target_quot_param[2][MSM8998_KBSS_FUSE_CORNERS][3] = { [CPRH_KBSS_POWER_CLUSTER_ID] = { {{68, 18, 29}, {} }, {{68, 6, 17}, {} }, {{67, 58, 63}, {68, 0, 5} }, {{67, 46, 57}, {} }, }, [CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = { {{70, 32, 43}, {} }, {{70, 20, 31}, {} }, {{70, 8, 19}, {} }, {{69, 60, 63}, {70, 0, 7}, {} }, }, }; static const struct cpr3_fuse_param sdm660_kbss_target_quot_param[2][SDM660_KBSS_FUSE_CORNERS][3] = { [CPRH_KBSS_POWER_CLUSTER_ID] = { {{68, 12, 23}, {} }, {{68, 0, 11}, {} }, {{71, 9, 20}, {} }, {{67, 52, 63}, {} }, {{67, 40, 51}, {} }, }, [CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = { {{69, 53, 63}, {70, 0, 0}, {} }, {{70, 1, 12}, {} }, {{69, 41, 52}, {} }, {{69, 29, 40}, {} }, {{70, 48, 59}, {} }, }, }; static const struct cpr3_fuse_param sdm630_kbss_target_quot_param[2][SDM630_PERF_KBSS_FUSE_CORNERS][3] = { [CPRH_KBSS_POWER_CLUSTER_ID] = { {{68, 12, 23}, {} }, {{71, 9, 20}, {} }, {{67, 40, 51}, {} }, }, [CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = { {{69, 53, 63}, {70, 0, 0}, {} }, {{70, 1, 12}, {} }, {{69, 41, 52}, {} }, {{69, 29, 40}, {} }, {{70, 48, 59}, {} }, }, }; static const struct cpr3_fuse_param msm8998_kbss_quot_offset_param[2][MSM8998_KBSS_FUSE_CORNERS][3] = { [CPRH_KBSS_POWER_CLUSTER_ID] = { {{} }, {{68, 63, 63}, {69, 0, 5}, {} }, {{68, 56, 62}, {} }, {{68, 49, 55}, {} }, }, [CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = { {{} }, {{71, 13, 15}, {71, 21, 24}, {} }, {{71, 6, 12}, {} }, {{70, 63, 63}, {71, 0, 5}, {} }, }, }; static const struct cpr3_fuse_param sdm660_kbss_quot_offset_param[2][SDM660_KBSS_FUSE_CORNERS][3] = { [CPRH_KBSS_POWER_CLUSTER_ID] = { {{} }, {{68, 38, 44}, {} }, {{71, 21, 27}, {} }, {{68, 31, 37}, {} }, {{68, 24, 30}, {} }, }, [CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = { {{} }, {{70, 27, 33}, {} }, {{70, 20, 26}, {} }, {{70, 13, 19}, {} }, {{70, 60, 63}, {71, 0, 2}, {} }, }, }; static const struct cpr3_fuse_param sdm630_kbss_quot_offset_param[2][SDM630_PERF_KBSS_FUSE_CORNERS][3] = { [CPRH_KBSS_POWER_CLUSTER_ID] = { {{} }, {{71, 21, 27}, {} }, {{68, 24, 30}, {} }, }, [CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = { {{} }, {{70, 27, 33}, {} }, {{70, 20, 26}, {} }, {{70, 13, 19}, {} }, {{70, 60, 63}, {71, 0, 2}, {} }, }, }; static const struct cpr3_fuse_param msm8998_cpr_fusing_rev_param[] = { {39, 51, 53}, {}, }; static const struct cpr3_fuse_param sdm660_cpr_fusing_rev_param[] = { {71, 28, 30}, {}, }; static const struct cpr3_fuse_param sdm630_cpr_fusing_rev_param[] = { {71, 28, 30}, {}, }; static const struct cpr3_fuse_param kbss_speed_bin_param[] = { {38, 29, 31}, {}, }; static const struct cpr3_fuse_param msm8998_cpr_force_highest_corner_param[] = { {100, 45, 45}, {}, }; static const struct cpr3_fuse_param msm8998_kbss_aging_init_quot_diff_param[2][2] = { [CPRH_KBSS_POWER_CLUSTER_ID] = { {69, 6, 13}, {}, }, [CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = { {71, 25, 32}, {}, }, }; static const struct cpr3_fuse_param sdm660_kbss_aging_init_quot_diff_param[2][2] = { [CPRH_KBSS_POWER_CLUSTER_ID] = { {68, 45, 52}, {}, }, [CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = { {70, 34, 41}, {}, }, }; static const struct cpr3_fuse_param sdm630_kbss_aging_init_quot_diff_param[2][2] = { [CPRH_KBSS_POWER_CLUSTER_ID] = { {68, 45, 52}, {}, }, [CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = { {70, 34, 41}, {}, }, }; /* * Open loop voltage fuse reference voltages in microvolts for MSM8998 v1 */ static const int msm8998_v1_kbss_fuse_ref_volt[MSM8998_KBSS_FUSE_CORNERS] = { 696000, 768000, 896000, 1112000, }; /* * Open loop voltage fuse reference voltages in microvolts for MSM8998 v2 */ static const int msm8998_v2_kbss_fuse_ref_volt[2][MSM8998_KBSS_FUSE_CORNERS] = { [CPRH_KBSS_POWER_CLUSTER_ID] = { 688000, 756000, 828000, 1056000, }, [CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = { 756000, 756000, 828000, 1056000, }, }; /* * Open loop voltage fuse reference voltages in microvolts for SDM660 */ static const int sdm660_kbss_fuse_ref_volt[2][SDM660_KBSS_FUSE_CORNERS] = { [CPRH_KBSS_POWER_CLUSTER_ID] = { 644000, 724000, 788000, 868000, 1068000, }, [CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = { 724000, 788000, 868000, 988000, 1068000, }, }; /* * Open loop voltage fuse reference voltages in microvolts for SDM630 */ static const int sdm630_kbss_fuse_ref_volt[2][SDM630_PERF_KBSS_FUSE_CORNERS] = { [CPRH_KBSS_POWER_CLUSTER_ID] = { 644000, 788000, 1068000, }, [CPRH_KBSS_PERFORMANCE_CLUSTER_ID] = { 644000, 788000, 868000, 988000, 1068000, }, }; static const int sdm630_perf_kbss_speed_bin_2_fuse_ref_volt[SDM630_PERF_KBSS_FUSE_CORNERS] = { 644000, 788000, 868000, 988000, 1140000, }; #define CPRH_KBSS_FUSE_STEP_VOLT 10000 #define CPRH_KBSS_VOLTAGE_FUSE_SIZE 6 #define CPRH_KBSS_QUOT_OFFSET_SCALE 5 #define CPRH_KBSS_AGING_INIT_QUOT_DIFF_SIZE 8 #define CPRH_KBSS_AGING_INIT_QUOT_DIFF_SCALE 1 #define CPRH_KBSS_CPR_CLOCK_RATE 19200000 #define CPRH_KBSS_MAX_CORNER_BAND_COUNT 4 #define CPRH_KBSS_MAX_CORNER_COUNT 40 #define CPRH_KBSS_CPR_SDELTA_CORE_COUNT 4 #define CPRH_KBSS_MAX_TEMP_POINTS 3 /* * msm8998 configuration */ #define MSM8998_KBSS_POWER_CPR_SENSOR_COUNT 6 #define MSM8998_KBSS_PERFORMANCE_CPR_SENSOR_COUNT 9 #define MSM8998_KBSS_POWER_TEMP_SENSOR_ID_START 1 #define MSM8998_KBSS_POWER_TEMP_SENSOR_ID_END 5 #define MSM8998_KBSS_PERFORMANCE_TEMP_SENSOR_ID_START 6 #define MSM8998_KBSS_PERFORMANCE_TEMP_SENSOR_ID_END 10 #define MSM8998_KBSS_POWER_AGING_SENSOR_ID 0 #define MSM8998_KBSS_POWER_AGING_BYPASS_MASK0 0 #define MSM8998_KBSS_PERFORMANCE_AGING_SENSOR_ID 0 #define MSM8998_KBSS_PERFORMANCE_AGING_BYPASS_MASK0 0 /* * sdm660 configuration */ #define SDM660_KBSS_POWER_CPR_SENSOR_COUNT 6 #define SDM660_KBSS_PERFORMANCE_CPR_SENSOR_COUNT 9 #define SDM660_KBSS_POWER_TEMP_SENSOR_ID_START 10 #define SDM660_KBSS_POWER_TEMP_SENSOR_ID_END 11 #define SDM660_KBSS_PERFORMANCE_TEMP_SENSOR_ID_START 4 #define SDM660_KBSS_PERFORMANCE_TEMP_SENSOR_ID_END 9 #define SDM660_KBSS_POWER_AGING_SENSOR_ID 0 #define SDM660_KBSS_POWER_AGING_BYPASS_MASK0 0 #define SDM660_KBSS_PERFORMANCE_AGING_SENSOR_ID 0 #define SDM660_KBSS_PERFORMANCE_AGING_BYPASS_MASK0 0 /* * sdm630 configuration */ #define SDM630_KBSS_POWER_CPR_SENSOR_COUNT 6 #define SDM630_KBSS_PERFORMANCE_CPR_SENSOR_COUNT 6 /* * SOC IDs */ enum soc_id { MSM8998_V1_SOC_ID = 1, MSM8998_V2_SOC_ID = 2, SDM660_SOC_ID = 3, SDM630_SOC_ID = 4, }; /** * cprh_msm8998_kbss_read_fuse_data() - load msm8998 KBSS specific fuse * parameter values * @vreg: Pointer to the CPR3 regulator * @fuse: KBSS specific fuse data * * This function fills cprh_kbss_fuses struct with values read out of hardware * fuses. * * Return: 0 on success, errno on failure */ static int cprh_msm8998_kbss_read_fuse_data(struct cpr3_regulator *vreg, struct cprh_kbss_fuses *fuse) { void __iomem *base = vreg->thread->ctrl->fuse_base; int i, id, rc; rc = cpr3_read_fuse_param(base, msm8998_cpr_fusing_rev_param, &fuse->cpr_fusing_rev); if (rc) { cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n", rc); return rc; } cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev); id = vreg->thread->ctrl->ctrl_id; for (i = 0; i < MSM8998_KBSS_FUSE_CORNERS; i++) { rc = cpr3_read_fuse_param(base, msm8998_kbss_init_voltage_param[id][i], &fuse->init_voltage[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n", i, rc); return rc; } rc = cpr3_read_fuse_param(base, msm8998_kbss_target_quot_param[id][i], &fuse->target_quot[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n", i, rc); return rc; } rc = cpr3_read_fuse_param(base, msm8998_kbss_ro_sel_param[id][i], &fuse->ro_sel[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n", i, rc); return rc; } rc = cpr3_read_fuse_param(base, msm8998_kbss_quot_offset_param[id][i], &fuse->quot_offset[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n", i, rc); return rc; } } rc = cpr3_read_fuse_param(base, msm8998_kbss_aging_init_quot_diff_param[id], &fuse->aging_init_quot_diff); if (rc) { cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n", rc); return rc; } rc = cpr3_read_fuse_param(base, msm8998_cpr_force_highest_corner_param, &fuse->force_highest_corner); if (rc) { cpr3_err(vreg, "Unable to read CPR force highest corner fuse, rc=%d\n", rc); return rc; } if (fuse->force_highest_corner) cpr3_info(vreg, "Fusing requires all operation at the highest corner\n"); vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin; if (vreg->fuse_combo >= CPRH_MSM8998_KBSS_FUSE_COMBO_COUNT) { cpr3_err(vreg, "invalid CPR fuse combo = %d found\n", vreg->fuse_combo); return -EINVAL; } return rc; }; /** * cprh_sdm660_kbss_read_fuse_data() - load SDM660 KBSS specific fuse parameter * values * @vreg: Pointer to the CPR3 regulator * @fuse: KBSS specific fuse data * * This function fills cprh_kbss_fuses struct with values read out of hardware * fuses. * * Return: 0 on success, errno on failure */ static int cprh_sdm660_kbss_read_fuse_data(struct cpr3_regulator *vreg, struct cprh_kbss_fuses *fuse) { void __iomem *base = vreg->thread->ctrl->fuse_base; int i, id, rc; rc = cpr3_read_fuse_param(base, sdm660_cpr_fusing_rev_param, &fuse->cpr_fusing_rev); if (rc) { cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n", rc); return rc; } cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev); id = vreg->thread->ctrl->ctrl_id; for (i = 0; i < SDM660_KBSS_FUSE_CORNERS; i++) { rc = cpr3_read_fuse_param(base, sdm660_kbss_init_voltage_param[id][i], &fuse->init_voltage[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n", i, rc); return rc; } rc = cpr3_read_fuse_param(base, sdm660_kbss_target_quot_param[id][i], &fuse->target_quot[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n", i, rc); return rc; } rc = cpr3_read_fuse_param(base, sdm660_kbss_ro_sel_param[id][i], &fuse->ro_sel[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n", i, rc); return rc; } rc = cpr3_read_fuse_param(base, sdm660_kbss_quot_offset_param[id][i], &fuse->quot_offset[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n", i, rc); return rc; } } rc = cpr3_read_fuse_param(base, sdm660_kbss_aging_init_quot_diff_param[id], &fuse->aging_init_quot_diff); if (rc) { cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n", rc); return rc; } vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin; if (vreg->fuse_combo >= CPRH_SDM660_KBSS_FUSE_COMBO_COUNT) { cpr3_err(vreg, "invalid CPR fuse combo = %d found\n", vreg->fuse_combo); return -EINVAL; } return rc; }; /** * cprh_sdm630_kbss_read_fuse_data() - load SDM630 KBSS specific fuse parameter * values * @vreg: Pointer to the CPR3 regulator * @fuse: KBSS specific fuse data * * This function fills cprh_kbss_fuses struct with values read out of hardware * fuses. * * Return: 0 on success, errno on failure */ static int cprh_sdm630_kbss_read_fuse_data(struct cpr3_regulator *vreg, struct cprh_kbss_fuses *fuse) { void __iomem *base = vreg->thread->ctrl->fuse_base; int i, id, rc, fuse_corners; rc = cpr3_read_fuse_param(base, sdm630_cpr_fusing_rev_param, &fuse->cpr_fusing_rev); if (rc) { cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n", rc); return rc; } cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev); id = vreg->thread->ctrl->ctrl_id; if (id == CPRH_KBSS_POWER_CLUSTER_ID) fuse_corners = SDM630_POWER_KBSS_FUSE_CORNERS; else fuse_corners = SDM630_PERF_KBSS_FUSE_CORNERS; for (i = 0; i < fuse_corners; i++) { rc = cpr3_read_fuse_param(base, sdm630_kbss_init_voltage_param[id][i], &fuse->init_voltage[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n", i, rc); return rc; } rc = cpr3_read_fuse_param(base, sdm630_kbss_target_quot_param[id][i], &fuse->target_quot[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n", i, rc); return rc; } rc = cpr3_read_fuse_param(base, sdm630_kbss_ro_sel_param[id][i], &fuse->ro_sel[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n", i, rc); return rc; } rc = cpr3_read_fuse_param(base, sdm630_kbss_quot_offset_param[id][i], &fuse->quot_offset[i]); if (rc) { cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n", i, rc); return rc; } } rc = cpr3_read_fuse_param(base, sdm630_kbss_aging_init_quot_diff_param[id], &fuse->aging_init_quot_diff); if (rc) { cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n", rc); return rc; } vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin; if (vreg->fuse_combo >= CPRH_SDM630_KBSS_FUSE_COMBO_COUNT) { cpr3_err(vreg, "invalid CPR fuse combo = %d found\n", vreg->fuse_combo); return -EINVAL; } return rc; }; /** * cprh_kbss_read_fuse_data() - load KBSS specific fuse parameter values * @vreg: Pointer to the CPR3 regulator * * This function allocates a cprh_kbss_fuses struct, fills it with values * read out of hardware fuses, and finally copies common fuse values * into the CPR3 regulator struct. * * Return: 0 on success, errno on failure */ static int cprh_kbss_read_fuse_data(struct cpr3_regulator *vreg) { void __iomem *base = vreg->thread->ctrl->fuse_base; struct cprh_kbss_fuses *fuse; int rc, fuse_corners; enum soc_id soc_revision; fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL); if (!fuse) return -ENOMEM; soc_revision = vreg->thread->ctrl->soc_revision; switch (soc_revision) { case SDM660_SOC_ID: fuse_corners = SDM660_KBSS_FUSE_CORNERS; break; case SDM630_SOC_ID: if (vreg->thread->ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) fuse_corners = SDM630_POWER_KBSS_FUSE_CORNERS; else fuse_corners = SDM630_PERF_KBSS_FUSE_CORNERS; break; case MSM8998_V1_SOC_ID: case MSM8998_V2_SOC_ID: fuse_corners = MSM8998_KBSS_FUSE_CORNERS; break; default: cpr3_err(vreg, "unsupported soc id = %d\n", soc_revision); return -EINVAL; } fuse->ro_sel = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners, sizeof(*fuse->ro_sel), GFP_KERNEL); fuse->init_voltage = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners, sizeof(*fuse->init_voltage), GFP_KERNEL); fuse->target_quot = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners, sizeof(*fuse->target_quot), GFP_KERNEL); fuse->quot_offset = devm_kcalloc(vreg->thread->ctrl->dev, fuse_corners, sizeof(*fuse->quot_offset), GFP_KERNEL); if (!fuse->ro_sel || !fuse->init_voltage || !fuse->target_quot || !fuse->quot_offset) return -ENOMEM; rc = cpr3_read_fuse_param(base, kbss_speed_bin_param, &fuse->speed_bin); if (rc) { cpr3_err(vreg, "Unable to read speed bin fuse, rc=%d\n", rc); return rc; } cpr3_info(vreg, "speed bin = %llu\n", fuse->speed_bin); switch (soc_revision) { case SDM660_SOC_ID: rc = cprh_sdm660_kbss_read_fuse_data(vreg, fuse); if (rc) { cpr3_err(vreg, "sdm660 kbss fuse data read failed, rc=%d\n", rc); return rc; } break; case SDM630_SOC_ID: rc = cprh_sdm630_kbss_read_fuse_data(vreg, fuse); if (rc) { cpr3_err(vreg, "sdm630 kbss fuse data read failed, rc=%d\n", rc); return rc; } break; case MSM8998_V1_SOC_ID: case MSM8998_V2_SOC_ID: rc = cprh_msm8998_kbss_read_fuse_data(vreg, fuse); if (rc) { cpr3_err(vreg, "msm8998 kbss fuse data read failed, rc=%d\n", rc); return rc; } break; default: cpr3_err(vreg, "unsupported soc id = %d\n", soc_revision); return -EINVAL; } vreg->speed_bin_fuse = fuse->speed_bin; vreg->cpr_rev_fuse = fuse->cpr_fusing_rev; vreg->fuse_corner_count = fuse_corners; vreg->platform_fuses = fuse; return 0; } /** * cprh_kbss_parse_corner_data() - parse KBSS corner data from device tree * properties of the CPR3 regulator's device node * @vreg: Pointer to the CPR3 regulator * * Return: 0 on success, errno on failure */ static int cprh_kbss_parse_corner_data(struct cpr3_regulator *vreg) { int rc; rc = cpr3_parse_common_corner_data(vreg); if (rc) { cpr3_err(vreg, "error reading corner data, rc=%d\n", rc); return rc; } /* * A total of CPRH_KBSS_MAX_CORNER_COUNT - 1 corners * may be specified in device tree as an additional corner * must be allocated to correspond to the APM crossover voltage. */ if (vreg->corner_count > CPRH_KBSS_MAX_CORNER_COUNT - 1) { cpr3_err(vreg, "corner count %d exceeds supported maximum %d\n", vreg->corner_count, CPRH_KBSS_MAX_CORNER_COUNT - 1); return -EINVAL; } return rc; } /** * cprh_kbss_calculate_open_loop_voltages() - calculate the open-loop * voltage for each corner of a CPR3 regulator * @vreg: Pointer to the CPR3 regulator * * If open-loop voltage interpolation is allowed in device tree, then this * function calculates the open-loop voltage for a given corner using linear * interpolation. This interpolation is performed using the processor * frequencies of the lower and higher Fmax corners along with their fused * open-loop voltages. * * If open-loop voltage interpolation is not allowed, then this function uses * the Fmax fused open-loop voltage for all of the corners associated with a * given fuse corner. * * Return: 0 on success, errno on failure */ static int cprh_kbss_calculate_open_loop_voltages(struct cpr3_regulator *vreg) { struct device_node *node = vreg->of_node; struct cprh_kbss_fuses *fuse = vreg->platform_fuses; int i, j, id, rc = 0; bool allow_interpolation; u64 freq_low, volt_low, freq_high, volt_high; const int *ref_volt; int *fuse_volt; int *fmax_corner; const char * const *corner_name; enum soc_id soc_revision; fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt), GFP_KERNEL); fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner), GFP_KERNEL); if (!fuse_volt || !fmax_corner) { rc = -ENOMEM; goto done; } id = vreg->thread->ctrl->ctrl_id; soc_revision = vreg->thread->ctrl->soc_revision; switch (soc_revision) { case SDM660_SOC_ID: ref_volt = sdm660_kbss_fuse_ref_volt[id]; if (id == CPRH_KBSS_POWER_CLUSTER_ID) corner_name = cprh_sdm660_power_kbss_fuse_corner_name; else corner_name = cprh_sdm660_perf_kbss_fuse_corner_name; break; case SDM630_SOC_ID: ref_volt = sdm630_kbss_fuse_ref_volt[id]; if (id == CPRH_KBSS_PERFORMANCE_CLUSTER_ID && vreg->speed_bin_fuse == 2) ref_volt = sdm630_perf_kbss_speed_bin_2_fuse_ref_volt; if (id == CPRH_KBSS_POWER_CLUSTER_ID) corner_name = cprh_sdm630_power_kbss_fuse_corner_name; else corner_name = cprh_sdm630_perf_kbss_fuse_corner_name; break; case MSM8998_V1_SOC_ID: ref_volt = msm8998_v1_kbss_fuse_ref_volt; corner_name = cprh_msm8998_kbss_fuse_corner_name; break; case MSM8998_V2_SOC_ID: ref_volt = msm8998_v2_kbss_fuse_ref_volt[id]; corner_name = cprh_msm8998_kbss_fuse_corner_name; break; default: cpr3_err(vreg, "unsupported soc id = %d\n", soc_revision); rc = -EINVAL; goto done; } for (i = 0; i < vreg->fuse_corner_count; i++) { fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(ref_volt[i], CPRH_KBSS_FUSE_STEP_VOLT, fuse->init_voltage[i], CPRH_KBSS_VOLTAGE_FUSE_SIZE); /* SDM660 speed bin #3 does not support TURBO_L1/L2 */ if (soc_revision == SDM660_SOC_ID && vreg->speed_bin_fuse == 3 && (id == CPRH_KBSS_PERFORMANCE_CLUSTER_ID) && (i == CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO_L2)) continue; /* Log fused open-loop voltage values for debugging purposes. */ cpr3_info(vreg, "fused %8s: open-loop=%7d uV\n", corner_name[i], fuse_volt[i]); } rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt); if (rc) { cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n", rc); goto done; } allow_interpolation = of_property_read_bool(node, "qcom,allow-voltage-interpolation"); for (i = 1; i < vreg->fuse_corner_count; i++) { if (fuse_volt[i] < fuse_volt[i - 1]) { cpr3_info(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n", i, fuse_volt[i], i - 1, fuse_volt[i - 1], i, fuse_volt[i - 1]); fuse_volt[i] = fuse_volt[i - 1]; } } if (!allow_interpolation) { /* Use fused open-loop voltage for lower frequencies. */ for (i = 0; i < vreg->corner_count; i++) vreg->corner[i].open_loop_volt = fuse_volt[vreg->corner[i].cpr_fuse_corner]; goto done; } /* Determine highest corner mapped to each fuse corner */ j = vreg->fuse_corner_count - 1; for (i = vreg->corner_count - 1; i >= 0; i--) { if (vreg->corner[i].cpr_fuse_corner == j) { fmax_corner[j] = i; j--; } } if (j >= 0) { cpr3_err(vreg, "invalid fuse corner mapping\n"); rc = -EINVAL; goto done; } /* * Interpolation is not possible for corners mapped to the lowest fuse * corner so use the fuse corner value directly. */ for (i = 0; i <= fmax_corner[0]; i++) vreg->corner[i].open_loop_volt = fuse_volt[0]; /* Interpolate voltages for the higher fuse corners. */ for (i = 1; i < vreg->fuse_corner_count; i++) { freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq; volt_low = fuse_volt[i - 1]; freq_high = vreg->corner[fmax_corner[i]].proc_freq; volt_high = fuse_volt[i]; for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++) vreg->corner[j].open_loop_volt = cpr3_interpolate( freq_low, volt_low, freq_high, volt_high, vreg->corner[j].proc_freq); } done: if (rc == 0) { cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n"); for (i = 0; i < vreg->corner_count; i++) cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i, vreg->corner[i].open_loop_volt); rc = cpr3_adjust_open_loop_voltages(vreg); if (rc) cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n", rc); } kfree(fuse_volt); kfree(fmax_corner); return rc; } /** * cprh_msm8998_partial_binning_override() - override the voltage and quotient * settings for low corners based upon special partial binning * fuse values * * @vreg: Pointer to the CPR3 regulator * * Some parts are not able to operate at low voltages. The force highest * corner fuse specifies if a given part must operate with voltages * corresponding to the highest corner. * * Return: 0 on success, errno on failure */ static int cprh_msm8998_partial_binning_override(struct cpr3_regulator *vreg) { struct cprh_kbss_fuses *fuse = vreg->platform_fuses; struct cpr3_corner *corner; struct cpr4_sdelta *sdelta; int i; u32 proc_freq; if (fuse->force_highest_corner) { cpr3_info(vreg, "overriding CPR parameters for corners 0 to %d with quotients and voltages of corner %d\n", vreg->corner_count - 2, vreg->corner_count - 1); corner = &vreg->corner[vreg->corner_count - 1]; for (i = 0; i < vreg->corner_count - 1; i++) { proc_freq = vreg->corner[i].proc_freq; sdelta = vreg->corner[i].sdelta; if (sdelta) { if (sdelta->table) devm_kfree(vreg->thread->ctrl->dev, sdelta->table); if (sdelta->boost_table) devm_kfree(vreg->thread->ctrl->dev, sdelta->boost_table); devm_kfree(vreg->thread->ctrl->dev, sdelta); } vreg->corner[i] = *corner; vreg->corner[i].proc_freq = proc_freq; } return 0; } return 0; }; /** * cprh_kbss_parse_core_count_temp_adj_properties() - load device tree * properties associated with per-corner-band and temperature * voltage adjustments. * @vreg: Pointer to the CPR3 regulator * * Return: 0 on success, errno on failure */ static int cprh_kbss_parse_core_count_temp_adj_properties( struct cpr3_regulator *vreg) { struct cpr3_controller *ctrl = vreg->thread->ctrl; struct device_node *node = vreg->of_node; u32 *temp, *combo_corner_bands, *speed_bin_corner_bands; int rc, i, len, temp_point_count; vreg->allow_core_count_adj = of_find_property(node, "qcom,corner-band-allow-core-count-adjustment", NULL); vreg->allow_temp_adj = of_find_property(node, "qcom,corner-band-allow-temp-adjustment", NULL); if (!vreg->allow_core_count_adj && !vreg->allow_temp_adj) return 0; combo_corner_bands = kcalloc(vreg->fuse_combos_supported, sizeof(*combo_corner_bands), GFP_KERNEL); if (!combo_corner_bands) return -ENOMEM; rc = of_property_read_u32_array(node, "qcom,cpr-corner-bands", combo_corner_bands, vreg->fuse_combos_supported); if (rc == -EOVERFLOW) { /* Single value case */ rc = of_property_read_u32(node, "qcom,cpr-corner-bands", combo_corner_bands); for (i = 1; i < vreg->fuse_combos_supported; i++) combo_corner_bands[i] = combo_corner_bands[0]; } if (rc) { cpr3_err(vreg, "error reading property qcom,cpr-corner-bands, rc=%d\n", rc); kfree(combo_corner_bands); return rc; } vreg->fuse_combo_corner_band_offset = 0; vreg->fuse_combo_corner_band_sum = 0; for (i = 0; i < vreg->fuse_combos_supported; i++) { vreg->fuse_combo_corner_band_sum += combo_corner_bands[i]; if (i < vreg->fuse_combo) vreg->fuse_combo_corner_band_offset += combo_corner_bands[i]; } vreg->corner_band_count = combo_corner_bands[vreg->fuse_combo]; kfree(combo_corner_bands); if (vreg->corner_band_count <= 0 || vreg->corner_band_count > CPRH_KBSS_MAX_CORNER_BAND_COUNT || vreg->corner_band_count > vreg->corner_count) { cpr3_err(vreg, "invalid corner band count %d > %d (max) for %d corners\n", vreg->corner_band_count, CPRH_KBSS_MAX_CORNER_BAND_COUNT, vreg->corner_count); return -EINVAL; } vreg->speed_bin_corner_band_offset = 0; vreg->speed_bin_corner_band_sum = 0; if (vreg->speed_bins_supported > 0) { speed_bin_corner_bands = kcalloc(vreg->speed_bins_supported, sizeof(*speed_bin_corner_bands), GFP_KERNEL); if (!speed_bin_corner_bands) return -ENOMEM; rc = of_property_read_u32_array(node, "qcom,cpr-speed-bin-corner-bands", speed_bin_corner_bands, vreg->speed_bins_supported); if (rc) { cpr3_err(vreg, "error reading property qcom,cpr-speed-bin-corner-bands, rc=%d\n", rc); kfree(speed_bin_corner_bands); return rc; } for (i = 0; i < vreg->speed_bins_supported; i++) { vreg->speed_bin_corner_band_sum += speed_bin_corner_bands[i]; if (i < vreg->speed_bin_fuse) vreg->speed_bin_corner_band_offset += speed_bin_corner_bands[i]; } if (speed_bin_corner_bands[vreg->speed_bin_fuse] != vreg->corner_band_count) { cpr3_err(vreg, "qcom,cpr-corner-bands and qcom,cpr-speed-bin-corner-bands conflict on number of corners bands: %d vs %u\n", vreg->corner_band_count, speed_bin_corner_bands[vreg->speed_bin_fuse]); kfree(speed_bin_corner_bands); return -EINVAL; } kfree(speed_bin_corner_bands); } vreg->corner_band = devm_kcalloc(ctrl->dev, vreg->corner_band_count, sizeof(*vreg->corner_band), GFP_KERNEL); temp = kcalloc(vreg->corner_band_count, sizeof(*temp), GFP_KERNEL); if (!vreg->corner_band || !temp) { rc = -ENOMEM; goto free_temp; } rc = cpr3_parse_corner_band_array_property(vreg, "qcom,cpr-corner-band-map", 1, temp); if (rc) { cpr3_err(vreg, "could not load corner band map, rc=%d\n", rc); goto free_temp; } for (i = 1; i < vreg->corner_band_count; i++) { if (temp[i - 1] > temp[i]) { cpr3_err(vreg, "invalid corner band mapping: band %d corner %d, band %d corner %d\n", i - 1, temp[i - 1], i, temp[i]); rc = -EINVAL; goto free_temp; } } for (i = 0; i < vreg->corner_band_count; i++) vreg->corner_band[i].corner = temp[i] - CPR3_CORNER_OFFSET; if (!of_find_property(ctrl->dev->of_node, "qcom,cpr-temp-point-map", &len)) { /* * Temperature based adjustments are not defined. Single * temperature band is still valid for per-online-core * adjustments. */ ctrl->temp_band_count = 1; rc = 0; goto free_temp; } if (!vreg->allow_temp_adj) { rc = 0; goto free_temp; } temp_point_count = len / sizeof(u32); if (temp_point_count <= 0 || temp_point_count > CPRH_KBSS_MAX_TEMP_POINTS) { cpr3_err(ctrl, "invalid number of temperature points %d > %d (max)\n", temp_point_count, CPRH_KBSS_MAX_TEMP_POINTS); rc = -EINVAL; goto free_temp; } ctrl->temp_points = devm_kcalloc(ctrl->dev, temp_point_count, sizeof(*ctrl->temp_points), GFP_KERNEL); if (!ctrl->temp_points) { rc = -ENOMEM; goto free_temp; } rc = of_property_read_u32_array(ctrl->dev->of_node, "qcom,cpr-temp-point-map", ctrl->temp_points, temp_point_count); if (rc) { cpr3_err(ctrl, "error reading property qcom,cpr-temp-point-map, rc=%d\n", rc); goto free_temp; } for (i = 0; i < temp_point_count; i++) cpr3_debug(ctrl, "Temperature Point %d=%d\n", i, ctrl->temp_points[i]); /* * If t1, t2, and t3 are the temperature points, then the temperature * bands are: (-inf, t1], (t1, t2], (t2, t3], and (t3, inf). */ ctrl->temp_band_count = temp_point_count + 1; cpr3_debug(ctrl, "Number of temp bands=%d\n", ctrl->temp_band_count); rc = of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-initial-temp-band", &ctrl->initial_temp_band); if (rc) { cpr3_err(ctrl, "error reading qcom,cpr-initial-temp-band, rc=%d\n", rc); goto free_temp; } if (ctrl->initial_temp_band >= ctrl->temp_band_count) { cpr3_err(ctrl, "Initial temperature band value %d should be in range [0 - %d]\n", ctrl->initial_temp_band, ctrl->temp_band_count - 1); rc = -EINVAL; goto free_temp; } switch (ctrl->soc_revision) { case SDM660_SOC_ID: ctrl->temp_sensor_id_start = ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID ? SDM660_KBSS_POWER_TEMP_SENSOR_ID_START : SDM660_KBSS_PERFORMANCE_TEMP_SENSOR_ID_START; ctrl->temp_sensor_id_end = ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID ? SDM660_KBSS_POWER_TEMP_SENSOR_ID_END : SDM660_KBSS_PERFORMANCE_TEMP_SENSOR_ID_END; break; case MSM8998_V1_SOC_ID: case MSM8998_V2_SOC_ID: ctrl->temp_sensor_id_start = ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID ? MSM8998_KBSS_POWER_TEMP_SENSOR_ID_START : MSM8998_KBSS_PERFORMANCE_TEMP_SENSOR_ID_START; ctrl->temp_sensor_id_end = ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID ? MSM8998_KBSS_POWER_TEMP_SENSOR_ID_END : MSM8998_KBSS_PERFORMANCE_TEMP_SENSOR_ID_END; break; default: cpr3_err(ctrl, "unsupported soc id = %d\n", ctrl->soc_revision); rc = -EINVAL; goto free_temp; } ctrl->allow_temp_adj = true; free_temp: kfree(temp); return rc; } /** * cprh_kbss_apm_crossover_as_corner() - introduce a corner whose floor, * open-loop, and ceiling voltages correspond to the APM * crossover voltage. * @vreg: Pointer to the CPR3 regulator * * The APM corner is utilized as a crossover corner by OSM and CPRh * hardware to set the VDD supply voltage during the APM switch * routine. * * Return: 0 on success, errno on failure */ static int cprh_kbss_apm_crossover_as_corner(struct cpr3_regulator *vreg) { struct cpr3_controller *ctrl = vreg->thread->ctrl; struct cpr3_corner *corner; if (!ctrl->apm_crossover_volt) { /* APM voltage crossover corner not required. */ return 0; } corner = &vreg->corner[vreg->corner_count]; /* * 0 MHz indicates this corner is not to be * used as active DCVS set point. */ corner->proc_freq = 0; corner->floor_volt = ctrl->apm_crossover_volt; corner->ceiling_volt = ctrl->apm_crossover_volt; corner->open_loop_volt = ctrl->apm_crossover_volt; corner->abs_ceiling_volt = ctrl->apm_crossover_volt; corner->use_open_loop = true; vreg->corner_count++; return 0; } /** * cprh_kbss_mem_acc_crossover_as_corner() - introduce a corner whose floor, * open-loop, and ceiling voltages correspond to the MEM ACC * crossover voltage. * @vreg: Pointer to the CPR3 regulator * * The MEM ACC corner is utilized as a crossover corner by OSM and CPRh * hardware to set the VDD supply voltage during the MEM ACC switch * routine. * * Return: 0 on success, errno on failure */ static int cprh_kbss_mem_acc_crossover_as_corner(struct cpr3_regulator *vreg) { struct cpr3_controller *ctrl = vreg->thread->ctrl; struct cpr3_corner *corner; if (!ctrl->mem_acc_crossover_volt) { /* MEM ACC voltage crossover corner not required. */ return 0; } corner = &vreg->corner[vreg->corner_count]; /* * 0 MHz indicates this corner is not to be * used as active DCVS set point. */ corner->proc_freq = 0; corner->floor_volt = ctrl->mem_acc_crossover_volt; corner->ceiling_volt = ctrl->mem_acc_crossover_volt; corner->open_loop_volt = ctrl->mem_acc_crossover_volt; corner->abs_ceiling_volt = ctrl->mem_acc_crossover_volt; corner->use_open_loop = true; vreg->corner_count++; return 0; } /** * cprh_kbss_set_no_interpolation_quotients() - use the fused target quotient * values for lower frequencies. * @vreg: Pointer to the CPR3 regulator * @volt_adjust: Pointer to array of per-corner closed-loop adjustment * voltages * @volt_adjust_fuse: Pointer to array of per-fuse-corner closed-loop * adjustment voltages * @ro_scale: Pointer to array of per-fuse-corner RO scaling factor * values with units of QUOT/V * * Return: 0 on success, errno on failure */ static int cprh_kbss_set_no_interpolation_quotients(struct cpr3_regulator *vreg, int *volt_adjust, int *volt_adjust_fuse, int *ro_scale) { struct cprh_kbss_fuses *fuse = vreg->platform_fuses; u32 quot, ro; int quot_adjust; int i, fuse_corner; for (i = 0; i < vreg->corner_count; i++) { fuse_corner = vreg->corner[i].cpr_fuse_corner; quot = fuse->target_quot[fuse_corner]; quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner], volt_adjust_fuse[fuse_corner] + volt_adjust[i]); ro = fuse->ro_sel[fuse_corner]; vreg->corner[i].target_quot[ro] = quot + quot_adjust; cpr3_debug(vreg, "corner=%d RO=%u target quot=%u\n", i, ro, quot); if (quot_adjust) cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %u --> %u (%d uV)\n", i, ro, quot, vreg->corner[i].target_quot[ro], volt_adjust_fuse[fuse_corner] + volt_adjust[i]); } return 0; } /** * cprh_kbss_calculate_target_quotients() - calculate the CPR target * quotient for each corner of a CPR3 regulator * @vreg: Pointer to the CPR3 regulator * * If target quotient interpolation is allowed in device tree, then this * function calculates the target quotient for a given corner using linear * interpolation. This interpolation is performed using the processor * frequencies of the lower and higher Fmax corners along with the fused * target quotient and quotient offset of the higher Fmax corner. * * If target quotient interpolation is not allowed, then this function uses * the Fmax fused target quotient for all of the corners associated with a * given fuse corner. * * Return: 0 on success, errno on failure */ static int cprh_kbss_calculate_target_quotients(struct cpr3_regulator *vreg) { struct cprh_kbss_fuses *fuse = vreg->platform_fuses; int rc; bool allow_interpolation; u64 freq_low, freq_high, prev_quot; u64 *quot_low; u64 *quot_high; u32 quot, ro; int i, j, fuse_corner, quot_adjust; int *fmax_corner; int *volt_adjust, *volt_adjust_fuse, *ro_scale; int lowest_fuse_corner, highest_fuse_corner; const char * const *corner_name; switch (vreg->thread->ctrl->soc_revision) { case SDM660_SOC_ID: if (vreg->thread->ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) { corner_name = cprh_sdm660_power_kbss_fuse_corner_name; lowest_fuse_corner = CPRH_SDM660_POWER_KBSS_FUSE_CORNER_LOWSVS; highest_fuse_corner = CPRH_SDM660_POWER_KBSS_FUSE_CORNER_TURBO_L1; } else { corner_name = cprh_sdm660_perf_kbss_fuse_corner_name; lowest_fuse_corner = CPRH_SDM660_PERF_KBSS_FUSE_CORNER_SVS; highest_fuse_corner = CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO_L2; /* speed-bin 3 does not have Turbo_L2 fuse */ if (vreg->speed_bin_fuse == 3) highest_fuse_corner = CPRH_SDM660_PERF_KBSS_FUSE_CORNER_TURBO; } break; case SDM630_SOC_ID: if (vreg->thread->ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) { corner_name = cprh_sdm630_power_kbss_fuse_corner_name; lowest_fuse_corner = CPRH_SDM630_POWER_KBSS_FUSE_CORNER_LOWSVS; highest_fuse_corner = CPRH_SDM630_POWER_KBSS_FUSE_CORNER_TURBO_L1; } else { corner_name = cprh_sdm630_perf_kbss_fuse_corner_name; lowest_fuse_corner = CPRH_SDM630_PERF_KBSS_FUSE_CORNER_LOWSVS; highest_fuse_corner = CPRH_SDM630_PERF_KBSS_FUSE_CORNER_TURBO_L2; } break; case MSM8998_V1_SOC_ID: case MSM8998_V2_SOC_ID: corner_name = cprh_msm8998_kbss_fuse_corner_name; lowest_fuse_corner = CPRH_MSM8998_KBSS_FUSE_CORNER_LOWSVS; highest_fuse_corner = CPRH_MSM8998_KBSS_FUSE_CORNER_TURBO_L1; break; default: cpr3_err(vreg, "unsupported soc id = %d\n", vreg->thread->ctrl->soc_revision); return -EINVAL; } /* Log fused quotient values for debugging purposes. */ cpr3_info(vreg, "fused %8s: quot[%2llu]=%4llu\n", corner_name[lowest_fuse_corner], fuse->ro_sel[lowest_fuse_corner], fuse->target_quot[lowest_fuse_corner]); for (i = lowest_fuse_corner + 1; i <= highest_fuse_corner; i++) cpr3_info(vreg, "fused %8s: quot[%2llu]=%4llu, quot_offset[%2llu]=%4llu\n", corner_name[i], fuse->ro_sel[i], fuse->target_quot[i], fuse->ro_sel[i], fuse->quot_offset[i] * CPRH_KBSS_QUOT_OFFSET_SCALE); allow_interpolation = of_property_read_bool(vreg->of_node, "qcom,allow-quotient-interpolation"); volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust), GFP_KERNEL); volt_adjust_fuse = kcalloc(vreg->fuse_corner_count, sizeof(*volt_adjust_fuse), GFP_KERNEL); ro_scale = kcalloc(vreg->fuse_corner_count, sizeof(*ro_scale), GFP_KERNEL); fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner), GFP_KERNEL); quot_low = kcalloc(vreg->fuse_corner_count, sizeof(*quot_low), GFP_KERNEL); quot_high = kcalloc(vreg->fuse_corner_count, sizeof(*quot_high), GFP_KERNEL); if (!volt_adjust || !volt_adjust_fuse || !ro_scale || !fmax_corner || !quot_low || !quot_high) { rc = -ENOMEM; goto done; } rc = cpr3_parse_closed_loop_voltage_adjustments(vreg, &fuse->ro_sel[0], volt_adjust, volt_adjust_fuse, ro_scale); if (rc) { cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n", rc); goto done; } if (!allow_interpolation) { /* Use fused target quotients for lower frequencies. */ return cprh_kbss_set_no_interpolation_quotients(vreg, volt_adjust, volt_adjust_fuse, ro_scale); } /* Determine highest corner mapped to each fuse corner */ j = vreg->fuse_corner_count - 1; for (i = vreg->corner_count - 1; i >= 0; i--) { if (vreg->corner[i].cpr_fuse_corner == j) { fmax_corner[j] = i; j--; } } if (j >= 0) { cpr3_err(vreg, "invalid fuse corner mapping\n"); rc = -EINVAL; goto done; } /* * Interpolation is not possible for corners mapped to the lowest fuse * corner so use the fuse corner value directly. */ i = lowest_fuse_corner; quot_adjust = cpr3_quot_adjustment(ro_scale[i], volt_adjust_fuse[i]); quot = fuse->target_quot[i] + quot_adjust; quot_high[i] = quot_low[i] = quot; ro = fuse->ro_sel[i]; if (quot_adjust) cpr3_debug(vreg, "adjusted fuse corner %d RO%u target quot: %llu --> %u (%d uV)\n", i, ro, fuse->target_quot[i], quot, volt_adjust_fuse[i]); for (i = 0; i <= fmax_corner[lowest_fuse_corner]; i++) vreg->corner[i].target_quot[ro] = quot; for (i = lowest_fuse_corner + 1; i < vreg->fuse_corner_count; i++) { quot_high[i] = fuse->target_quot[i]; if (fuse->ro_sel[i] == fuse->ro_sel[i - 1]) quot_low[i] = quot_high[i - 1]; else quot_low[i] = quot_high[i] - fuse->quot_offset[i] * CPRH_KBSS_QUOT_OFFSET_SCALE; if (quot_high[i] < quot_low[i]) { cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu; overriding: quot_high[%d]=%llu\n", i, quot_high[i], i, quot_low[i], i, quot_low[i]); quot_high[i] = quot_low[i]; } } /* Perform per-fuse-corner target quotient adjustment */ for (i = 1; i < vreg->fuse_corner_count; i++) { quot_adjust = cpr3_quot_adjustment(ro_scale[i], volt_adjust_fuse[i]); if (quot_adjust) { prev_quot = quot_high[i]; quot_high[i] += quot_adjust; cpr3_debug(vreg, "adjusted fuse corner %d RO%llu target quot: %llu --> %llu (%d uV)\n", i, fuse->ro_sel[i], prev_quot, quot_high[i], volt_adjust_fuse[i]); } if (fuse->ro_sel[i] == fuse->ro_sel[i - 1]) quot_low[i] = quot_high[i - 1]; else quot_low[i] += cpr3_quot_adjustment(ro_scale[i], volt_adjust_fuse[i - 1]); if (quot_high[i] < quot_low[i]) { cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu after adjustment; overriding: quot_high[%d]=%llu\n", i, quot_high[i], i, quot_low[i], i, quot_low[i]); quot_high[i] = quot_low[i]; } } /* Interpolate voltages for the higher fuse corners. */ for (i = 1; i < vreg->fuse_corner_count; i++) { freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq; freq_high = vreg->corner[fmax_corner[i]].proc_freq; ro = fuse->ro_sel[i]; for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++) vreg->corner[j].target_quot[ro] = cpr3_interpolate( freq_low, quot_low[i], freq_high, quot_high[i], vreg->corner[j].proc_freq); } /* Perform per-corner target quotient adjustment */ for (i = 0; i < vreg->corner_count; i++) { fuse_corner = vreg->corner[i].cpr_fuse_corner; ro = fuse->ro_sel[fuse_corner]; quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner], volt_adjust[i]); if (quot_adjust) { prev_quot = vreg->corner[i].target_quot[ro]; vreg->corner[i].target_quot[ro] += quot_adjust; cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %llu --> %u (%d uV)\n", i, ro, prev_quot, vreg->corner[i].target_quot[ro], volt_adjust[i]); } } /* Ensure that target quotients increase monotonically */ for (i = 1; i < vreg->corner_count; i++) { ro = fuse->ro_sel[vreg->corner[i].cpr_fuse_corner]; if (fuse->ro_sel[vreg->corner[i - 1].cpr_fuse_corner] == ro && vreg->corner[i].target_quot[ro] < vreg->corner[i - 1].target_quot[ro]) { cpr3_debug(vreg, "adjusted corner %d RO%u target quot=%u < adjusted corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n", i, ro, vreg->corner[i].target_quot[ro], i - 1, ro, vreg->corner[i - 1].target_quot[ro], i, ro, vreg->corner[i - 1].target_quot[ro]); vreg->corner[i].target_quot[ro] = vreg->corner[i - 1].target_quot[ro]; } } done: kfree(volt_adjust); kfree(volt_adjust_fuse); kfree(ro_scale); kfree(fmax_corner); kfree(quot_low); kfree(quot_high); return rc; } /** * cprh_kbss_print_settings() - print out KBSS CPR configuration settings into * the kernel log for debugging purposes * @vreg: Pointer to the CPR3 regulator */ static void cprh_kbss_print_settings(struct cpr3_regulator *vreg) { struct cpr3_corner *corner; int i; cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n"); for (i = 0; i < vreg->corner_count; i++) { corner = &vreg->corner[i]; cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n", i, corner->proc_freq, corner->cpr_fuse_corner, corner->floor_volt, corner->open_loop_volt, corner->ceiling_volt); } } /** * cprh_kbss_init_thread() - perform steps necessary to initialize the * configuration data for a CPR3 thread * @thread: Pointer to the CPR3 thread * * Return: 0 on success, errno on failure */ static int cprh_kbss_init_thread(struct cpr3_thread *thread) { int rc; rc = cpr3_parse_common_thread_data(thread); if (rc) { cpr3_err(thread->ctrl, "thread %u unable to read CPR thread data from device tree, rc=%d\n", thread->thread_id, rc); return rc; } return 0; } /** * cprh_kbss_init_regulator() - perform all steps necessary to initialize the * configuration data for a CPR3 regulator * @vreg: Pointer to the CPR3 regulator * * Return: 0 on success, errno on failure */ static int cprh_kbss_init_regulator(struct cpr3_regulator *vreg) { struct cprh_kbss_fuses *fuse; int rc; rc = cprh_kbss_read_fuse_data(vreg); if (rc) { cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc); return rc; } fuse = vreg->platform_fuses; rc = cprh_kbss_parse_corner_data(vreg); if (rc) { cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n", rc); return rc; } rc = cprh_kbss_calculate_open_loop_voltages(vreg); if (rc) { cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n", rc); return rc; } rc = cpr3_limit_open_loop_voltages(vreg); if (rc) { cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n", rc); return rc; } cprh_adjust_voltages_for_apm(vreg); cprh_adjust_voltages_for_mem_acc(vreg); cpr3_open_loop_voltage_as_ceiling(vreg); rc = cpr3_limit_floor_voltages(vreg); if (rc) { cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc); return rc; } rc = cprh_kbss_calculate_target_quotients(vreg); if (rc) { cpr3_err(vreg, "unable to calculate target quotients, rc=%d\n", rc); return rc; } rc = cprh_kbss_parse_core_count_temp_adj_properties(vreg); if (rc) { cpr3_err(vreg, "unable to parse core count and temperature adjustment properties, rc=%d\n", rc); return rc; } rc = cpr4_parse_core_count_temp_voltage_adj(vreg, true); if (rc) { cpr3_err(vreg, "unable to parse temperature and core count voltage adjustments, rc=%d\n", rc); return rc; } if (vreg->allow_core_count_adj && (vreg->max_core_count <= 0 || vreg->max_core_count > CPRH_KBSS_CPR_SDELTA_CORE_COUNT)) { cpr3_err(vreg, "qcom,max-core-count has invalid value = %d\n", vreg->max_core_count); return -EINVAL; } rc = cprh_msm8998_partial_binning_override(vreg); if (rc) { cpr3_err(vreg, "unable to override CPR parameters based on partial binning fuse values, rc=%d\n", rc); return rc; } rc = cprh_kbss_apm_crossover_as_corner(vreg); if (rc) { cpr3_err(vreg, "unable to introduce APM voltage crossover corner, rc=%d\n", rc); return rc; } rc = cprh_kbss_mem_acc_crossover_as_corner(vreg); if (rc) { cpr3_err(vreg, "unable to introduce MEM ACC voltage crossover corner, rc=%d\n", rc); return rc; } cprh_kbss_print_settings(vreg); return 0; } /** * cprh_kbss_init_aging() - perform KBSS CPRh controller specific aging * initializations * @ctrl: Pointer to the CPR3 controller * * Return: 0 on success, errno on failure */ static int cprh_kbss_init_aging(struct cpr3_controller *ctrl) { struct cprh_kbss_fuses *fuse = NULL; struct cpr3_regulator *vreg = NULL; u32 aging_ro_scale; int i, j, rc = 0; for (i = 0; i < ctrl->thread_count; i++) { for (j = 0; j < ctrl->thread[i].vreg_count; j++) { if (ctrl->thread[i].vreg[j].aging_allowed) { ctrl->aging_required = true; vreg = &ctrl->thread[i].vreg[j]; fuse = vreg->platform_fuses; break; } } } if (!ctrl->aging_required || !fuse || !vreg) return 0; rc = cpr3_parse_array_property(vreg, "qcom,cpr-aging-ro-scaling-factor", 1, &aging_ro_scale); if (rc) return rc; if (aging_ro_scale == 0) { cpr3_err(ctrl, "aging RO scaling factor is invalid: %u\n", aging_ro_scale); return -EINVAL; } ctrl->aging_vdd_mode = REGULATOR_MODE_NORMAL; ctrl->aging_complete_vdd_mode = REGULATOR_MODE_IDLE; ctrl->aging_sensor_count = 1; ctrl->aging_sensor = devm_kzalloc(ctrl->dev, sizeof(*ctrl->aging_sensor), GFP_KERNEL); if (!ctrl->aging_sensor) return -ENOMEM; switch (ctrl->soc_revision) { case SDM660_SOC_ID: if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) { ctrl->aging_sensor->sensor_id = SDM660_KBSS_POWER_AGING_SENSOR_ID; ctrl->aging_sensor->bypass_mask[0] = SDM660_KBSS_POWER_AGING_BYPASS_MASK0; } else { ctrl->aging_sensor->sensor_id = SDM660_KBSS_PERFORMANCE_AGING_SENSOR_ID; ctrl->aging_sensor->bypass_mask[0] = SDM660_KBSS_PERFORMANCE_AGING_BYPASS_MASK0; } break; case MSM8998_V1_SOC_ID: case MSM8998_V2_SOC_ID: if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) { ctrl->aging_sensor->sensor_id = MSM8998_KBSS_POWER_AGING_SENSOR_ID; ctrl->aging_sensor->bypass_mask[0] = MSM8998_KBSS_POWER_AGING_BYPASS_MASK0; } else { ctrl->aging_sensor->sensor_id = MSM8998_KBSS_PERFORMANCE_AGING_SENSOR_ID; ctrl->aging_sensor->bypass_mask[0] = MSM8998_KBSS_PERFORMANCE_AGING_BYPASS_MASK0; } break; default: cpr3_err(ctrl, "unsupported soc id = %d\n", ctrl->soc_revision); return -EINVAL; } ctrl->aging_sensor->ro_scale = aging_ro_scale; ctrl->aging_sensor->init_quot_diff = cpr3_convert_open_loop_voltage_fuse(0, CPRH_KBSS_AGING_INIT_QUOT_DIFF_SCALE, fuse->aging_init_quot_diff, CPRH_KBSS_AGING_INIT_QUOT_DIFF_SIZE); cpr3_debug(ctrl, "sensor %u aging init quotient diff = %d, aging RO scale = %u QUOT/V\n", ctrl->aging_sensor->sensor_id, ctrl->aging_sensor->init_quot_diff, ctrl->aging_sensor->ro_scale); return 0; } /** * cprh_kbss_init_controller() - perform KBSS CPRh controller specific * initializations * @ctrl: Pointer to the CPR3 controller * * Return: 0 on success, errno on failure */ static int cprh_kbss_init_controller(struct cpr3_controller *ctrl) { int rc; ctrl->ctrl_type = CPR_CTRL_TYPE_CPRH; rc = cpr3_parse_common_ctrl_data(ctrl); if (rc) { if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n", rc); return rc; } rc = of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-controller-id", &ctrl->ctrl_id); if (rc) { cpr3_err(ctrl, "could not read DT property qcom,cpr-controller-id, rc=%d\n", rc); return rc; } if (ctrl->ctrl_id < CPRH_KBSS_MIN_CONTROLLER_ID || ctrl->ctrl_id > CPRH_KBSS_MAX_CONTROLLER_ID) { cpr3_err(ctrl, "invalid qcom,cpr-controller-id specified\n"); return -EINVAL; } rc = of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-down-error-step-limit", &ctrl->down_error_step_limit); if (rc) { cpr3_err(ctrl, "error reading qcom,cpr-down-error-step-limit, rc=%d\n", rc); return rc; } rc = of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-up-error-step-limit", &ctrl->up_error_step_limit); if (rc) { cpr3_err(ctrl, "error reading qcom,cpr-up-error-step-limit, rc=%d\n", rc); return rc; } rc = of_property_read_u32(ctrl->dev->of_node, "qcom,voltage-base", &ctrl->base_volt); if (rc) { cpr3_err(ctrl, "error reading property qcom,voltage-base, rc=%d\n", rc); return rc; } rc = of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-up-down-delay-time", &ctrl->up_down_delay_time); if (rc) { cpr3_err(ctrl, "error reading property qcom,cpr-up-down-delay-time, rc=%d\n", rc); return rc; } rc = of_property_read_u32(ctrl->dev->of_node, "qcom,apm-threshold-voltage", &ctrl->apm_threshold_volt); if (rc) { cpr3_debug(ctrl, "qcom,apm-threshold-voltage not specified\n"); } else { rc = of_property_read_u32(ctrl->dev->of_node, "qcom,apm-crossover-voltage", &ctrl->apm_crossover_volt); if (rc) { cpr3_err(ctrl, "error reading property qcom,apm-crossover-voltage, rc=%d\n", rc); return rc; } } of_property_read_u32(ctrl->dev->of_node, "qcom,apm-hysteresis-voltage", &ctrl->apm_adj_volt); ctrl->apm_adj_volt = CPR3_ROUND(ctrl->apm_adj_volt, ctrl->step_volt); ctrl->saw_use_unit_mV = of_property_read_bool(ctrl->dev->of_node, "qcom,cpr-saw-use-unit-mV"); rc = of_property_read_u32(ctrl->dev->of_node, "qcom,mem-acc-threshold-voltage", &ctrl->mem_acc_threshold_volt); if (!rc) { ctrl->mem_acc_threshold_volt = CPR3_ROUND(ctrl->mem_acc_threshold_volt, ctrl->step_volt); rc = of_property_read_u32(ctrl->dev->of_node, "qcom,mem-acc-crossover-voltage", &ctrl->mem_acc_crossover_volt); if (rc) { cpr3_err(ctrl, "error reading property qcom,mem-acc-crossover-voltage, rc=%d\n", rc); return rc; } ctrl->mem_acc_crossover_volt = CPR3_ROUND(ctrl->mem_acc_crossover_volt, ctrl->step_volt); } /* * Use fixed step quotient if specified otherwise use dynamically * calculated per RO step quotient */ of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-step-quot-fixed", &ctrl->step_quot_fixed); ctrl->use_dynamic_step_quot = !ctrl->step_quot_fixed; of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-voltage-settling-time", &ctrl->voltage_settling_time); of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-corner-switch-delay-time", &ctrl->corner_switch_delay_time); switch (ctrl->soc_revision) { case SDM660_SOC_ID: if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) ctrl->sensor_count = SDM660_KBSS_POWER_CPR_SENSOR_COUNT; else ctrl->sensor_count = SDM660_KBSS_PERFORMANCE_CPR_SENSOR_COUNT; break; case SDM630_SOC_ID: if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) ctrl->sensor_count = SDM630_KBSS_POWER_CPR_SENSOR_COUNT; else ctrl->sensor_count = SDM630_KBSS_PERFORMANCE_CPR_SENSOR_COUNT; break; case MSM8998_V1_SOC_ID: case MSM8998_V2_SOC_ID: if (ctrl->ctrl_id == CPRH_KBSS_POWER_CLUSTER_ID) ctrl->sensor_count = MSM8998_KBSS_POWER_CPR_SENSOR_COUNT; else ctrl->sensor_count = MSM8998_KBSS_PERFORMANCE_CPR_SENSOR_COUNT; break; default: cpr3_err(ctrl, "unsupported soc id = %d\n", ctrl->soc_revision); return -EINVAL; } /* * KBSS only has one thread (0) per controller so the zeroed * array does not need further modification. */ ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count, sizeof(*ctrl->sensor_owner), GFP_KERNEL); if (!ctrl->sensor_owner) return -ENOMEM; ctrl->cpr_clock_rate = CPRH_KBSS_CPR_CLOCK_RATE; ctrl->supports_hw_closed_loop = true; ctrl->use_hw_closed_loop = of_property_read_bool(ctrl->dev->of_node, "qcom,cpr-hw-closed-loop"); return 0; } /** * cprh_kbss_populate_opp_table() - populate an Operating Performance Point * table with the frequencies associated with each corner. * This table may be used to resolve corner to frequency to * open-loop voltage mappings. * @pdev: Pointer to the platform device * * Return: 0 on success, errno on failure */ static int cprh_kbss_populate_opp_table(struct cpr3_controller *ctrl) { struct device *dev = ctrl->dev; struct cpr3_regulator *vreg = &ctrl->thread[0].vreg[0]; struct cpr3_corner *corner; int rc, i; for (i = 0; i < vreg->corner_count; i++) { corner = &vreg->corner[i]; if (!corner->proc_freq) { /* * 0 MHz indicates this corner is not to be * used as active DCVS set point. Don't add it * to the OPP table. */ continue; } rc = dev_pm_opp_add(dev, corner->proc_freq, i + 1); if (rc) { cpr3_err(ctrl, "could not add OPP for corner %d with frequency %u MHz, rc=%d\n", i + 1, corner->proc_freq, rc); return rc; } } return 0; } static int cprh_kbss_regulator_suspend(struct platform_device *pdev, pm_message_t state) { struct cpr3_controller *ctrl = platform_get_drvdata(pdev); return cpr3_regulator_suspend(ctrl); } static int cprh_kbss_regulator_resume(struct platform_device *pdev) { struct cpr3_controller *ctrl = platform_get_drvdata(pdev); return cpr3_regulator_resume(ctrl); } /* Data corresponds to the SoC revision */ static const struct of_device_id cprh_regulator_match_table[] = { { .compatible = "qcom,cprh-msm8998-v1-kbss-regulator", .data = (void *)(uintptr_t)MSM8998_V1_SOC_ID, }, { .compatible = "qcom,cprh-msm8998-v2-kbss-regulator", .data = (void *)(uintptr_t)MSM8998_V2_SOC_ID, }, { .compatible = "qcom,cprh-msm8998-kbss-regulator", .data = (void *)(uintptr_t)MSM8998_V2_SOC_ID, }, { .compatible = "qcom,cprh-sdm660-kbss-regulator", .data = (void *)(uintptr_t)SDM660_SOC_ID, }, { .compatible = "qcom,cprh-sdm630-kbss-regulator", .data = (void *)(uintptr_t)SDM630_SOC_ID, }, {} }; static int cprh_kbss_regulator_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct of_device_id *match; struct cpr3_controller *ctrl; int rc; if (!dev->of_node) { dev_err(dev, "Device tree node is missing\n"); return -EINVAL; } ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL); if (!ctrl) return -ENOMEM; ctrl->dev = dev; ctrl->cpr_allowed_hw = true; rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name", &ctrl->name); if (rc) { cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n", rc); return rc; } match = of_match_node(cprh_regulator_match_table, dev->of_node); if (match) ctrl->soc_revision = (uintptr_t)match->data; else cpr3_err(ctrl, "could not find compatible string match\n"); rc = cpr3_map_fuse_base(ctrl, pdev); if (rc) { cpr3_err(ctrl, "could not map fuse base address\n"); return rc; } rc = cpr3_allocate_threads(ctrl, 0, 0); if (rc) { cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n", rc); return rc; } if (ctrl->thread_count != 1) { cpr3_err(ctrl, "expected 1 thread but found %d\n", ctrl->thread_count); return -EINVAL; } else if (ctrl->thread[0].vreg_count != 1) { cpr3_err(ctrl, "expected 1 regulator but found %d\n", ctrl->thread[0].vreg_count); return -EINVAL; } rc = cprh_kbss_init_controller(ctrl); if (rc) { if (rc != -EPROBE_DEFER) cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n", rc); return rc; } rc = cprh_kbss_init_thread(&ctrl->thread[0]); if (rc) { cpr3_err(ctrl, "thread initialization failed, rc=%d\n", rc); return rc; } rc = cprh_kbss_init_regulator(&ctrl->thread[0].vreg[0]); if (rc) { cpr3_err(&ctrl->thread[0].vreg[0], "regulator initialization failed, rc=%d\n", rc); return rc; } rc = cprh_kbss_init_aging(ctrl); if (rc) { cpr3_err(ctrl, "failed to initialize aging configurations, rc=%d\n", rc); return rc; } platform_set_drvdata(pdev, ctrl); rc = cprh_kbss_populate_opp_table(ctrl); if (rc) panic("cprh-kbss-regulator OPP table initialization failed\n"); return cpr3_regulator_register(pdev, ctrl); } static int cprh_kbss_regulator_remove(struct platform_device *pdev) { struct cpr3_controller *ctrl = platform_get_drvdata(pdev); return cpr3_regulator_unregister(ctrl); } static struct platform_driver cprh_kbss_regulator_driver = { .driver = { .name = "qcom,cprh-kbss-regulator", .of_match_table = cprh_regulator_match_table, .owner = THIS_MODULE, }, .probe = cprh_kbss_regulator_probe, .remove = cprh_kbss_regulator_remove, .suspend = cprh_kbss_regulator_suspend, .resume = cprh_kbss_regulator_resume, }; static int cpr_regulator_init(void) { return platform_driver_register(&cprh_kbss_regulator_driver); } static void cpr_regulator_exit(void) { platform_driver_unregister(&cprh_kbss_regulator_driver); } MODULE_DESCRIPTION("CPRh KBSS regulator driver"); MODULE_LICENSE("GPL v2"); arch_initcall(cpr_regulator_init); module_exit(cpr_regulator_exit);