/* * Copyright (c) 2013-2016, Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #ifdef CONFIG_QCOM_BUS_SCALING #include #endif #include #include #include #include "ufshcd.h" #include "ufshcd-pltfrm.h" #include "unipro.h" #include "ufs-qcom.h" #include "ufshci.h" #include "ufs_quirks.h" #include "ufs-qcom-ice.h" #include "ufs-qcom-debugfs.h" #include /* TODO: further tuning for this parameter may be required */ #define UFS_QCOM_PM_QOS_UNVOTE_TIMEOUT_US (10000) /* microseconds */ #define UFS_QCOM_DEFAULT_DBG_PRINT_EN \ (UFS_QCOM_DBG_PRINT_REGS_EN | UFS_QCOM_DBG_PRINT_TEST_BUS_EN) enum { TSTBUS_UAWM, TSTBUS_UARM, TSTBUS_TXUC, TSTBUS_RXUC, TSTBUS_DFC, TSTBUS_TRLUT, TSTBUS_TMRLUT, TSTBUS_OCSC, TSTBUS_UTP_HCI, TSTBUS_COMBINED, TSTBUS_WRAPPER, TSTBUS_UNIPRO, TSTBUS_MAX, }; static struct ufs_qcom_host *ufs_qcom_hosts[MAX_UFS_QCOM_HOSTS]; static int ufs_qcom_update_sec_cfg(struct ufs_hba *hba, bool restore_sec_cfg); static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host); static int ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(struct ufs_hba *hba, u32 clk_cycles); static void ufs_qcom_pm_qos_suspend(struct ufs_qcom_host *host); static void ufs_qcom_dump_regs(struct ufs_hba *hba, int offset, int len, char *prefix) { print_hex_dump(KERN_ERR, prefix, len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE, 16, 4, hba->mmio_base + offset, len * 4, false); } static void ufs_qcom_dump_regs_wrapper(struct ufs_hba *hba, int offset, int len, char *prefix, void *priv) { ufs_qcom_dump_regs(hba, offset, len, prefix); } static int ufs_qcom_get_connected_tx_lanes(struct ufs_hba *hba, u32 *tx_lanes) { int err = 0; err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), tx_lanes); if (err) dev_err(hba->dev, "%s: couldn't read PA_CONNECTEDTXDATALANES %d\n", __func__, err); return err; } static int ufs_qcom_host_clk_get(struct device *dev, const char *name, struct clk **clk_out) { struct clk *clk; int err = 0; clk = devm_clk_get(dev, name); if (IS_ERR(clk)) { err = PTR_ERR(clk); dev_err(dev, "%s: failed to get %s err %d", __func__, name, err); } else { *clk_out = clk; } return err; } static int ufs_qcom_host_clk_enable(struct device *dev, const char *name, struct clk *clk) { int err = 0; err = clk_prepare_enable(clk); if (err) dev_err(dev, "%s: %s enable failed %d\n", __func__, name, err); return err; } static void ufs_qcom_disable_lane_clks(struct ufs_qcom_host *host) { if (!host->is_lane_clks_enabled) return; if (host->tx_l1_sync_clk) clk_disable_unprepare(host->tx_l1_sync_clk); clk_disable_unprepare(host->tx_l0_sync_clk); if (host->rx_l1_sync_clk) clk_disable_unprepare(host->rx_l1_sync_clk); clk_disable_unprepare(host->rx_l0_sync_clk); host->is_lane_clks_enabled = false; } static int ufs_qcom_enable_lane_clks(struct ufs_qcom_host *host) { int err = 0; struct device *dev = host->hba->dev; if (host->is_lane_clks_enabled) return 0; err = ufs_qcom_host_clk_enable(dev, "rx_lane0_sync_clk", host->rx_l0_sync_clk); if (err) goto out; err = ufs_qcom_host_clk_enable(dev, "tx_lane0_sync_clk", host->tx_l0_sync_clk); if (err) goto disable_rx_l0; if (host->hba->lanes_per_direction > 1) { err = ufs_qcom_host_clk_enable(dev, "rx_lane1_sync_clk", host->rx_l1_sync_clk); if (err) goto disable_tx_l0; /* The tx lane1 clk could be muxed, hence keep this optional */ if (host->tx_l1_sync_clk) ufs_qcom_host_clk_enable(dev, "tx_lane1_sync_clk", host->tx_l1_sync_clk); } host->is_lane_clks_enabled = true; goto out; disable_tx_l0: clk_disable_unprepare(host->tx_l0_sync_clk); disable_rx_l0: clk_disable_unprepare(host->rx_l0_sync_clk); out: return err; } static int ufs_qcom_init_lane_clks(struct ufs_qcom_host *host) { int err = 0; struct device *dev = host->hba->dev; err = ufs_qcom_host_clk_get(dev, "rx_lane0_sync_clk", &host->rx_l0_sync_clk); if (err) goto out; err = ufs_qcom_host_clk_get(dev, "tx_lane0_sync_clk", &host->tx_l0_sync_clk); if (err) goto out; /* In case of single lane per direction, don't read lane1 clocks */ if (host->hba->lanes_per_direction > 1) { err = ufs_qcom_host_clk_get(dev, "rx_lane1_sync_clk", &host->rx_l1_sync_clk); if (err) goto out; /* The tx lane1 clk could be muxed, hence keep this optional */ ufs_qcom_host_clk_get(dev, "tx_lane1_sync_clk", &host->tx_l1_sync_clk); } out: return err; } static int ufs_qcom_check_hibern8(struct ufs_hba *hba) { int err; u32 tx_fsm_val = 0; unsigned long timeout = jiffies + msecs_to_jiffies(HBRN8_POLL_TOUT_MS); do { err = ufshcd_dme_get(hba, UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE, UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), &tx_fsm_val); if (err || tx_fsm_val == TX_FSM_HIBERN8) break; /* sleep for max. 200us */ usleep_range(100, 200); } while (time_before(jiffies, timeout)); /* * we might have scheduled out for long during polling so * check the state again. */ if (time_after(jiffies, timeout)) err = ufshcd_dme_get(hba, UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE, UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), &tx_fsm_val); if (err) { dev_err(hba->dev, "%s: unable to get TX_FSM_STATE, err %d\n", __func__, err); } else if (tx_fsm_val != TX_FSM_HIBERN8) { err = tx_fsm_val; dev_err(hba->dev, "%s: invalid TX_FSM_STATE = %d\n", __func__, err); } return err; } static void ufs_qcom_select_unipro_mode(struct ufs_qcom_host *host) { ufshcd_rmwl(host->hba, QUNIPRO_SEL, ufs_qcom_cap_qunipro(host) ? QUNIPRO_SEL : 0, REG_UFS_CFG1); /* make sure above configuration is applied before we return */ mb(); } static int ufs_qcom_power_up_sequence(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; int ret = 0; bool is_rate_B = (UFS_QCOM_LIMIT_HS_RATE == PA_HS_MODE_B) ? true : false; /* Assert PHY reset and apply PHY calibration values */ ufs_qcom_assert_reset(hba); /* provide 1ms delay to let the reset pulse propagate */ usleep_range(1000, 1100); ret = ufs_qcom_phy_calibrate_phy(phy, is_rate_B); if (ret) { dev_err(hba->dev, "%s: ufs_qcom_phy_calibrate_phy() failed, ret = %d\n", __func__, ret); goto out; } /* De-assert PHY reset and start serdes */ ufs_qcom_deassert_reset(hba); /* * after reset deassertion, phy will need all ref clocks, * voltage, current to settle down before starting serdes. */ usleep_range(1000, 1100); ret = ufs_qcom_phy_start_serdes(phy); if (ret) { dev_err(hba->dev, "%s: ufs_qcom_phy_start_serdes() failed, ret = %d\n", __func__, ret); goto out; } ret = ufs_qcom_phy_is_pcs_ready(phy); if (ret) dev_err(hba->dev, "%s: is_physical_coding_sublayer_ready() failed, ret = %d\n", __func__, ret); ufs_qcom_select_unipro_mode(host); out: return ret; } /* * The UTP controller has a number of internal clock gating cells (CGCs). * Internal hardware sub-modules within the UTP controller control the CGCs. * Hardware CGCs disable the clock to inactivate UTP sub-modules not involved * in a specific operation, UTP controller CGCs are by default disabled and * this function enables them (after every UFS link startup) to save some power * leakage. * * UFS host controller v3.0.0 onwards has internal clock gating mechanism * in Qunipro, enable them to save additional power. */ static int ufs_qcom_enable_hw_clk_gating(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int err = 0; /* Enable UTP internal clock gating */ ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_CFG2) | REG_UFS_CFG2_CGC_EN_ALL, REG_UFS_CFG2); /* Ensure that HW clock gating is enabled before next operations */ mb(); /* Enable Qunipro internal clock gating if supported */ if (!ufs_qcom_cap_qunipro_clk_gating(host)) goto out; /* Enable all the mask bits */ err = ufshcd_dme_rmw(hba, DL_VS_CLK_CFG_MASK, DL_VS_CLK_CFG_MASK, DL_VS_CLK_CFG); if (err) goto out; err = ufshcd_dme_rmw(hba, PA_VS_CLK_CFG_REG_MASK, PA_VS_CLK_CFG_REG_MASK, PA_VS_CLK_CFG_REG); if (err) goto out; err = ufshcd_dme_rmw(hba, DME_VS_CORE_CLK_CTRL_DME_HW_CGC_EN, DME_VS_CORE_CLK_CTRL_DME_HW_CGC_EN, DME_VS_CORE_CLK_CTRL); out: return err; } static int ufs_qcom_hce_enable_notify(struct ufs_hba *hba, enum ufs_notify_change_status status) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int err = 0; switch (status) { case PRE_CHANGE: ufs_qcom_power_up_sequence(hba); /* * The PHY PLL output is the source of tx/rx lane symbol * clocks, hence, enable the lane clocks only after PHY * is initialized. */ err = ufs_qcom_enable_lane_clks(host); if (!err && host->ice.pdev) { err = ufs_qcom_ice_init(host); if (err) { dev_err(hba->dev, "%s: ICE init failed (%d)\n", __func__, err); err = -EINVAL; } } break; case POST_CHANGE: /* check if UFS PHY moved from DISABLED to HIBERN8 */ err = ufs_qcom_check_hibern8(hba); break; default: dev_err(hba->dev, "%s: invalid status %d\n", __func__, status); err = -EINVAL; break; } return err; } /** * Returns zero for success and non-zero in case of a failure */ static int ufs_qcom_cfg_timers(struct ufs_hba *hba, u32 gear, u32 hs, u32 rate, bool update_link_startup_timer) { int ret = 0; struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct ufs_clk_info *clki; u32 core_clk_period_in_ns; u32 tx_clk_cycles_per_us = 0; unsigned long core_clk_rate = 0; u32 core_clk_cycles_per_us = 0; static u32 pwm_fr_table[][2] = { {UFS_PWM_G1, 0x1}, {UFS_PWM_G2, 0x1}, {UFS_PWM_G3, 0x1}, {UFS_PWM_G4, 0x1}, }; static u32 hs_fr_table_rA[][2] = { {UFS_HS_G1, 0x1F}, {UFS_HS_G2, 0x3e}, {UFS_HS_G3, 0x7D}, }; static u32 hs_fr_table_rB[][2] = { {UFS_HS_G1, 0x24}, {UFS_HS_G2, 0x49}, {UFS_HS_G3, 0x92}, }; /* * The Qunipro controller does not use following registers: * SYS1CLK_1US_REG, TX_SYMBOL_CLK_1US_REG, CLK_NS_REG & * UFS_REG_PA_LINK_STARTUP_TIMER * But UTP controller uses SYS1CLK_1US_REG register for Interrupt * Aggregation / Auto hibern8 logic. */ if (ufs_qcom_cap_qunipro(host) && (!(ufshcd_is_intr_aggr_allowed(hba) || ufshcd_is_auto_hibern8_supported(hba)))) goto out; if (gear == 0) { dev_err(hba->dev, "%s: invalid gear = %d\n", __func__, gear); goto out_error; } list_for_each_entry(clki, &hba->clk_list_head, list) { if (!strcmp(clki->name, "core_clk")) core_clk_rate = clk_get_rate(clki->clk); } /* If frequency is smaller than 1MHz, set to 1MHz */ if (core_clk_rate < DEFAULT_CLK_RATE_HZ) core_clk_rate = DEFAULT_CLK_RATE_HZ; core_clk_cycles_per_us = core_clk_rate / USEC_PER_SEC; if (ufshcd_readl(hba, REG_UFS_SYS1CLK_1US) != core_clk_cycles_per_us) { ufshcd_writel(hba, core_clk_cycles_per_us, REG_UFS_SYS1CLK_1US); /* * make sure above write gets applied before we return from * this function. */ mb(); } if (ufs_qcom_cap_qunipro(host)) goto out; core_clk_period_in_ns = NSEC_PER_SEC / core_clk_rate; core_clk_period_in_ns <<= OFFSET_CLK_NS_REG; core_clk_period_in_ns &= MASK_CLK_NS_REG; switch (hs) { case FASTAUTO_MODE: case FAST_MODE: if (rate == PA_HS_MODE_A) { if (gear > ARRAY_SIZE(hs_fr_table_rA)) { dev_err(hba->dev, "%s: index %d exceeds table size %zu\n", __func__, gear, ARRAY_SIZE(hs_fr_table_rA)); goto out_error; } tx_clk_cycles_per_us = hs_fr_table_rA[gear-1][1]; } else if (rate == PA_HS_MODE_B) { if (gear > ARRAY_SIZE(hs_fr_table_rB)) { dev_err(hba->dev, "%s: index %d exceeds table size %zu\n", __func__, gear, ARRAY_SIZE(hs_fr_table_rB)); goto out_error; } tx_clk_cycles_per_us = hs_fr_table_rB[gear-1][1]; } else { dev_err(hba->dev, "%s: invalid rate = %d\n", __func__, rate); goto out_error; } break; case SLOWAUTO_MODE: case SLOW_MODE: if (gear > ARRAY_SIZE(pwm_fr_table)) { dev_err(hba->dev, "%s: index %d exceeds table size %zu\n", __func__, gear, ARRAY_SIZE(pwm_fr_table)); goto out_error; } tx_clk_cycles_per_us = pwm_fr_table[gear-1][1]; break; case UNCHANGED: default: dev_err(hba->dev, "%s: invalid mode = %d\n", __func__, hs); goto out_error; } if (ufshcd_readl(hba, REG_UFS_TX_SYMBOL_CLK_NS_US) != (core_clk_period_in_ns | tx_clk_cycles_per_us)) { /* this register 2 fields shall be written at once */ ufshcd_writel(hba, core_clk_period_in_ns | tx_clk_cycles_per_us, REG_UFS_TX_SYMBOL_CLK_NS_US); /* * make sure above write gets applied before we return from * this function. */ mb(); } if (update_link_startup_timer) { ufshcd_writel(hba, ((core_clk_rate / MSEC_PER_SEC) * 100), REG_UFS_PA_LINK_STARTUP_TIMER); /* * make sure that this configuration is applied before * we return */ mb(); } goto out; out_error: ret = -EINVAL; out: return ret; } static int ufs_qcom_link_startup_pre_change(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; u32 unipro_ver; int err = 0; if (ufs_qcom_cfg_timers(hba, UFS_PWM_G1, SLOWAUTO_MODE, 0, true)) { dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n", __func__); err = -EINVAL; goto out; } /* make sure RX LineCfg is enabled before link startup */ err = ufs_qcom_phy_ctrl_rx_linecfg(phy, true); if (err) goto out; if (ufs_qcom_cap_qunipro(host)) { /* * set unipro core clock cycles to 150 & clear clock divider */ err = ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba, 150); if (err) goto out; } err = ufs_qcom_enable_hw_clk_gating(hba); if (err) goto out; /* * Some UFS devices (and may be host) have issues if LCC is * enabled. So we are setting PA_Local_TX_LCC_Enable to 0 * before link startup which will make sure that both host * and device TX LCC are disabled once link startup is * completed. */ unipro_ver = ufshcd_get_local_unipro_ver(hba); if (unipro_ver != UFS_UNIPRO_VER_1_41) err = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_LOCAL_TX_LCC_ENABLE), 0); if (err) goto out; if (!ufs_qcom_cap_qunipro_clk_gating(host)) goto out; /* Enable all the mask bits */ err = ufshcd_dme_rmw(hba, SAVECONFIGTIME_MODE_MASK, SAVECONFIGTIME_MODE_MASK, PA_VS_CONFIG_REG1); out: return err; } static int ufs_qcom_link_startup_post_change(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; u32 tx_lanes; int err = 0; err = ufs_qcom_get_connected_tx_lanes(hba, &tx_lanes); if (err) goto out; err = ufs_qcom_phy_set_tx_lane_enable(phy, tx_lanes); if (err) { dev_err(hba->dev, "%s: ufs_qcom_phy_set_tx_lane_enable failed\n", __func__); goto out; } /* * Some UFS devices send incorrect LineCfg data as part of power mode * change sequence which may cause host PHY to go into bad state. * Disabling Rx LineCfg of host PHY should help avoid this. */ if (ufshcd_get_local_unipro_ver(hba) == UFS_UNIPRO_VER_1_41) err = ufs_qcom_phy_ctrl_rx_linecfg(phy, false); if (err) { dev_err(hba->dev, "%s: ufs_qcom_phy_ctrl_rx_linecfg failed\n", __func__); goto out; } /* * UFS controller has *clk_req output to GCC, for each one if the clocks * entering it. When *clk_req for a specific clock is de-asserted, * a corresponding clock from GCC is stopped. UFS controller de-asserts * *clk_req outputs when it is in Auto Hibernate state only if the * Clock request feature is enabled. * Enable the Clock request feature: * - Enable HW clock control for UFS clocks in GCC (handled by the * clock driver as part of clk_prepare_enable). * - Set the AH8_CFG.*CLK_REQ register bits to 1. */ if (ufshcd_is_auto_hibern8_supported(hba)) ufshcd_writel(hba, ufshcd_readl(hba, UFS_AH8_CFG) | UFS_HW_CLK_CTRL_EN, UFS_AH8_CFG); /* * Make sure clock request feature gets enabled for HW clk gating * before further operations. */ mb(); out: return err; } static int ufs_qcom_link_startup_notify(struct ufs_hba *hba, enum ufs_notify_change_status status) { int err = 0; switch (status) { case PRE_CHANGE: err = ufs_qcom_link_startup_pre_change(hba); break; case POST_CHANGE: err = ufs_qcom_link_startup_post_change(hba); break; default: break; } return err; } static int ufs_qcom_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; int ret = 0; if (ufs_qcom_is_link_off(hba)) { /* * Disable the tx/rx lane symbol clocks before PHY is * powered down as the PLL source should be disabled * after downstream clocks are disabled. */ ufs_qcom_disable_lane_clks(host); phy_power_off(phy); ret = ufs_qcom_ice_suspend(host); if (ret) dev_err(hba->dev, "%s: failed ufs_qcom_ice_suspend %d\n", __func__, ret); /* Assert PHY soft reset */ ufs_qcom_assert_reset(hba); goto out; } /* * If UniPro link is not active, PHY ref_clk, main PHY analog power * rail and low noise analog power rail for PLL can be switched off. */ if (!ufs_qcom_is_link_active(hba)) { ufs_qcom_disable_lane_clks(host); phy_power_off(phy); ufs_qcom_ice_suspend(host); } /* Unvote PM QoS */ ufs_qcom_pm_qos_suspend(host); out: return ret; } static int ufs_qcom_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; int err; err = phy_power_on(phy); if (err) { dev_err(hba->dev, "%s: failed enabling regs, err = %d\n", __func__, err); goto out; } err = ufs_qcom_enable_lane_clks(host); if (err) goto out; err = ufs_qcom_ice_resume(host); if (err) { dev_err(hba->dev, "%s: ufs_qcom_ice_resume failed, err = %d\n", __func__, err); goto out; } hba->is_sys_suspended = false; out: return err; } static int ufs_qcom_full_reset(struct ufs_hba *hba) { struct ufs_clk_info *clki; int ret = -ENOTSUPP; list_for_each_entry(clki, &hba->clk_list_head, list) { if (!strcmp(clki->name, "core_clk")) { ret = clk_reset(clki->clk, CLK_RESET_ASSERT); if (ret) goto out; /* Very small delay, per the documented requirement */ usleep_range(1, 2); ret = clk_reset(clki->clk, CLK_RESET_DEASSERT); break; } } out: return ret; } #ifdef CONFIG_SCSI_UFS_QCOM_ICE static int ufs_qcom_crypto_req_setup(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, u8 *cc_index, bool *enable, u64 *dun) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct request *req; int ret; if (lrbp->cmd && lrbp->cmd->request) req = lrbp->cmd->request; else return 0; /* Use request LBA as the DUN value */ if (req->bio) *dun = req->bio->bi_iter.bi_sector; ret = ufs_qcom_ice_req_setup(host, lrbp->cmd, cc_index, enable); return ret; } static int ufs_qcom_crytpo_engine_cfg_start(struct ufs_hba *hba, unsigned int task_tag) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct ufshcd_lrb *lrbp = &hba->lrb[task_tag]; int err = 0; if (!host->ice.pdev || !lrbp->cmd || lrbp->command_type != UTP_CMD_TYPE_SCSI) goto out; err = ufs_qcom_ice_cfg_start(host, lrbp->cmd); out: return err; } static int ufs_qcom_crytpo_engine_cfg_end(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, struct request *req) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int err = 0; if (!host->ice.pdev || lrbp->command_type != UTP_CMD_TYPE_SCSI) goto out; err = ufs_qcom_ice_cfg_end(host, req); out: return err; } static int ufs_qcom_crytpo_engine_reset(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int err = 0; if (!host->ice.pdev) goto out; err = ufs_qcom_ice_reset(host); out: return err; } static int ufs_qcom_crypto_engine_get_status(struct ufs_hba *hba, u32 *status) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); if (!status) return -EINVAL; return ufs_qcom_ice_get_status(host, status); } #else /* !CONFIG_SCSI_UFS_QCOM_ICE */ #define ufs_qcom_crypto_req_setup NULL #define ufs_qcom_crytpo_engine_cfg_start NULL #define ufs_qcom_crytpo_engine_cfg_end NULL #define ufs_qcom_crytpo_engine_reset NULL #define ufs_qcom_crypto_engine_get_status NULL #endif /* CONFIG_SCSI_UFS_QCOM_ICE */ struct ufs_qcom_dev_params { u32 pwm_rx_gear; /* pwm rx gear to work in */ u32 pwm_tx_gear; /* pwm tx gear to work in */ u32 hs_rx_gear; /* hs rx gear to work in */ u32 hs_tx_gear; /* hs tx gear to work in */ u32 rx_lanes; /* number of rx lanes */ u32 tx_lanes; /* number of tx lanes */ u32 rx_pwr_pwm; /* rx pwm working pwr */ u32 tx_pwr_pwm; /* tx pwm working pwr */ u32 rx_pwr_hs; /* rx hs working pwr */ u32 tx_pwr_hs; /* tx hs working pwr */ u32 hs_rate; /* rate A/B to work in HS */ u32 desired_working_mode; }; static int ufs_qcom_get_pwr_dev_param(struct ufs_qcom_dev_params *qcom_param, struct ufs_pa_layer_attr *dev_max, struct ufs_pa_layer_attr *agreed_pwr) { int min_qcom_gear; int min_dev_gear; bool is_dev_sup_hs = false; bool is_qcom_max_hs = false; if (dev_max->pwr_rx == FAST_MODE) is_dev_sup_hs = true; if (qcom_param->desired_working_mode == FAST) { is_qcom_max_hs = true; min_qcom_gear = min_t(u32, qcom_param->hs_rx_gear, qcom_param->hs_tx_gear); } else { min_qcom_gear = min_t(u32, qcom_param->pwm_rx_gear, qcom_param->pwm_tx_gear); } /* * device doesn't support HS but qcom_param->desired_working_mode is * HS, thus device and qcom_param don't agree */ if (!is_dev_sup_hs && is_qcom_max_hs) { pr_err("%s: failed to agree on power mode (device doesn't support HS but requested power is HS)\n", __func__); return -ENOTSUPP; } else if (is_dev_sup_hs && is_qcom_max_hs) { /* * since device supports HS, it supports FAST_MODE. * since qcom_param->desired_working_mode is also HS * then final decision (FAST/FASTAUTO) is done according * to qcom_params as it is the restricting factor */ agreed_pwr->pwr_rx = agreed_pwr->pwr_tx = qcom_param->rx_pwr_hs; } else { /* * here qcom_param->desired_working_mode is PWM. * it doesn't matter whether device supports HS or PWM, * in both cases qcom_param->desired_working_mode will * determine the mode */ agreed_pwr->pwr_rx = agreed_pwr->pwr_tx = qcom_param->rx_pwr_pwm; } /* * we would like tx to work in the minimum number of lanes * between device capability and vendor preferences. * the same decision will be made for rx */ agreed_pwr->lane_tx = min_t(u32, dev_max->lane_tx, qcom_param->tx_lanes); agreed_pwr->lane_rx = min_t(u32, dev_max->lane_rx, qcom_param->rx_lanes); /* device maximum gear is the minimum between device rx and tx gears */ min_dev_gear = min_t(u32, dev_max->gear_rx, dev_max->gear_tx); /* * if both device capabilities and vendor pre-defined preferences are * both HS or both PWM then set the minimum gear to be the chosen * working gear. * if one is PWM and one is HS then the one that is PWM get to decide * what is the gear, as it is the one that also decided previously what * pwr the device will be configured to. */ if ((is_dev_sup_hs && is_qcom_max_hs) || (!is_dev_sup_hs && !is_qcom_max_hs)) agreed_pwr->gear_rx = agreed_pwr->gear_tx = min_t(u32, min_dev_gear, min_qcom_gear); else if (!is_dev_sup_hs) agreed_pwr->gear_rx = agreed_pwr->gear_tx = min_dev_gear; else agreed_pwr->gear_rx = agreed_pwr->gear_tx = min_qcom_gear; agreed_pwr->hs_rate = qcom_param->hs_rate; return 0; } #ifdef CONFIG_QCOM_BUS_SCALING static int ufs_qcom_get_bus_vote(struct ufs_qcom_host *host, const char *speed_mode) { struct device *dev = host->hba->dev; struct device_node *np = dev->of_node; int err; const char *key = "qcom,bus-vector-names"; if (!speed_mode) { err = -EINVAL; goto out; } if (host->bus_vote.is_max_bw_needed && !!strcmp(speed_mode, "MIN")) err = of_property_match_string(np, key, "MAX"); else err = of_property_match_string(np, key, speed_mode); out: if (err < 0) dev_err(dev, "%s: Invalid %s mode %d\n", __func__, speed_mode, err); return err; } static void ufs_qcom_get_speed_mode(struct ufs_pa_layer_attr *p, char *result) { int gear = max_t(u32, p->gear_rx, p->gear_tx); int lanes = max_t(u32, p->lane_rx, p->lane_tx); int pwr; /* default to PWM Gear 1, Lane 1 if power mode is not initialized */ if (!gear) gear = 1; if (!lanes) lanes = 1; if (!p->pwr_rx && !p->pwr_tx) { pwr = SLOWAUTO_MODE; snprintf(result, BUS_VECTOR_NAME_LEN, "MIN"); } else if (p->pwr_rx == FAST_MODE || p->pwr_rx == FASTAUTO_MODE || p->pwr_tx == FAST_MODE || p->pwr_tx == FASTAUTO_MODE) { pwr = FAST_MODE; snprintf(result, BUS_VECTOR_NAME_LEN, "%s_R%s_G%d_L%d", "HS", p->hs_rate == PA_HS_MODE_B ? "B" : "A", gear, lanes); } else { pwr = SLOW_MODE; snprintf(result, BUS_VECTOR_NAME_LEN, "%s_G%d_L%d", "PWM", gear, lanes); } } static int __ufs_qcom_set_bus_vote(struct ufs_qcom_host *host, int vote) { int err = 0; if (vote != host->bus_vote.curr_vote) { err = msm_bus_scale_client_update_request( host->bus_vote.client_handle, vote); if (err) { dev_err(host->hba->dev, "%s: msm_bus_scale_client_update_request() failed: bus_client_handle=0x%x, vote=%d, err=%d\n", __func__, host->bus_vote.client_handle, vote, err); goto out; } host->bus_vote.curr_vote = vote; } out: return err; } static int ufs_qcom_update_bus_bw_vote(struct ufs_qcom_host *host) { int vote; int err = 0; char mode[BUS_VECTOR_NAME_LEN]; ufs_qcom_get_speed_mode(&host->dev_req_params, mode); vote = ufs_qcom_get_bus_vote(host, mode); if (vote >= 0) err = __ufs_qcom_set_bus_vote(host, vote); else err = vote; if (err) dev_err(host->hba->dev, "%s: failed %d\n", __func__, err); else host->bus_vote.saved_vote = vote; return err; } static int ufs_qcom_set_bus_vote(struct ufs_hba *hba, bool on) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int vote, err; /* * In case ufs_qcom_init() is not yet done, simply ignore. * This ufs_qcom_set_bus_vote() shall be called from * ufs_qcom_init() after init is done. */ if (!host) return 0; if (on) { vote = host->bus_vote.saved_vote; if (vote == host->bus_vote.min_bw_vote) ufs_qcom_update_bus_bw_vote(host); } else { vote = host->bus_vote.min_bw_vote; } err = __ufs_qcom_set_bus_vote(host, vote); if (err) dev_err(hba->dev, "%s: set bus vote failed %d\n", __func__, err); return err; } static ssize_t show_ufs_to_mem_max_bus_bw(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); struct ufs_qcom_host *host = ufshcd_get_variant(hba); return snprintf(buf, PAGE_SIZE, "%u\n", host->bus_vote.is_max_bw_needed); } static ssize_t store_ufs_to_mem_max_bus_bw(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); struct ufs_qcom_host *host = ufshcd_get_variant(hba); uint32_t value; if (!kstrtou32(buf, 0, &value)) { host->bus_vote.is_max_bw_needed = !!value; ufs_qcom_update_bus_bw_vote(host); } return count; } static int ufs_qcom_bus_register(struct ufs_qcom_host *host) { int err; struct msm_bus_scale_pdata *bus_pdata; struct device *dev = host->hba->dev; struct platform_device *pdev = to_platform_device(dev); struct device_node *np = dev->of_node; bus_pdata = msm_bus_cl_get_pdata(pdev); if (!bus_pdata) { dev_err(dev, "%s: failed to get bus vectors\n", __func__); err = -ENODATA; goto out; } err = of_property_count_strings(np, "qcom,bus-vector-names"); if (err < 0 || err != bus_pdata->num_usecases) { dev_err(dev, "%s: qcom,bus-vector-names not specified correctly %d\n", __func__, err); goto out; } host->bus_vote.client_handle = msm_bus_scale_register_client(bus_pdata); if (!host->bus_vote.client_handle) { dev_err(dev, "%s: msm_bus_scale_register_client failed\n", __func__); err = -EFAULT; goto out; } /* cache the vote index for minimum and maximum bandwidth */ host->bus_vote.min_bw_vote = ufs_qcom_get_bus_vote(host, "MIN"); host->bus_vote.max_bw_vote = ufs_qcom_get_bus_vote(host, "MAX"); host->bus_vote.max_bus_bw.show = show_ufs_to_mem_max_bus_bw; host->bus_vote.max_bus_bw.store = store_ufs_to_mem_max_bus_bw; sysfs_attr_init(&host->bus_vote.max_bus_bw.attr); host->bus_vote.max_bus_bw.attr.name = "max_bus_bw"; host->bus_vote.max_bus_bw.attr.mode = S_IRUGO | S_IWUSR; err = device_create_file(dev, &host->bus_vote.max_bus_bw); out: return err; } #else /* CONFIG_QCOM_BUS_SCALING */ static int ufs_qcom_update_bus_bw_vote(struct ufs_qcom_host *host) { return 0; } static int ufs_qcom_set_bus_vote(struct ufs_qcom_host *host, int vote) { return 0; } static int ufs_qcom_bus_register(struct ufs_qcom_host *host) { return 0; } static inline void msm_bus_scale_unregister_client(uint32_t cl) { } #endif /* CONFIG_QCOM_BUS_SCALING */ static void ufs_qcom_dev_ref_clk_ctrl(struct ufs_qcom_host *host, bool enable) { if (host->dev_ref_clk_ctrl_mmio && (enable ^ host->is_dev_ref_clk_enabled)) { u32 temp = readl_relaxed(host->dev_ref_clk_ctrl_mmio); if (enable) temp |= host->dev_ref_clk_en_mask; else temp &= ~host->dev_ref_clk_en_mask; /* * If we are here to disable this clock it might be immediately * after entering into hibern8 in which case we need to make * sure that device ref_clk is active at least 1us after the * hibern8 enter. */ if (!enable) udelay(1); writel_relaxed(temp, host->dev_ref_clk_ctrl_mmio); /* ensure that ref_clk is enabled/disabled before we return */ wmb(); /* * If we call hibern8 exit after this, we need to make sure that * device ref_clk is stable for at least 1us before the hibern8 * exit command. */ if (enable) udelay(1); host->is_dev_ref_clk_enabled = enable; } } static int ufs_qcom_pwr_change_notify(struct ufs_hba *hba, enum ufs_notify_change_status status, struct ufs_pa_layer_attr *dev_max_params, struct ufs_pa_layer_attr *dev_req_params) { u32 val; struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; struct ufs_qcom_dev_params ufs_qcom_cap; int ret = 0; int res = 0; if (!dev_req_params) { pr_err("%s: incoming dev_req_params is NULL\n", __func__); ret = -EINVAL; goto out; } switch (status) { case PRE_CHANGE: ufs_qcom_cap.tx_lanes = UFS_QCOM_LIMIT_NUM_LANES_TX; ufs_qcom_cap.rx_lanes = UFS_QCOM_LIMIT_NUM_LANES_RX; ufs_qcom_cap.hs_rx_gear = UFS_QCOM_LIMIT_HSGEAR_RX; ufs_qcom_cap.hs_tx_gear = UFS_QCOM_LIMIT_HSGEAR_TX; ufs_qcom_cap.pwm_rx_gear = UFS_QCOM_LIMIT_PWMGEAR_RX; ufs_qcom_cap.pwm_tx_gear = UFS_QCOM_LIMIT_PWMGEAR_TX; ufs_qcom_cap.rx_pwr_pwm = UFS_QCOM_LIMIT_RX_PWR_PWM; ufs_qcom_cap.tx_pwr_pwm = UFS_QCOM_LIMIT_TX_PWR_PWM; ufs_qcom_cap.rx_pwr_hs = UFS_QCOM_LIMIT_RX_PWR_HS; ufs_qcom_cap.tx_pwr_hs = UFS_QCOM_LIMIT_TX_PWR_HS; ufs_qcom_cap.hs_rate = UFS_QCOM_LIMIT_HS_RATE; ufs_qcom_cap.desired_working_mode = UFS_QCOM_LIMIT_DESIRED_MODE; if (host->hw_ver.major == 0x1) { /* * HS-G3 operations may not reliably work on legacy QCOM * UFS host controller hardware even though capability * exchange during link startup phase may end up * negotiating maximum supported gear as G3. * Hence downgrade the maximum supported gear to HS-G2. */ if (ufs_qcom_cap.hs_tx_gear > UFS_HS_G2) ufs_qcom_cap.hs_tx_gear = UFS_HS_G2; if (ufs_qcom_cap.hs_rx_gear > UFS_HS_G2) ufs_qcom_cap.hs_rx_gear = UFS_HS_G2; } /* * Platforms using QRBTCv2 phy must limit link to PWM Gear-1 * and SLOW mode to successfully bring up the link. */ if (!strcmp(ufs_qcom_phy_name(phy), "ufs_phy_qrbtc_v2")) { ufs_qcom_cap.tx_lanes = 1; ufs_qcom_cap.rx_lanes = 1; ufs_qcom_cap.pwm_rx_gear = UFS_PWM_G1; ufs_qcom_cap.pwm_tx_gear = UFS_PWM_G1; ufs_qcom_cap.desired_working_mode = SLOW; } ret = ufs_qcom_get_pwr_dev_param(&ufs_qcom_cap, dev_max_params, dev_req_params); if (ret) { pr_err("%s: failed to determine capabilities\n", __func__); goto out; } /* enable the device ref clock before changing to HS mode */ if (!ufshcd_is_hs_mode(&hba->pwr_info) && ufshcd_is_hs_mode(dev_req_params)) ufs_qcom_dev_ref_clk_ctrl(host, true); break; case POST_CHANGE: if (ufs_qcom_cfg_timers(hba, dev_req_params->gear_rx, dev_req_params->pwr_rx, dev_req_params->hs_rate, false)) { dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n", __func__); /* * we return error code at the end of the routine, * but continue to configure UFS_PHY_TX_LANE_ENABLE * and bus voting as usual */ ret = -EINVAL; } val = ~(MAX_U32 << dev_req_params->lane_tx); res = ufs_qcom_phy_set_tx_lane_enable(phy, val); if (res) { dev_err(hba->dev, "%s: ufs_qcom_phy_set_tx_lane_enable() failed res = %d\n", __func__, res); ret = res; } /* cache the power mode parameters to use internally */ memcpy(&host->dev_req_params, dev_req_params, sizeof(*dev_req_params)); ufs_qcom_update_bus_bw_vote(host); /* disable the device ref clock if entered PWM mode */ if (ufshcd_is_hs_mode(&hba->pwr_info) && !ufshcd_is_hs_mode(dev_req_params)) ufs_qcom_dev_ref_clk_ctrl(host, false); break; default: ret = -EINVAL; break; } out: return ret; } static int ufs_qcom_quirk_host_pa_saveconfigtime(struct ufs_hba *hba) { int err; u32 pa_vs_config_reg1; err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1), &pa_vs_config_reg1); if (err) goto out; /* Allow extension of MSB bits of PA_SaveConfigTime attribute */ err = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1), (pa_vs_config_reg1 | (1 << 12))); out: return err; } static int ufs_qcom_apply_dev_quirks(struct ufs_hba *hba) { int err = 0; if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME) err = ufs_qcom_quirk_host_pa_saveconfigtime(hba); return err; } static u32 ufs_qcom_get_ufs_hci_version(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); if (host->hw_ver.major == 0x1) return UFSHCI_VERSION_11; else return UFSHCI_VERSION_20; } /** * ufs_qcom_advertise_quirks - advertise the known QCOM UFS controller quirks * @hba: host controller instance * * QCOM UFS host controller might have some non standard behaviours (quirks) * than what is specified by UFSHCI specification. Advertise all such * quirks to standard UFS host controller driver so standard takes them into * account. */ static void ufs_qcom_advertise_quirks(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); if (host->hw_ver.major == 0x1) { hba->quirks |= (UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS | UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP | UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE); if (host->hw_ver.minor == 0x001 && host->hw_ver.step == 0x0001) hba->quirks |= UFSHCD_QUIRK_BROKEN_INTR_AGGR; hba->quirks |= UFSHCD_QUIRK_BROKEN_LCC; } if (host->hw_ver.major >= 0x2) { hba->quirks |= UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION; if (!ufs_qcom_cap_qunipro(host)) /* Legacy UniPro mode still need following quirks */ hba->quirks |= (UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS | UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE | UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP); } if (host->disable_lpm) hba->quirks |= UFSHCD_QUIRK_BROKEN_AUTO_HIBERN8; } static void ufs_qcom_set_caps(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); if (!host->disable_lpm) { hba->caps |= UFSHCD_CAP_CLK_GATING; hba->caps |= UFSHCD_CAP_HIBERN8_WITH_CLK_GATING; hba->caps |= UFSHCD_CAP_CLK_SCALING; } hba->caps |= UFSHCD_CAP_AUTO_BKOPS_SUSPEND; if (host->hw_ver.major >= 0x2) { if (!host->disable_lpm) hba->caps |= UFSHCD_CAP_POWER_COLLAPSE_DURING_HIBERN8; host->caps = UFS_QCOM_CAP_QUNIPRO | UFS_QCOM_CAP_RETAIN_SEC_CFG_AFTER_PWR_COLLAPSE; } if (host->hw_ver.major >= 0x3) { host->caps |= UFS_QCOM_CAP_QUNIPRO_CLK_GATING; /* * The UFS PHY attached to v3.0.0 controller supports entering * deeper low power state of SVS2. This lets the controller * run at much lower clock frequencies for saving power. * Assuming this and any future revisions of the controller * support this capability. Need to revist this assumption if * any future platform with this core doesn't support the * capability, as there will be no benefit running at lower * frequencies then. */ host->caps |= UFS_QCOM_CAP_SVS2; } } /** * ufs_qcom_setup_clocks - enables/disable clocks * @hba: host controller instance * @on: If true, enable clocks else disable them. * @is_gating_context: If true then it means this function is called from * aggressive clock gating context and we may only need to gate off important * clocks. If false then make sure to gate off all clocks. * * Returns 0 on success, non-zero on failure. */ static int ufs_qcom_setup_clocks(struct ufs_hba *hba, bool on, bool is_gating_context) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int err; /* * In case ufs_qcom_init() is not yet done, simply ignore. * This ufs_qcom_setup_clocks() shall be called from * ufs_qcom_init() after init is done. */ if (!host) return 0; if (on) { err = ufs_qcom_phy_enable_iface_clk(host->generic_phy); if (err) goto out; err = ufs_qcom_phy_enable_ref_clk(host->generic_phy); if (err) { dev_err(hba->dev, "%s enable phy ref clock failed, err=%d\n", __func__, err); ufs_qcom_phy_disable_iface_clk(host->generic_phy); goto out; } /* enable the device ref clock for HS mode*/ if (ufshcd_is_hs_mode(&hba->pwr_info)) ufs_qcom_dev_ref_clk_ctrl(host, true); err = ufs_qcom_ice_resume(host); if (err) goto out; } else { err = ufs_qcom_ice_suspend(host); if (err) goto out; /* M-PHY RMMI interface clocks can be turned off */ ufs_qcom_phy_disable_iface_clk(host->generic_phy); if (!ufs_qcom_is_link_active(hba)) { if (!is_gating_context) /* turn off UFS local PHY ref_clk */ ufs_qcom_phy_disable_ref_clk(host->generic_phy); /* disable device ref_clk */ ufs_qcom_dev_ref_clk_ctrl(host, false); } } out: return err; } #ifdef CONFIG_SMP /* CONFIG_SMP */ static int ufs_qcom_cpu_to_group(struct ufs_qcom_host *host, int cpu) { int i; if (cpu >= 0 && cpu < num_possible_cpus()) for (i = 0; i < host->pm_qos.num_groups; i++) if (cpumask_test_cpu(cpu, &host->pm_qos.groups[i].mask)) return i; return host->pm_qos.default_cpu; } static void ufs_qcom_pm_qos_req_start(struct ufs_hba *hba, struct request *req) { unsigned long flags; struct ufs_qcom_host *host; struct ufs_qcom_pm_qos_cpu_group *group; if (!hba || !req) return; host = ufshcd_get_variant(hba); if (!host->pm_qos.groups) return; group = &host->pm_qos.groups[ufs_qcom_cpu_to_group(host, req->cpu)]; spin_lock_irqsave(hba->host->host_lock, flags); if (!host->pm_qos.is_enabled) goto out; group->active_reqs++; if (group->state != PM_QOS_REQ_VOTE && group->state != PM_QOS_VOTED) { group->state = PM_QOS_REQ_VOTE; queue_work(host->pm_qos.workq, &group->vote_work); } out: spin_unlock_irqrestore(hba->host->host_lock, flags); } /* hba->host->host_lock is assumed to be held by caller */ static void __ufs_qcom_pm_qos_req_end(struct ufs_qcom_host *host, int req_cpu) { struct ufs_qcom_pm_qos_cpu_group *group; if (!host->pm_qos.groups || !host->pm_qos.is_enabled) return; group = &host->pm_qos.groups[ufs_qcom_cpu_to_group(host, req_cpu)]; if (--group->active_reqs) return; group->state = PM_QOS_REQ_UNVOTE; queue_work(host->pm_qos.workq, &group->unvote_work); } static void ufs_qcom_pm_qos_req_end(struct ufs_hba *hba, struct request *req, bool should_lock) { unsigned long flags = 0; if (!hba || !req) return; if (should_lock) spin_lock_irqsave(hba->host->host_lock, flags); __ufs_qcom_pm_qos_req_end(ufshcd_get_variant(hba), req->cpu); if (should_lock) spin_unlock_irqrestore(hba->host->host_lock, flags); } static void ufs_qcom_pm_qos_vote_work(struct work_struct *work) { struct ufs_qcom_pm_qos_cpu_group *group = container_of(work, struct ufs_qcom_pm_qos_cpu_group, vote_work); struct ufs_qcom_host *host = group->host; unsigned long flags; spin_lock_irqsave(host->hba->host->host_lock, flags); if (!host->pm_qos.is_enabled || !group->active_reqs) { spin_unlock_irqrestore(host->hba->host->host_lock, flags); return; } group->state = PM_QOS_VOTED; spin_unlock_irqrestore(host->hba->host->host_lock, flags); pm_qos_update_request(&group->req, group->latency_us); } static void ufs_qcom_pm_qos_unvote_work(struct work_struct *work) { struct ufs_qcom_pm_qos_cpu_group *group = container_of(work, struct ufs_qcom_pm_qos_cpu_group, unvote_work); struct ufs_qcom_host *host = group->host; unsigned long flags; /* * Check if new requests were submitted in the meantime and do not * unvote if so. */ spin_lock_irqsave(host->hba->host->host_lock, flags); if (!host->pm_qos.is_enabled || group->active_reqs) { spin_unlock_irqrestore(host->hba->host->host_lock, flags); return; } group->state = PM_QOS_UNVOTED; spin_unlock_irqrestore(host->hba->host->host_lock, flags); pm_qos_update_request_timeout(&group->req, group->latency_us, UFS_QCOM_PM_QOS_UNVOTE_TIMEOUT_US); } static ssize_t ufs_qcom_pm_qos_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev->parent); struct ufs_qcom_host *host = ufshcd_get_variant(hba); return snprintf(buf, PAGE_SIZE, "%d\n", host->pm_qos.is_enabled); } static ssize_t ufs_qcom_pm_qos_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev->parent); struct ufs_qcom_host *host = ufshcd_get_variant(hba); unsigned long value; unsigned long flags; bool enable; int i; if (kstrtoul(buf, 0, &value)) return -EINVAL; enable = !!value; /* * Must take the spinlock and save irqs before changing the enabled * flag in order to keep correctness of PM QoS release. */ spin_lock_irqsave(hba->host->host_lock, flags); if (enable == host->pm_qos.is_enabled) { spin_unlock_irqrestore(hba->host->host_lock, flags); return count; } host->pm_qos.is_enabled = enable; spin_unlock_irqrestore(hba->host->host_lock, flags); if (!enable) for (i = 0; i < host->pm_qos.num_groups; i++) { cancel_work_sync(&host->pm_qos.groups[i].vote_work); cancel_work_sync(&host->pm_qos.groups[i].unvote_work); spin_lock_irqsave(hba->host->host_lock, flags); host->pm_qos.groups[i].state = PM_QOS_UNVOTED; host->pm_qos.groups[i].active_reqs = 0; spin_unlock_irqrestore(hba->host->host_lock, flags); pm_qos_update_request(&host->pm_qos.groups[i].req, PM_QOS_DEFAULT_VALUE); } return count; } static ssize_t ufs_qcom_pm_qos_latency_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev->parent); struct ufs_qcom_host *host = ufshcd_get_variant(hba); int ret; int i; int offset = 0; for (i = 0; i < host->pm_qos.num_groups; i++) { ret = snprintf(&buf[offset], PAGE_SIZE, "cpu group #%d(mask=0x%lx): %d\n", i, host->pm_qos.groups[i].mask.bits[0], host->pm_qos.groups[i].latency_us); if (ret > 0) offset += ret; else break; } return offset; } static ssize_t ufs_qcom_pm_qos_latency_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev->parent); struct ufs_qcom_host *host = ufshcd_get_variant(hba); unsigned long value; unsigned long flags; char *strbuf; char *strbuf_copy; char *token; int i; int ret; /* reserve one byte for null termination */ strbuf = kmalloc(count + 1, GFP_KERNEL); if (!strbuf) return -ENOMEM; strbuf_copy = strbuf; strlcpy(strbuf, buf, count + 1); for (i = 0; i < host->pm_qos.num_groups; i++) { token = strsep(&strbuf, ","); if (!token) break; ret = kstrtoul(token, 0, &value); if (ret) break; spin_lock_irqsave(hba->host->host_lock, flags); host->pm_qos.groups[i].latency_us = value; spin_unlock_irqrestore(hba->host->host_lock, flags); } kfree(strbuf_copy); return count; } static int ufs_qcom_pm_qos_init(struct ufs_qcom_host *host) { struct device_node *node = host->hba->dev->of_node; struct device_attribute *attr; int ret = 0; int num_groups; int num_values; char wq_name[sizeof("ufs_pm_qos_00")]; int i; num_groups = of_property_count_u32_elems(node, "qcom,pm-qos-cpu-groups"); if (num_groups <= 0) goto no_pm_qos; num_values = of_property_count_u32_elems(node, "qcom,pm-qos-cpu-group-latency-us"); if (num_values <= 0) goto no_pm_qos; if (num_values != num_groups || num_groups > num_possible_cpus()) { dev_err(host->hba->dev, "%s: invalid count: num_groups=%d, num_values=%d, num_possible_cpus=%d\n", __func__, num_groups, num_values, num_possible_cpus()); goto no_pm_qos; } host->pm_qos.num_groups = num_groups; host->pm_qos.groups = kcalloc(host->pm_qos.num_groups, sizeof(struct ufs_qcom_pm_qos_cpu_group), GFP_KERNEL); if (!host->pm_qos.groups) return -ENOMEM; for (i = 0; i < host->pm_qos.num_groups; i++) { u32 mask; ret = of_property_read_u32_index(node, "qcom,pm-qos-cpu-groups", i, &mask); if (ret) goto free_groups; host->pm_qos.groups[i].mask.bits[0] = mask; if (!cpumask_subset(&host->pm_qos.groups[i].mask, cpu_possible_mask)) { dev_err(host->hba->dev, "%s: invalid mask 0x%x for cpu group\n", __func__, mask); goto free_groups; } ret = of_property_read_u32_index(node, "qcom,pm-qos-cpu-group-latency-us", i, &host->pm_qos.groups[i].latency_us); if (ret) goto free_groups; host->pm_qos.groups[i].req.type = PM_QOS_REQ_AFFINE_CORES; host->pm_qos.groups[i].req.cpus_affine = host->pm_qos.groups[i].mask; host->pm_qos.groups[i].state = PM_QOS_UNVOTED; host->pm_qos.groups[i].active_reqs = 0; host->pm_qos.groups[i].host = host; INIT_WORK(&host->pm_qos.groups[i].vote_work, ufs_qcom_pm_qos_vote_work); INIT_WORK(&host->pm_qos.groups[i].unvote_work, ufs_qcom_pm_qos_unvote_work); } ret = of_property_read_u32(node, "qcom,pm-qos-default-cpu", &host->pm_qos.default_cpu); if (ret || host->pm_qos.default_cpu > num_possible_cpus()) host->pm_qos.default_cpu = 0; /* * Use a single-threaded workqueue to assure work submitted to the queue * is performed in order. Consider the following 2 possible cases: * * 1. A new request arrives and voting work is scheduled for it. Before * the voting work is performed the request is finished and unvote * work is also scheduled. * 2. A request is finished and unvote work is scheduled. Before the * work is performed a new request arrives and voting work is also * scheduled. * * In both cases a vote work and unvote work wait to be performed. * If ordering is not guaranteed, then the end state might be the * opposite of the desired state. */ snprintf(wq_name, ARRAY_SIZE(wq_name), "%s_%d", "ufs_pm_qos", host->hba->host->host_no); host->pm_qos.workq = create_singlethread_workqueue(wq_name); if (!host->pm_qos.workq) { dev_err(host->hba->dev, "%s: failed to create the workqueue\n", __func__); ret = -ENOMEM; goto free_groups; } /* Initialization was ok, add all PM QoS requests */ for (i = 0; i < host->pm_qos.num_groups; i++) pm_qos_add_request(&host->pm_qos.groups[i].req, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE); /* PM QoS latency sys-fs attribute */ attr = &host->pm_qos.latency_attr; attr->show = ufs_qcom_pm_qos_latency_show; attr->store = ufs_qcom_pm_qos_latency_store; sysfs_attr_init(&attr->attr); attr->attr.name = "pm_qos_latency_us"; attr->attr.mode = S_IRUGO | S_IWUSR; if (device_create_file(host->hba->var->dev, attr)) dev_dbg(host->hba->dev, "Failed to create sysfs for pm_qos_latency_us\n"); /* PM QoS enable sys-fs attribute */ attr = &host->pm_qos.enable_attr; attr->show = ufs_qcom_pm_qos_enable_show; attr->store = ufs_qcom_pm_qos_enable_store; sysfs_attr_init(&attr->attr); attr->attr.name = "pm_qos_enable"; attr->attr.mode = S_IRUGO | S_IWUSR; if (device_create_file(host->hba->var->dev, attr)) dev_dbg(host->hba->dev, "Failed to create sysfs for pm_qos enable\n"); host->pm_qos.is_enabled = true; return 0; free_groups: kfree(host->pm_qos.groups); no_pm_qos: host->pm_qos.groups = NULL; return ret ? ret : -ENOTSUPP; } static void ufs_qcom_pm_qos_suspend(struct ufs_qcom_host *host) { int i; if (!host->pm_qos.groups) return; for (i = 0; i < host->pm_qos.num_groups; i++) flush_work(&host->pm_qos.groups[i].unvote_work); } static void ufs_qcom_pm_qos_remove(struct ufs_qcom_host *host) { int i; if (!host->pm_qos.groups) return; for (i = 0; i < host->pm_qos.num_groups; i++) pm_qos_remove_request(&host->pm_qos.groups[i].req); destroy_workqueue(host->pm_qos.workq); kfree(host->pm_qos.groups); host->pm_qos.groups = NULL; } #endif /* CONFIG_SMP */ #define ANDROID_BOOT_DEV_MAX 30 static char android_boot_dev[ANDROID_BOOT_DEV_MAX]; #ifndef MODULE static int __init get_android_boot_dev(char *str) { strlcpy(android_boot_dev, str, ANDROID_BOOT_DEV_MAX); return 1; } __setup("androidboot.bootdevice=", get_android_boot_dev); #endif /* * ufs_qcom_parse_lpm - read from DTS whether LPM modes should be disabled. */ static void ufs_qcom_parse_lpm(struct ufs_qcom_host *host) { struct device_node *node = host->hba->dev->of_node; host->disable_lpm = of_property_read_bool(node, "qcom,disable-lpm"); if (host->disable_lpm) pr_info("%s: will disable all LPM modes\n", __func__); } /** * ufs_qcom_init - bind phy with controller * @hba: host controller instance * * Binds PHY with controller and powers up PHY enabling clocks * and regulators. * * Returns -EPROBE_DEFER if binding fails, returns negative error * on phy power up failure and returns zero on success. */ static int ufs_qcom_init(struct ufs_hba *hba) { int err; struct device *dev = hba->dev; struct platform_device *pdev = to_platform_device(dev); struct ufs_qcom_host *host; struct resource *res; if (strlen(android_boot_dev) && strcmp(android_boot_dev, dev_name(dev))) return -ENODEV; host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); if (!host) { err = -ENOMEM; dev_err(dev, "%s: no memory for qcom ufs host\n", __func__); goto out; } /* Make a two way bind between the qcom host and the hba */ host->hba = hba; ufshcd_set_variant(hba, host); /* * voting/devoting device ref_clk source is time consuming hence * skip devoting it during aggressive clock gating. This clock * will still be gated off during runtime suspend. */ hba->no_ref_clk_gating = true; err = ufs_qcom_ice_get_dev(host); if (err == -EPROBE_DEFER) { /* * UFS driver might be probed before ICE driver does. * In that case we would like to return EPROBE_DEFER code * in order to delay its probing. */ dev_err(dev, "%s: required ICE device not probed yet err = %d\n", __func__, err); goto out_host_free; } else if (err == -ENODEV) { /* * ICE device is not enabled in DTS file. No need for further * initialization of ICE driver. */ dev_warn(dev, "%s: ICE device is not enabled", __func__); } else if (err) { dev_err(dev, "%s: ufs_qcom_ice_get_dev failed %d\n", __func__, err); goto out_host_free; } host->generic_phy = devm_phy_get(dev, "ufsphy"); if (host->generic_phy == ERR_PTR(-EPROBE_DEFER)) { /* * UFS driver might be probed before the phy driver does. * In that case we would like to return EPROBE_DEFER code. */ err = -EPROBE_DEFER; dev_warn(dev, "%s: required phy device. hasn't probed yet. err = %d\n", __func__, err); goto out_host_free; } else if (IS_ERR(host->generic_phy)) { err = PTR_ERR(host->generic_phy); dev_err(dev, "%s: PHY get failed %d\n", __func__, err); goto out; } err = ufs_qcom_pm_qos_init(host); if (err) dev_info(dev, "%s: PM QoS will be disabled\n", __func__); /* restore the secure configuration */ ufs_qcom_update_sec_cfg(hba, true); err = ufs_qcom_bus_register(host); if (err) goto out_host_free; ufs_qcom_get_controller_revision(hba, &host->hw_ver.major, &host->hw_ver.minor, &host->hw_ver.step); /* * for newer controllers, device reference clock control bit has * moved inside UFS controller register address space itself. */ if (host->hw_ver.major >= 0x02) { host->dev_ref_clk_ctrl_mmio = hba->mmio_base + REG_UFS_CFG1; host->dev_ref_clk_en_mask = BIT(26); } else { /* "dev_ref_clk_ctrl_mem" is optional resource */ res = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (res) { host->dev_ref_clk_ctrl_mmio = devm_ioremap_resource(dev, res); if (IS_ERR(host->dev_ref_clk_ctrl_mmio)) { dev_warn(dev, "%s: could not map dev_ref_clk_ctrl_mmio, err %ld\n", __func__, PTR_ERR(host->dev_ref_clk_ctrl_mmio)); host->dev_ref_clk_ctrl_mmio = NULL; } host->dev_ref_clk_en_mask = BIT(5); } } /* update phy revision information before calling phy_init() */ ufs_qcom_phy_save_controller_version(host->generic_phy, host->hw_ver.major, host->hw_ver.minor, host->hw_ver.step); phy_init(host->generic_phy); err = phy_power_on(host->generic_phy); if (err) goto out_unregister_bus; err = ufs_qcom_init_lane_clks(host); if (err) goto out_disable_phy; ufs_qcom_parse_lpm(host); if (host->disable_lpm) pm_runtime_forbid(host->hba->dev); ufs_qcom_set_caps(hba); ufs_qcom_advertise_quirks(hba); ufs_qcom_set_bus_vote(hba, true); ufs_qcom_setup_clocks(hba, true, false); if (hba->dev->id < MAX_UFS_QCOM_HOSTS) ufs_qcom_hosts[hba->dev->id] = host; host->dbg_print_en |= UFS_QCOM_DEFAULT_DBG_PRINT_EN; ufs_qcom_get_default_testbus_cfg(host); err = ufs_qcom_testbus_config(host); if (err) { dev_warn(dev, "%s: failed to configure the testbus %d\n", __func__, err); err = 0; } goto out; out_disable_phy: phy_power_off(host->generic_phy); out_unregister_bus: phy_exit(host->generic_phy); msm_bus_scale_unregister_client(host->bus_vote.client_handle); out_host_free: devm_kfree(dev, host); ufshcd_set_variant(hba, NULL); out: return err; } static void ufs_qcom_exit(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); msm_bus_scale_unregister_client(host->bus_vote.client_handle); ufs_qcom_disable_lane_clks(host); phy_power_off(host->generic_phy); ufs_qcom_pm_qos_remove(host); } static int ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(struct ufs_hba *hba, u32 clk_cycles) { int err; u32 core_clk_ctrl_reg; if (clk_cycles > DME_VS_CORE_CLK_CTRL_MAX_CORE_CLK_1US_CYCLES_MASK) return -EINVAL; err = ufshcd_dme_get(hba, UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL), &core_clk_ctrl_reg); if (err) goto out; core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_MAX_CORE_CLK_1US_CYCLES_MASK; core_clk_ctrl_reg |= clk_cycles; /* Clear CORE_CLK_DIV_EN */ core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT; err = ufshcd_dme_set(hba, UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL), core_clk_ctrl_reg); out: return err; } static inline int ufs_qcom_configure_lpm(struct ufs_hba *hba, bool enable) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct phy *phy = host->generic_phy; int err = 0; /* The default low power mode configuration is SVS2 */ if (!ufs_qcom_cap_svs2(host)) goto out; if (!((host->hw_ver.major == 0x3) && (host->hw_ver.minor == 0x0) && (host->hw_ver.step == 0x0))) goto out; /* * The link should be put in hibern8 state before * configuring the PHY to enter/exit SVS2 mode. */ err = ufshcd_uic_hibern8_enter(hba); if (err) goto out; err = ufs_qcom_phy_configure_lpm(phy, enable); if (err) goto out; err = ufshcd_uic_hibern8_exit(hba); out: return err; } static int ufs_qcom_clk_scale_up_pre_change(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); if (!ufs_qcom_cap_qunipro(host)) return 0; return ufs_qcom_configure_lpm(hba, false); } static int ufs_qcom_clk_scale_up_post_change(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); if (!ufs_qcom_cap_qunipro(host)) return 0; /* set unipro core clock cycles to 150 and clear clock divider */ return ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba, 150); } static int ufs_qcom_clk_scale_down_pre_change(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); u32 core_clk_ctrl_reg; int err = 0; if (!ufs_qcom_cap_qunipro(host)) goto out; err = ufs_qcom_configure_lpm(hba, true); if (err) goto out; err = ufshcd_dme_get(hba, UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL), &core_clk_ctrl_reg); /* make sure CORE_CLK_DIV_EN is cleared */ if (!err && (core_clk_ctrl_reg & DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT)) { core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT; err = ufshcd_dme_set(hba, UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL), core_clk_ctrl_reg); } out: return err; } static int ufs_qcom_clk_scale_down_post_change(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); int err = 0; if (!ufs_qcom_cap_qunipro(host)) return 0; if (ufs_qcom_cap_svs2(host)) /* * For SVS2 set unipro core clock cycles to 37 and * clear clock divider */ err = ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba, 37); else /* * For SVS set unipro core clock cycles to 75 and * clear clock divider */ err = ufs_qcom_set_dme_vs_core_clk_ctrl_clear_div(hba, 75); return err; } static int ufs_qcom_clk_scale_notify(struct ufs_hba *hba, bool scale_up, enum ufs_notify_change_status status) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); struct ufs_pa_layer_attr *dev_req_params = &host->dev_req_params; int err = 0; switch (status) { case PRE_CHANGE: if (scale_up) err = ufs_qcom_clk_scale_up_pre_change(hba); else err = ufs_qcom_clk_scale_down_pre_change(hba); break; case POST_CHANGE: if (scale_up) err = ufs_qcom_clk_scale_up_post_change(hba); else err = ufs_qcom_clk_scale_down_post_change(hba); if (err || !dev_req_params) goto out; ufs_qcom_cfg_timers(hba, dev_req_params->gear_rx, dev_req_params->pwr_rx, dev_req_params->hs_rate, false); ufs_qcom_update_bus_bw_vote(host); break; default: dev_err(hba->dev, "%s: invalid status %d\n", __func__, status); err = -EINVAL; break; } out: return err; } /* * This function should be called to restore the security configuration of UFS * register space after coming out of UFS host core power collapse. * * @hba: host controller instance * @restore_sec_cfg: Set "true" if secure configuration needs to be restored * and set "false" when secure configuration is lost. */ static int ufs_qcom_update_sec_cfg(struct ufs_hba *hba, bool restore_sec_cfg) { int ret = 0, scm_ret = 0; struct ufs_qcom_host *host = ufshcd_get_variant(hba); /* scm command buffer structrue */ struct msm_scm_cmd_buf { unsigned int device_id; unsigned int spare; } cbuf = {0}; #define RESTORE_SEC_CFG_CMD 0x2 #define UFS_TZ_DEV_ID 19 if (!host || !hba->vreg_info.vdd_hba || !(host->sec_cfg_updated ^ restore_sec_cfg)) { return 0; } else if (host->caps & UFS_QCOM_CAP_RETAIN_SEC_CFG_AFTER_PWR_COLLAPSE) { return 0; } else if (!restore_sec_cfg) { /* * Clear the flag so next time when this function is called * with restore_sec_cfg set to true, we can restore the secure * configuration. */ host->sec_cfg_updated = false; goto out; } else if (hba->clk_gating.state != CLKS_ON) { /* * Clocks should be ON to restore the host controller secure * configuration. */ goto out; } /* * If we are here, Host controller clocks are running, Host controller * power collapse feature is supported and Host controller has just came * out of power collapse. */ cbuf.device_id = UFS_TZ_DEV_ID; ret = scm_restore_sec_cfg(cbuf.device_id, cbuf.spare, &scm_ret); if (ret || scm_ret) { dev_dbg(hba->dev, "%s: failed, ret %d scm_ret %d\n", __func__, ret, scm_ret); if (!ret) ret = scm_ret; } else { host->sec_cfg_updated = true; } out: dev_dbg(hba->dev, "%s: ip: restore_sec_cfg %d, op: restore_sec_cfg %d, ret %d scm_ret %d\n", __func__, restore_sec_cfg, host->sec_cfg_updated, ret, scm_ret); return ret; } static inline u32 ufs_qcom_get_scale_down_gear(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); if (ufs_qcom_cap_svs2(host)) return UFS_HS_G1; /* Default SVS support @ HS G2 frequencies*/ return UFS_HS_G2; } void ufs_qcom_print_hw_debug_reg_all(struct ufs_hba *hba, void *priv, void (*print_fn)(struct ufs_hba *hba, int offset, int num_regs, char *str, void *priv)) { u32 reg; struct ufs_qcom_host *host; if (unlikely(!hba)) { pr_err("%s: hba is NULL\n", __func__); return; } if (unlikely(!print_fn)) { dev_err(hba->dev, "%s: print_fn is NULL\n", __func__); return; } host = ufshcd_get_variant(hba); if (!(host->dbg_print_en & UFS_QCOM_DBG_PRINT_REGS_EN)) return; reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_REG_OCSC); print_fn(hba, reg, 44, "UFS_UFS_DBG_RD_REG_OCSC ", priv); reg = ufshcd_readl(hba, REG_UFS_CFG1); reg |= UFS_BIT(17); ufshcd_writel(hba, reg, REG_UFS_CFG1); reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_EDTL_RAM); print_fn(hba, reg, 32, "UFS_UFS_DBG_RD_EDTL_RAM ", priv); reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_DESC_RAM); print_fn(hba, reg, 128, "UFS_UFS_DBG_RD_DESC_RAM ", priv); reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_PRDT_RAM); print_fn(hba, reg, 64, "UFS_UFS_DBG_RD_PRDT_RAM ", priv); /* clear bit 17 - UTP_DBG_RAMS_EN */ ufshcd_rmwl(hba, UFS_BIT(17), 0, REG_UFS_CFG1); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UAWM); print_fn(hba, reg, 4, "UFS_DBG_RD_REG_UAWM ", priv); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UARM); print_fn(hba, reg, 4, "UFS_DBG_RD_REG_UARM ", priv); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TXUC); print_fn(hba, reg, 48, "UFS_DBG_RD_REG_TXUC ", priv); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_RXUC); print_fn(hba, reg, 27, "UFS_DBG_RD_REG_RXUC ", priv); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_DFC); print_fn(hba, reg, 19, "UFS_DBG_RD_REG_DFC ", priv); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TRLUT); print_fn(hba, reg, 34, "UFS_DBG_RD_REG_TRLUT ", priv); reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TMRLUT); print_fn(hba, reg, 9, "UFS_DBG_RD_REG_TMRLUT ", priv); } static void ufs_qcom_enable_test_bus(struct ufs_qcom_host *host) { if (host->dbg_print_en & UFS_QCOM_DBG_PRINT_TEST_BUS_EN) ufshcd_rmwl(host->hba, TEST_BUS_EN, TEST_BUS_EN, REG_UFS_CFG1); else ufshcd_rmwl(host->hba, TEST_BUS_EN, 0, REG_UFS_CFG1); } static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host) { /* provide a legal default configuration */ host->testbus.select_major = TSTBUS_UAWM; host->testbus.select_minor = 1; } static bool ufs_qcom_testbus_cfg_is_ok(struct ufs_qcom_host *host) { if (host->testbus.select_major >= TSTBUS_MAX) { dev_err(host->hba->dev, "%s: UFS_CFG1[TEST_BUS_SEL} may not equal 0x%05X\n", __func__, host->testbus.select_major); return false; } /* * Not performing check for each individual select_major * mappings of select_minor, since there is no harm in * configuring a non-existent select_minor */ if (host->testbus.select_minor > 0x1F) { dev_err(host->hba->dev, "%s: 0x%05X is not a legal testbus option\n", __func__, host->testbus.select_minor); return false; } return true; } int ufs_qcom_testbus_config(struct ufs_qcom_host *host) { int reg; int offset; u32 mask = TEST_BUS_SUB_SEL_MASK; if (!host) return -EINVAL; if (!ufs_qcom_testbus_cfg_is_ok(host)) return -EPERM; switch (host->testbus.select_major) { case TSTBUS_UAWM: reg = UFS_TEST_BUS_CTRL_0; offset = 24; break; case TSTBUS_UARM: reg = UFS_TEST_BUS_CTRL_0; offset = 16; break; case TSTBUS_TXUC: reg = UFS_TEST_BUS_CTRL_0; offset = 8; break; case TSTBUS_RXUC: reg = UFS_TEST_BUS_CTRL_0; offset = 0; break; case TSTBUS_DFC: reg = UFS_TEST_BUS_CTRL_1; offset = 24; break; case TSTBUS_TRLUT: reg = UFS_TEST_BUS_CTRL_1; offset = 16; break; case TSTBUS_TMRLUT: reg = UFS_TEST_BUS_CTRL_1; offset = 8; break; case TSTBUS_OCSC: reg = UFS_TEST_BUS_CTRL_1; offset = 0; break; case TSTBUS_WRAPPER: reg = UFS_TEST_BUS_CTRL_2; offset = 16; break; case TSTBUS_COMBINED: reg = UFS_TEST_BUS_CTRL_2; offset = 8; break; case TSTBUS_UTP_HCI: reg = UFS_TEST_BUS_CTRL_2; offset = 0; break; case TSTBUS_UNIPRO: reg = UFS_UNIPRO_CFG; offset = 1; break; /* * No need for a default case, since * ufs_qcom_testbus_cfg_is_ok() checks that the configuration * is legal */ } mask <<= offset; pm_runtime_get_sync(host->hba->dev); ufshcd_hold(host->hba, false); ufshcd_rmwl(host->hba, TEST_BUS_SEL, (u32)host->testbus.select_major << 19, REG_UFS_CFG1); ufshcd_rmwl(host->hba, mask, (u32)host->testbus.select_minor << offset, reg); ufs_qcom_enable_test_bus(host); ufshcd_release(host->hba, false); pm_runtime_put_sync(host->hba->dev); return 0; } static void ufs_qcom_testbus_read(struct ufs_hba *hba) { ufs_qcom_dump_regs(hba, UFS_TEST_BUS, 1, "UFS_TEST_BUS "); } static void ufs_qcom_dump_dbg_regs(struct ufs_hba *hba) { struct ufs_qcom_host *host = ufshcd_get_variant(hba); ufs_qcom_dump_regs(hba, REG_UFS_SYS1CLK_1US, 16, "HCI Vendor Specific Registers "); ufs_qcom_print_hw_debug_reg_all(hba, NULL, ufs_qcom_dump_regs_wrapper); ufs_qcom_testbus_read(hba); ufs_qcom_ice_print_regs(host); } /** * struct ufs_hba_qcom_vops - UFS QCOM specific variant operations * * The variant operations configure the necessary controller and PHY * handshake during initialization. */ static struct ufs_hba_variant_ops ufs_hba_qcom_vops = { .init = ufs_qcom_init, .exit = ufs_qcom_exit, .get_ufs_hci_version = ufs_qcom_get_ufs_hci_version, .clk_scale_notify = ufs_qcom_clk_scale_notify, .setup_clocks = ufs_qcom_setup_clocks, .hce_enable_notify = ufs_qcom_hce_enable_notify, .link_startup_notify = ufs_qcom_link_startup_notify, .pwr_change_notify = ufs_qcom_pwr_change_notify, .apply_dev_quirks = ufs_qcom_apply_dev_quirks, .suspend = ufs_qcom_suspend, .resume = ufs_qcom_resume, .full_reset = ufs_qcom_full_reset, .update_sec_cfg = ufs_qcom_update_sec_cfg, .get_scale_down_gear = ufs_qcom_get_scale_down_gear, .set_bus_vote = ufs_qcom_set_bus_vote, .dbg_register_dump = ufs_qcom_dump_dbg_regs, #ifdef CONFIG_DEBUG_FS .add_debugfs = ufs_qcom_dbg_add_debugfs, #endif }; static struct ufs_hba_crypto_variant_ops ufs_hba_crypto_variant_ops = { .crypto_req_setup = ufs_qcom_crypto_req_setup, .crypto_engine_cfg_start = ufs_qcom_crytpo_engine_cfg_start, .crypto_engine_cfg_end = ufs_qcom_crytpo_engine_cfg_end, .crypto_engine_reset = ufs_qcom_crytpo_engine_reset, .crypto_engine_get_status = ufs_qcom_crypto_engine_get_status, }; static struct ufs_hba_pm_qos_variant_ops ufs_hba_pm_qos_variant_ops = { .req_start = ufs_qcom_pm_qos_req_start, .req_end = ufs_qcom_pm_qos_req_end, }; static struct ufs_hba_variant ufs_hba_qcom_variant = { .name = "qcom", .vops = &ufs_hba_qcom_vops, .crypto_vops = &ufs_hba_crypto_variant_ops, .pm_qos_vops = &ufs_hba_pm_qos_variant_ops, }; /** * ufs_qcom_probe - probe routine of the driver * @pdev: pointer to Platform device handle * * Return zero for success and non-zero for failure */ static int ufs_qcom_probe(struct platform_device *pdev) { int err; struct device *dev = &pdev->dev; /* Perform generic probe */ err = ufshcd_pltfrm_init(pdev, &ufs_hba_qcom_variant); if (err) dev_err(dev, "ufshcd_pltfrm_init() failed %d\n", err); return err; } /** * ufs_qcom_remove - set driver_data of the device to NULL * @pdev: pointer to platform device handle * * Always return 0 */ static int ufs_qcom_remove(struct platform_device *pdev) { struct ufs_hba *hba = platform_get_drvdata(pdev); pm_runtime_get_sync(&(pdev)->dev); ufshcd_remove(hba); return 0; } static const struct of_device_id ufs_qcom_of_match[] = { { .compatible = "qcom,ufshc"}, {}, }; static const struct dev_pm_ops ufs_qcom_pm_ops = { .suspend = ufshcd_pltfrm_suspend, .resume = ufshcd_pltfrm_resume, .runtime_suspend = ufshcd_pltfrm_runtime_suspend, .runtime_resume = ufshcd_pltfrm_runtime_resume, .runtime_idle = ufshcd_pltfrm_runtime_idle, }; static struct platform_driver ufs_qcom_pltform = { .probe = ufs_qcom_probe, .remove = ufs_qcom_remove, .shutdown = ufshcd_pltfrm_shutdown, .driver = { .name = "ufshcd-qcom", .pm = &ufs_qcom_pm_ops, .of_match_table = of_match_ptr(ufs_qcom_of_match), }, }; module_platform_driver(ufs_qcom_pltform); MODULE_LICENSE("GPL v2");