/* * Universal Flash Storage Host controller driver Core * * This code is based on drivers/scsi/ufs/ufshcd.c * Copyright (C) 2011-2013 Samsung India Software Operations * Copyright (c) 2013-2017, The Linux Foundation. All rights reserved. * * Authors: * Santosh Yaraganavi * Vinayak Holikatti * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * See the COPYING file in the top-level directory or visit * * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * This program is provided "AS IS" and "WITH ALL FAULTS" and * without warranty of any kind. You are solely responsible for * determining the appropriateness of using and distributing * the program and assume all risks associated with your exercise * of rights with respect to the program, including but not limited * to infringement of third party rights, the risks and costs of * program errors, damage to or loss of data, programs or equipment, * and unavailability or interruption of operations. Under no * circumstances will the contributor of this Program be liable for * any damages of any kind arising from your use or distribution of * this program. * * The Linux Foundation chooses to take subject only to the GPLv2 * license terms, and distributes only under these terms. */ #include #include #include #include #include #include #include "ufshcd.h" #include "ufshci.h" #include "ufs_quirks.h" #include "ufs-debugfs.h" #include "ufs-qcom.h" #define CREATE_TRACE_POINTS #include #ifdef CONFIG_DEBUG_FS static int ufshcd_tag_req_type(struct request *rq) { int rq_type = TS_WRITE; if (!rq || !(rq->cmd_type & REQ_TYPE_FS)) rq_type = TS_NOT_SUPPORTED; else if (rq->cmd_flags & REQ_FLUSH) rq_type = TS_FLUSH; else if (rq_data_dir(rq) == READ) rq_type = (rq->cmd_flags & REQ_URGENT) ? TS_URGENT_READ : TS_READ; else if (rq->cmd_flags & REQ_URGENT) rq_type = TS_URGENT_WRITE; return rq_type; } static void ufshcd_update_error_stats(struct ufs_hba *hba, int type) { ufsdbg_set_err_state(hba); if (type < UFS_ERR_MAX) hba->ufs_stats.err_stats[type]++; } static void ufshcd_update_tag_stats(struct ufs_hba *hba, int tag) { struct request *rq = hba->lrb[tag].cmd ? hba->lrb[tag].cmd->request : NULL; u64 **tag_stats = hba->ufs_stats.tag_stats; int rq_type; if (!hba->ufs_stats.enabled) return; tag_stats[tag][TS_TAG]++; if (!rq || !(rq->cmd_type & REQ_TYPE_FS)) return; WARN_ON(hba->ufs_stats.q_depth > hba->nutrs); rq_type = ufshcd_tag_req_type(rq); if (!(rq_type < 0 || rq_type > TS_NUM_STATS)) tag_stats[hba->ufs_stats.q_depth++][rq_type]++; } static void ufshcd_update_tag_stats_completion(struct ufs_hba *hba, struct scsi_cmnd *cmd) { struct request *rq = cmd ? cmd->request : NULL; if (rq && rq->cmd_type & REQ_TYPE_FS) hba->ufs_stats.q_depth--; } static void update_req_stats(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { int rq_type; struct request *rq = lrbp->cmd ? lrbp->cmd->request : NULL; s64 delta = ktime_us_delta(lrbp->complete_time_stamp, lrbp->issue_time_stamp); /* update general request statistics */ if (hba->ufs_stats.req_stats[TS_TAG].count == 0) hba->ufs_stats.req_stats[TS_TAG].min = delta; hba->ufs_stats.req_stats[TS_TAG].count++; hba->ufs_stats.req_stats[TS_TAG].sum += delta; if (delta > hba->ufs_stats.req_stats[TS_TAG].max) hba->ufs_stats.req_stats[TS_TAG].max = delta; if (delta < hba->ufs_stats.req_stats[TS_TAG].min) hba->ufs_stats.req_stats[TS_TAG].min = delta; rq_type = ufshcd_tag_req_type(rq); if (rq_type == TS_NOT_SUPPORTED) return; /* update request type specific statistics */ if (hba->ufs_stats.req_stats[rq_type].count == 0) hba->ufs_stats.req_stats[rq_type].min = delta; hba->ufs_stats.req_stats[rq_type].count++; hba->ufs_stats.req_stats[rq_type].sum += delta; if (delta > hba->ufs_stats.req_stats[rq_type].max) hba->ufs_stats.req_stats[rq_type].max = delta; if (delta < hba->ufs_stats.req_stats[rq_type].min) hba->ufs_stats.req_stats[rq_type].min = delta; } static void ufshcd_update_query_stats(struct ufs_hba *hba, enum query_opcode opcode, u8 idn) { if (opcode < UPIU_QUERY_OPCODE_MAX && idn < MAX_QUERY_IDN) hba->ufs_stats.query_stats_arr[opcode][idn]++; } #else static inline void ufshcd_update_tag_stats(struct ufs_hba *hba, int tag) { } static inline void ufshcd_update_tag_stats_completion(struct ufs_hba *hba, struct scsi_cmnd *cmd) { } static inline void ufshcd_update_error_stats(struct ufs_hba *hba, int type) { } static inline void update_req_stats(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { } static inline void ufshcd_update_query_stats(struct ufs_hba *hba, enum query_opcode opcode, u8 idn) { } #endif #define PWR_INFO_MASK 0xF #define PWR_RX_OFFSET 4 #define UFSHCD_REQ_SENSE_SIZE 18 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\ UTP_TASK_REQ_COMPL |\ UFSHCD_ERROR_MASK) /* UIC command timeout, unit: ms */ #define UIC_CMD_TIMEOUT 500 /* NOP OUT retries waiting for NOP IN response */ #define NOP_OUT_RETRIES 10 /* Timeout after 30 msecs if NOP OUT hangs without response */ #define NOP_OUT_TIMEOUT 30 /* msecs */ /* Query request retries */ #define QUERY_REQ_RETRIES 3 /* Query request timeout */ #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */ /* Task management command timeout */ #define TM_CMD_TIMEOUT 100 /* msecs */ /* maximum number of retries for a general UIC command */ #define UFS_UIC_COMMAND_RETRIES 3 /* maximum number of link-startup retries */ #define DME_LINKSTARTUP_RETRIES 3 /* Maximum retries for Hibern8 enter */ #define UIC_HIBERN8_ENTER_RETRIES 3 /* maximum number of reset retries before giving up */ #define MAX_HOST_RESET_RETRIES 5 /* Expose the flag value from utp_upiu_query.value */ #define MASK_QUERY_UPIU_FLAG_LOC 0xFF /* Interrupt aggregation default timeout, unit: 40us */ #define INT_AGGR_DEF_TO 0x02 /* default value of auto suspend is 3 seconds */ #define UFSHCD_AUTO_SUSPEND_DELAY_MS 3000 /* millisecs */ #define UFSHCD_CLK_GATING_DELAY_MS_PWR_SAVE 10 #define UFSHCD_CLK_GATING_DELAY_MS_PERF 50 /* IOCTL opcode for command - ufs set device read only */ #define UFS_IOCTL_BLKROSET BLKROSET #define UFSHCD_DEFAULT_LANES_PER_DIRECTION 2 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \ ({ \ int _ret; \ if (_on) \ _ret = ufshcd_enable_vreg(_dev, _vreg); \ else \ _ret = ufshcd_disable_vreg(_dev, _vreg); \ _ret; \ }) #define ufshcd_hex_dump(prefix_str, buf, len) \ print_hex_dump(KERN_ERR, prefix_str, DUMP_PREFIX_OFFSET, 16, 4, buf, len, false) static u32 ufs_query_desc_max_size[] = { QUERY_DESC_DEVICE_MAX_SIZE, QUERY_DESC_CONFIGURAION_MAX_SIZE, QUERY_DESC_UNIT_MAX_SIZE, QUERY_DESC_RFU_MAX_SIZE, QUERY_DESC_INTERCONNECT_MAX_SIZE, QUERY_DESC_STRING_MAX_SIZE, QUERY_DESC_RFU_MAX_SIZE, QUERY_DESC_GEOMETRY_MAZ_SIZE, QUERY_DESC_POWER_MAX_SIZE, QUERY_DESC_RFU_MAX_SIZE, }; enum { UFSHCD_MAX_CHANNEL = 0, UFSHCD_MAX_ID = 1, UFSHCD_CMD_PER_LUN = 32, UFSHCD_CAN_QUEUE = 32, }; /* UFSHCD states */ enum { UFSHCD_STATE_RESET, UFSHCD_STATE_ERROR, UFSHCD_STATE_OPERATIONAL, }; /* UFSHCD error handling flags */ enum { UFSHCD_EH_IN_PROGRESS = (1 << 0), }; /* UFSHCD UIC layer error flags */ enum { UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */ UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */ UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */ UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */ UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */ UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */ }; /* Interrupt configuration options */ enum { UFSHCD_INT_DISABLE, UFSHCD_INT_ENABLE, UFSHCD_INT_CLEAR, }; #define DEFAULT_UFSHCD_DBG_PRINT_EN UFSHCD_DBG_PRINT_ALL #define ufshcd_set_eh_in_progress(h) \ (h->eh_flags |= UFSHCD_EH_IN_PROGRESS) #define ufshcd_eh_in_progress(h) \ (h->eh_flags & UFSHCD_EH_IN_PROGRESS) #define ufshcd_clear_eh_in_progress(h) \ (h->eh_flags &= ~UFSHCD_EH_IN_PROGRESS) #define ufshcd_set_ufs_dev_active(h) \ ((h)->curr_dev_pwr_mode = UFS_ACTIVE_PWR_MODE) #define ufshcd_set_ufs_dev_sleep(h) \ ((h)->curr_dev_pwr_mode = UFS_SLEEP_PWR_MODE) #define ufshcd_set_ufs_dev_poweroff(h) \ ((h)->curr_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE) #define ufshcd_is_ufs_dev_active(h) \ ((h)->curr_dev_pwr_mode == UFS_ACTIVE_PWR_MODE) #define ufshcd_is_ufs_dev_sleep(h) \ ((h)->curr_dev_pwr_mode == UFS_SLEEP_PWR_MODE) #define ufshcd_is_ufs_dev_poweroff(h) \ ((h)->curr_dev_pwr_mode == UFS_POWERDOWN_PWR_MODE) static struct ufs_pm_lvl_states ufs_pm_lvl_states[] = { {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE}, {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE}, {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE}, {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE}, {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE}, {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE}, }; static inline enum ufs_dev_pwr_mode ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl) { return ufs_pm_lvl_states[lvl].dev_state; } static inline enum uic_link_state ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl) { return ufs_pm_lvl_states[lvl].link_state; } static inline enum ufs_pm_level ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state, enum uic_link_state link_state) { enum ufs_pm_level lvl; for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) { if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) && (ufs_pm_lvl_states[lvl].link_state == link_state)) return lvl; } /* if no match found, return the level 0 */ return UFS_PM_LVL_0; } static inline bool ufshcd_is_valid_pm_lvl(int lvl) { if (lvl >= 0 && lvl < ARRAY_SIZE(ufs_pm_lvl_states)) return true; else return false; } static irqreturn_t ufshcd_intr(int irq, void *__hba); static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba); static void ufshcd_async_scan(void *data, async_cookie_t cookie); static int ufshcd_reset_and_restore(struct ufs_hba *hba); static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd); static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag); static void ufshcd_hba_exit(struct ufs_hba *hba); static int ufshcd_probe_hba(struct ufs_hba *hba); static int ufshcd_enable_clocks(struct ufs_hba *hba); static int ufshcd_disable_clocks(struct ufs_hba *hba, bool is_gating_context); static int ufshcd_disable_clocks_skip_ref_clk(struct ufs_hba *hba, bool is_gating_context); static void ufshcd_hold_all(struct ufs_hba *hba); static void ufshcd_release_all(struct ufs_hba *hba); static int ufshcd_set_vccq_rail_unused(struct ufs_hba *hba, bool unused); static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba); static inline void ufshcd_save_tstamp_of_last_dme_cmd(struct ufs_hba *hba); static int ufshcd_host_reset_and_restore(struct ufs_hba *hba); static void ufshcd_resume_clkscaling(struct ufs_hba *hba); static void ufshcd_suspend_clkscaling(struct ufs_hba *hba); static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba); static void ufshcd_release_all(struct ufs_hba *hba); static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba); static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba); static int ufshcd_devfreq_target(struct device *dev, unsigned long *freq, u32 flags); static int ufshcd_devfreq_get_dev_status(struct device *dev, struct devfreq_dev_status *stat); #if IS_ENABLED(CONFIG_DEVFREQ_GOV_SIMPLE_ONDEMAND) static struct devfreq_simple_ondemand_data ufshcd_ondemand_data = { .upthreshold = 35, .downdifferential = 30, .simple_scaling = 1, }; static void *gov_data = &ufshcd_ondemand_data; #else static void *gov_data; #endif static struct devfreq_dev_profile ufs_devfreq_profile = { .polling_ms = 40, .target = ufshcd_devfreq_target, .get_dev_status = ufshcd_devfreq_get_dev_status, }; static inline bool ufshcd_valid_tag(struct ufs_hba *hba, int tag) { return tag >= 0 && tag < hba->nutrs; } static inline void ufshcd_enable_irq(struct ufs_hba *hba) { if (!hba->is_irq_enabled) { enable_irq(hba->irq); hba->is_irq_enabled = true; } } static inline void ufshcd_disable_irq(struct ufs_hba *hba) { if (hba->is_irq_enabled) { disable_irq(hba->irq); hba->is_irq_enabled = false; } } void ufshcd_scsi_unblock_requests(struct ufs_hba *hba) { unsigned long flags; bool unblock = false; spin_lock_irqsave(hba->host->host_lock, flags); hba->scsi_block_reqs_cnt--; unblock = !hba->scsi_block_reqs_cnt; spin_unlock_irqrestore(hba->host->host_lock, flags); if (unblock) scsi_unblock_requests(hba->host); } EXPORT_SYMBOL(ufshcd_scsi_unblock_requests); static inline void __ufshcd_scsi_block_requests(struct ufs_hba *hba) { if (!hba->scsi_block_reqs_cnt++) scsi_block_requests(hba->host); } void ufshcd_scsi_block_requests(struct ufs_hba *hba) { unsigned long flags; spin_lock_irqsave(hba->host->host_lock, flags); __ufshcd_scsi_block_requests(hba); spin_unlock_irqrestore(hba->host->host_lock, flags); } EXPORT_SYMBOL(ufshcd_scsi_block_requests); static int ufshcd_device_reset_ctrl(struct ufs_hba *hba, bool ctrl) { int ret = 0; if (!hba->pctrl) return 0; /* Assert reset if ctrl == true */ if (ctrl) ret = pinctrl_select_state(hba->pctrl, pinctrl_lookup_state(hba->pctrl, "dev-reset-assert")); else ret = pinctrl_select_state(hba->pctrl, pinctrl_lookup_state(hba->pctrl, "dev-reset-deassert")); if (ret < 0) dev_err(hba->dev, "%s: %s failed with err %d\n", __func__, ctrl ? "Assert" : "Deassert", ret); return ret; } static inline int ufshcd_assert_device_reset(struct ufs_hba *hba) { return ufshcd_device_reset_ctrl(hba, true); } static inline int ufshcd_deassert_device_reset(struct ufs_hba *hba) { return ufshcd_device_reset_ctrl(hba, false); } static int ufshcd_reset_device(struct ufs_hba *hba) { int ret; /* reset the connected UFS device */ ret = ufshcd_assert_device_reset(hba); if (ret) goto out; /* * The reset signal is active low. * The UFS device shall detect more than or equal to 1us of positive * or negative RST_n pulse width. * To be on safe side, keep the reset low for atleast 10us. */ usleep_range(10, 15); ret = ufshcd_deassert_device_reset(hba); if (ret) goto out; /* same as assert, wait for atleast 10us after deassert */ usleep_range(10, 15); out: return ret; } /* replace non-printable or non-ASCII characters with spaces */ static inline void ufshcd_remove_non_printable(char *val) { if (!val || !*val) return; if (*val < 0x20 || *val > 0x7e) *val = ' '; } #define UFSHCD_MAX_CMD_LOGGING 200 #ifdef CONFIG_TRACEPOINTS static inline void ufshcd_add_command_trace(struct ufs_hba *hba, struct ufshcd_cmd_log_entry *entry, u8 opcode) { if (trace_ufshcd_command_enabled()) { u32 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS); trace_ufshcd_command(dev_name(hba->dev), entry->str, entry->tag, entry->doorbell, entry->transfer_len, intr, entry->lba, opcode); } } #else static inline void ufshcd_add_command_trace(struct ufs_hba *hba, struct ufshcd_cmd_log_entry *entry, u8 opcode) { } #endif #ifdef CONFIG_SCSI_UFSHCD_CMD_LOGGING static void ufshcd_cmd_log_init(struct ufs_hba *hba) { /* Allocate log entries */ if (!hba->cmd_log.entries) { hba->cmd_log.entries = kzalloc(UFSHCD_MAX_CMD_LOGGING * sizeof(struct ufshcd_cmd_log_entry), GFP_KERNEL); if (!hba->cmd_log.entries) return; dev_dbg(hba->dev, "%s: cmd_log.entries initialized\n", __func__); } } static void __ufshcd_cmd_log(struct ufs_hba *hba, char *str, char *cmd_type, unsigned int tag, u8 cmd_id, u8 idn, u8 lun, sector_t lba, int transfer_len, u8 opcode) { struct ufshcd_cmd_log_entry *entry; if (!hba->cmd_log.entries) return; entry = &hba->cmd_log.entries[hba->cmd_log.pos]; entry->lun = lun; entry->str = str; entry->cmd_type = cmd_type; entry->cmd_id = cmd_id; entry->lba = lba; entry->transfer_len = transfer_len; entry->idn = idn; entry->doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); entry->tag = tag; entry->tstamp = ktime_get(); entry->outstanding_reqs = hba->outstanding_reqs; entry->seq_num = hba->cmd_log.seq_num; hba->cmd_log.seq_num++; hba->cmd_log.pos = (hba->cmd_log.pos + 1) % UFSHCD_MAX_CMD_LOGGING; ufshcd_add_command_trace(hba, entry, opcode); } static void ufshcd_cmd_log(struct ufs_hba *hba, char *str, char *cmd_type, unsigned int tag, u8 cmd_id, u8 idn) { __ufshcd_cmd_log(hba, str, cmd_type, tag, cmd_id, idn, 0xff, (sector_t)-1, -1, -1); } static void ufshcd_dme_cmd_log(struct ufs_hba *hba, char *str, u8 cmd_id) { ufshcd_cmd_log(hba, str, "dme", 0xff, cmd_id, 0xff); } static void ufshcd_print_cmd_log(struct ufs_hba *hba) { int i; int pos; struct ufshcd_cmd_log_entry *p; if (!hba->cmd_log.entries) return; pos = hba->cmd_log.pos; for (i = 0; i < UFSHCD_MAX_CMD_LOGGING; i++) { p = &hba->cmd_log.entries[pos]; pos = (pos + 1) % UFSHCD_MAX_CMD_LOGGING; if (ktime_to_us(p->tstamp)) { pr_err("%s: %s: seq_no=%u lun=0x%x cmd_id=0x%02x lba=0x%llx txfer_len=%d tag=%u, doorbell=0x%x outstanding=0x%x idn=%d time=%lld us\n", p->cmd_type, p->str, p->seq_num, p->lun, p->cmd_id, (unsigned long long)p->lba, p->transfer_len, p->tag, p->doorbell, p->outstanding_reqs, p->idn, ktime_to_us(p->tstamp)); usleep_range(1000, 1100); } } } #else static void ufshcd_cmd_log_init(struct ufs_hba *hba) { } static void __ufshcd_cmd_log(struct ufs_hba *hba, char *str, char *cmd_type, unsigned int tag, u8 cmd_id, u8 idn, u8 lun, sector_t lba, int transfer_len, u8 opcode) { struct ufshcd_cmd_log_entry entry; entry.str = str; entry.lba = lba; entry.transfer_len = transfer_len; entry.doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); entry.tag = tag; ufshcd_add_command_trace(hba, &entry, opcode); } static void ufshcd_dme_cmd_log(struct ufs_hba *hba, char *str, u8 cmd_id) { } static void ufshcd_print_cmd_log(struct ufs_hba *hba) { } #endif #ifdef CONFIG_TRACEPOINTS static inline void ufshcd_cond_add_cmd_trace(struct ufs_hba *hba, unsigned int tag, const char *str) { struct ufshcd_lrb *lrbp; char *cmd_type = NULL; u8 opcode = 0; u8 cmd_id = 0, idn = 0; sector_t lba = -1; int transfer_len = -1; lrbp = &hba->lrb[tag]; if (lrbp->cmd) { /* data phase exists */ opcode = (u8)(*lrbp->cmd->cmnd); if ((opcode == READ_10) || (opcode == WRITE_10)) { /* * Currently we only fully trace read(10) and write(10) * commands */ if (lrbp->cmd->request && lrbp->cmd->request->bio) lba = lrbp->cmd->request->bio->bi_iter.bi_sector; transfer_len = be32_to_cpu( lrbp->ucd_req_ptr->sc.exp_data_transfer_len); } } if (lrbp->cmd && (lrbp->command_type == UTP_CMD_TYPE_SCSI)) { cmd_type = "scsi"; cmd_id = (u8)(*lrbp->cmd->cmnd); } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE) { if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP) { cmd_type = "nop"; cmd_id = 0; } else if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY) { cmd_type = "query"; cmd_id = hba->dev_cmd.query.request.upiu_req.opcode; idn = hba->dev_cmd.query.request.upiu_req.idn; } } __ufshcd_cmd_log(hba, (char *) str, cmd_type, tag, cmd_id, idn, lrbp->lun, lba, transfer_len, opcode); } #else static inline void ufshcd_cond_add_cmd_trace(struct ufs_hba *hba, unsigned int tag, const char *str) { } #endif static void ufshcd_print_clk_freqs(struct ufs_hba *hba) { struct ufs_clk_info *clki; struct list_head *head = &hba->clk_list_head; if (!(hba->ufshcd_dbg_print & UFSHCD_DBG_PRINT_CLK_FREQ_EN)) return; if (!head || list_empty(head)) return; list_for_each_entry(clki, head, list) { if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq && clki->max_freq) dev_err(hba->dev, "clk: %s, rate: %u\n", clki->name, clki->curr_freq); } } static void ufshcd_print_uic_err_hist(struct ufs_hba *hba, struct ufs_uic_err_reg_hist *err_hist, char *err_name) { int i; if (!(hba->ufshcd_dbg_print & UFSHCD_DBG_PRINT_UIC_ERR_HIST_EN)) return; for (i = 0; i < UIC_ERR_REG_HIST_LENGTH; i++) { int p = (i + err_hist->pos - 1) % UIC_ERR_REG_HIST_LENGTH; if (err_hist->reg[p] == 0) continue; dev_err(hba->dev, "%s[%d] = 0x%x at %lld us", err_name, i, err_hist->reg[p], ktime_to_us(err_hist->tstamp[p])); } } static inline void __ufshcd_print_host_regs(struct ufs_hba *hba, bool no_sleep) { if (!(hba->ufshcd_dbg_print & UFSHCD_DBG_PRINT_HOST_REGS_EN)) return; /* * hex_dump reads its data without the readl macro. This might * cause inconsistency issues on some platform, as the printed * values may be from cache and not the most recent value. * To know whether you are looking at an un-cached version verify * that IORESOURCE_MEM flag is on when xxx_get_resource() is invoked * during platform/pci probe function. */ ufshcd_hex_dump("host regs: ", hba->mmio_base, UFSHCI_REG_SPACE_SIZE); dev_err(hba->dev, "hba->ufs_version = 0x%x, hba->capabilities = 0x%x", hba->ufs_version, hba->capabilities); dev_err(hba->dev, "hba->outstanding_reqs = 0x%x, hba->outstanding_tasks = 0x%x", (u32)hba->outstanding_reqs, (u32)hba->outstanding_tasks); dev_err(hba->dev, "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt = %d", ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp), hba->ufs_stats.hibern8_exit_cnt); ufshcd_print_uic_err_hist(hba, &hba->ufs_stats.pa_err, "pa_err"); ufshcd_print_uic_err_hist(hba, &hba->ufs_stats.dl_err, "dl_err"); ufshcd_print_uic_err_hist(hba, &hba->ufs_stats.nl_err, "nl_err"); ufshcd_print_uic_err_hist(hba, &hba->ufs_stats.tl_err, "tl_err"); ufshcd_print_uic_err_hist(hba, &hba->ufs_stats.dme_err, "dme_err"); ufshcd_print_clk_freqs(hba); ufshcd_vops_dbg_register_dump(hba, no_sleep); } static void ufshcd_print_host_regs(struct ufs_hba *hba) { __ufshcd_print_host_regs(hba, false); } static void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt) { struct ufshcd_lrb *lrbp; int prdt_length; int tag; if (!(hba->ufshcd_dbg_print & UFSHCD_DBG_PRINT_TRS_EN)) return; for_each_set_bit(tag, &bitmap, hba->nutrs) { lrbp = &hba->lrb[tag]; dev_err(hba->dev, "UPIU[%d] - issue time %lld us", tag, ktime_to_us(lrbp->issue_time_stamp)); dev_err(hba->dev, "UPIU[%d] - Transfer Request Descriptor phys@0x%llx", tag, (u64)lrbp->utrd_dma_addr); ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr, sizeof(struct utp_transfer_req_desc)); dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx", tag, (u64)lrbp->ucd_req_dma_addr); ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr, sizeof(struct utp_upiu_req)); dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx", tag, (u64)lrbp->ucd_rsp_dma_addr); ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr, sizeof(struct utp_upiu_rsp)); prdt_length = le16_to_cpu(lrbp->utr_descriptor_ptr->prd_table_length); dev_err(hba->dev, "UPIU[%d] - PRDT - %d entries phys@0x%llx", tag, prdt_length, (u64)lrbp->ucd_prdt_dma_addr); if (pr_prdt) ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr, sizeof(struct ufshcd_sg_entry) * prdt_length); } } static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap) { struct utp_task_req_desc *tmrdp; int tag; if (!(hba->ufshcd_dbg_print & UFSHCD_DBG_PRINT_TMRS_EN)) return; for_each_set_bit(tag, &bitmap, hba->nutmrs) { tmrdp = &hba->utmrdl_base_addr[tag]; dev_err(hba->dev, "TM[%d] - Task Management Header", tag); ufshcd_hex_dump("TM TRD: ", &tmrdp->header, sizeof(struct request_desc_header)); dev_err(hba->dev, "TM[%d] - Task Management Request UPIU", tag); ufshcd_hex_dump("TM REQ: ", tmrdp->task_req_upiu, sizeof(struct utp_upiu_req)); dev_err(hba->dev, "TM[%d] - Task Management Response UPIU", tag); ufshcd_hex_dump("TM RSP: ", tmrdp->task_rsp_upiu, sizeof(struct utp_task_req_desc)); } } static void ufshcd_print_fsm_state(struct ufs_hba *hba) { int err = 0, tx_fsm_val = 0, rx_fsm_val = 0; err = ufshcd_dme_get(hba, UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE, UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), &tx_fsm_val); dev_err(hba->dev, "%s: TX_FSM_STATE = %u, err = %d\n", __func__, tx_fsm_val, err); err = ufshcd_dme_get(hba, UIC_ARG_MIB_SEL(MPHY_RX_FSM_STATE, UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), &rx_fsm_val); dev_err(hba->dev, "%s: RX_FSM_STATE = %u, err = %d\n", __func__, rx_fsm_val, err); } static void ufshcd_print_host_state(struct ufs_hba *hba) { if (!(hba->ufshcd_dbg_print & UFSHCD_DBG_PRINT_HOST_STATE_EN)) return; dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state); dev_err(hba->dev, "lrb in use=0x%lx, outstanding reqs=0x%lx tasks=0x%lx\n", hba->lrb_in_use, hba->outstanding_tasks, hba->outstanding_reqs); dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x, saved_ce_err=0x%x\n", hba->saved_err, hba->saved_uic_err, hba->saved_ce_err); dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n", hba->curr_dev_pwr_mode, hba->uic_link_state); dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n", hba->pm_op_in_progress, hba->is_sys_suspended); dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n", hba->auto_bkops_enabled, hba->host->host_self_blocked); dev_err(hba->dev, "Clk gate=%d, hibern8 on idle=%d\n", hba->clk_gating.state, hba->hibern8_on_idle.state); dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n", hba->eh_flags, hba->req_abort_count); dev_err(hba->dev, "Host capabilities=0x%x, caps=0x%x\n", hba->capabilities, hba->caps); dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks, hba->dev_quirks); } /** * ufshcd_print_pwr_info - print power params as saved in hba * power info * @hba: per-adapter instance */ static void ufshcd_print_pwr_info(struct ufs_hba *hba) { char *names[] = { "INVALID MODE", "FAST MODE", "SLOW_MODE", "INVALID MODE", "FASTAUTO_MODE", "SLOWAUTO_MODE", "INVALID MODE", }; if (!(hba->ufshcd_dbg_print & UFSHCD_DBG_PRINT_PWR_EN)) return; dev_err(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n", __func__, hba->pwr_info.gear_rx, hba->pwr_info.gear_tx, hba->pwr_info.lane_rx, hba->pwr_info.lane_tx, names[hba->pwr_info.pwr_rx], names[hba->pwr_info.pwr_tx], hba->pwr_info.hs_rate); } /* * ufshcd_wait_for_register - wait for register value to change * @hba - per-adapter interface * @reg - mmio register offset * @mask - mask to apply to read register value * @val - wait condition * @interval_us - polling interval in microsecs * @timeout_ms - timeout in millisecs * @can_sleep - perform sleep or just spin * Returns -ETIMEDOUT on error, zero on success */ int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask, u32 val, unsigned long interval_us, unsigned long timeout_ms, bool can_sleep) { int err = 0; unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); /* ignore bits that we don't intend to wait on */ val = val & mask; while ((ufshcd_readl(hba, reg) & mask) != val) { if (can_sleep) usleep_range(interval_us, interval_us + 50); else udelay(interval_us); if (time_after(jiffies, timeout)) { if ((ufshcd_readl(hba, reg) & mask) != val) err = -ETIMEDOUT; break; } } return err; } /** * ufshcd_get_intr_mask - Get the interrupt bit mask * @hba - Pointer to adapter instance * * Returns interrupt bit mask per version */ static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba) { u32 intr_mask = 0; switch (hba->ufs_version) { case UFSHCI_VERSION_10: intr_mask = INTERRUPT_MASK_ALL_VER_10; break; /* allow fall through */ case UFSHCI_VERSION_11: case UFSHCI_VERSION_20: intr_mask = INTERRUPT_MASK_ALL_VER_11; break; /* allow fall through */ case UFSHCI_VERSION_21: default: intr_mask = INTERRUPT_MASK_ALL_VER_21; } if (!ufshcd_is_crypto_supported(hba)) intr_mask &= ~CRYPTO_ENGINE_FATAL_ERROR; return intr_mask; } /** * ufshcd_get_ufs_version - Get the UFS version supported by the HBA * @hba - Pointer to adapter instance * * Returns UFSHCI version supported by the controller */ static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba) { if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION) return ufshcd_vops_get_ufs_hci_version(hba); return ufshcd_readl(hba, REG_UFS_VERSION); } /** * ufshcd_is_device_present - Check if any device connected to * the host controller * @hba: pointer to adapter instance * * Returns 1 if device present, 0 if no device detected */ static inline int ufshcd_is_device_present(struct ufs_hba *hba) { return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT) ? 1 : 0; } /** * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status * @lrb: pointer to local command reference block * * This function is used to get the OCS field from UTRD * Returns the OCS field in the UTRD */ static inline int ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp) { return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS; } /** * ufshcd_get_tmr_ocs - Get the UTMRD Overall Command Status * @task_req_descp: pointer to utp_task_req_desc structure * * This function is used to get the OCS field from UTMRD * Returns the OCS field in the UTMRD */ static inline int ufshcd_get_tmr_ocs(struct utp_task_req_desc *task_req_descp) { return le32_to_cpu(task_req_descp->header.dword_2) & MASK_OCS; } /** * ufshcd_get_tm_free_slot - get a free slot for task management request * @hba: per adapter instance * @free_slot: pointer to variable with available slot value * * Get a free tag and lock it until ufshcd_put_tm_slot() is called. * Returns 0 if free slot is not available, else return 1 with tag value * in @free_slot. */ static bool ufshcd_get_tm_free_slot(struct ufs_hba *hba, int *free_slot) { int tag; bool ret = false; if (!free_slot) goto out; do { tag = find_first_zero_bit(&hba->tm_slots_in_use, hba->nutmrs); if (tag >= hba->nutmrs) goto out; } while (test_and_set_bit_lock(tag, &hba->tm_slots_in_use)); *free_slot = tag; ret = true; out: return ret; } static inline void ufshcd_put_tm_slot(struct ufs_hba *hba, int slot) { clear_bit_unlock(slot, &hba->tm_slots_in_use); } /** * ufshcd_utrl_clear - Clear a bit in UTRLCLR register * @hba: per adapter instance * @pos: position of the bit to be cleared */ static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 pos) { ufshcd_writel(hba, ~(1 << pos), REG_UTP_TRANSFER_REQ_LIST_CLEAR); } /** * ufshcd_outstanding_req_clear - Clear a bit in outstanding request field * @hba: per adapter instance * @tag: position of the bit to be cleared */ static inline void ufshcd_outstanding_req_clear(struct ufs_hba *hba, int tag) { __clear_bit(tag, &hba->outstanding_reqs); } /** * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY * @reg: Register value of host controller status * * Returns integer, 0 on Success and positive value if failed */ static inline int ufshcd_get_lists_status(u32 reg) { /* * The mask 0xFF is for the following HCS register bits * Bit Description * 0 Device Present * 1 UTRLRDY * 2 UTMRLRDY * 3 UCRDY * 4-7 reserved */ return ((reg & 0xFF) >> 1) ^ 0x07; } /** * ufshcd_get_uic_cmd_result - Get the UIC command result * @hba: Pointer to adapter instance * * This function gets the result of UIC command completion * Returns 0 on success, non zero value on error */ static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba) { return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) & MASK_UIC_COMMAND_RESULT; } /** * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command * @hba: Pointer to adapter instance * * This function gets UIC command argument3 * Returns 0 on success, non zero value on error */ static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba) { return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3); } /** * ufshcd_get_req_rsp - returns the TR response transaction type * @ucd_rsp_ptr: pointer to response UPIU */ static inline int ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr) { return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24; } /** * ufshcd_get_rsp_upiu_result - Get the result from response UPIU * @ucd_rsp_ptr: pointer to response UPIU * * This function gets the response status and scsi_status from response UPIU * Returns the response result code. */ static inline int ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr) { return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT; } /* * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length * from response UPIU * @ucd_rsp_ptr: pointer to response UPIU * * Return the data segment length. */ static inline unsigned int ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr) { return be32_to_cpu(ucd_rsp_ptr->header.dword_2) & MASK_RSP_UPIU_DATA_SEG_LEN; } /** * ufshcd_is_exception_event - Check if the device raised an exception event * @ucd_rsp_ptr: pointer to response UPIU * * The function checks if the device raised an exception event indicated in * the Device Information field of response UPIU. * * Returns true if exception is raised, false otherwise. */ static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr) { return be32_to_cpu(ucd_rsp_ptr->header.dword_2) & MASK_RSP_EXCEPTION_EVENT ? true : false; } /** * ufshcd_reset_intr_aggr - Reset interrupt aggregation values. * @hba: per adapter instance */ static inline void ufshcd_reset_intr_aggr(struct ufs_hba *hba) { ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_COUNTER_AND_TIMER_RESET, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); } /** * ufshcd_config_intr_aggr - Configure interrupt aggregation values. * @hba: per adapter instance * @cnt: Interrupt aggregation counter threshold * @tmout: Interrupt aggregation timeout value */ static inline void ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout) { ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE | INT_AGGR_COUNTER_THLD_VAL(cnt) | INT_AGGR_TIMEOUT_VAL(tmout), REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); } /** * ufshcd_disable_intr_aggr - Disables interrupt aggregation. * @hba: per adapter instance */ static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba) { ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); } /** * ufshcd_enable_run_stop_reg - Enable run-stop registers, * When run-stop registers are set to 1, it indicates the * host controller that it can process the requests * @hba: per adapter instance */ static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba) { ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT, REG_UTP_TASK_REQ_LIST_RUN_STOP); ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT, REG_UTP_TRANSFER_REQ_LIST_RUN_STOP); } /** * ufshcd_hba_start - Start controller initialization sequence * @hba: per adapter instance */ static inline void ufshcd_hba_start(struct ufs_hba *hba) { u32 val = CONTROLLER_ENABLE; if (ufshcd_is_crypto_supported(hba)) val |= CRYPTO_GENERAL_ENABLE; ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE); } /** * ufshcd_is_hba_active - Get controller state * @hba: per adapter instance * * Returns zero if controller is active, 1 otherwise */ static inline int ufshcd_is_hba_active(struct ufs_hba *hba) { return (ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & 0x1) ? 0 : 1; } static const char *ufschd_uic_link_state_to_string( enum uic_link_state state) { switch (state) { case UIC_LINK_OFF_STATE: return "OFF"; case UIC_LINK_ACTIVE_STATE: return "ACTIVE"; case UIC_LINK_HIBERN8_STATE: return "HIBERN8"; default: return "UNKNOWN"; } } static const char *ufschd_ufs_dev_pwr_mode_to_string( enum ufs_dev_pwr_mode state) { switch (state) { case UFS_ACTIVE_PWR_MODE: return "ACTIVE"; case UFS_SLEEP_PWR_MODE: return "SLEEP"; case UFS_POWERDOWN_PWR_MODE: return "POWERDOWN"; default: return "UNKNOWN"; } } u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba) { /* HCI version 1.0 and 1.1 supports UniPro 1.41 */ if ((hba->ufs_version == UFSHCI_VERSION_10) || (hba->ufs_version == UFSHCI_VERSION_11)) return UFS_UNIPRO_VER_1_41; else return UFS_UNIPRO_VER_1_6; } EXPORT_SYMBOL(ufshcd_get_local_unipro_ver); static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba) { /* * If both host and device support UniPro ver1.6 or later, PA layer * parameters tuning happens during link startup itself. * * We can manually tune PA layer parameters if either host or device * doesn't support UniPro ver 1.6 or later. But to keep manual tuning * logic simple, we will only do manual tuning if local unipro version * doesn't support ver1.6 or later. */ if (ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6) return true; else return false; } /** * ufshcd_set_clk_freq - set UFS controller clock frequencies * @hba: per adapter instance * @scale_up: If True, set max possible frequency othewise set low frequency * * Returns 0 if successful * Returns < 0 for any other errors */ static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up) { int ret = 0; struct ufs_clk_info *clki; struct list_head *head = &hba->clk_list_head; if (!head || list_empty(head)) goto out; list_for_each_entry(clki, head, list) { if (!IS_ERR_OR_NULL(clki->clk)) { if (scale_up && clki->max_freq) { if (clki->curr_freq == clki->max_freq) continue; ret = clk_set_rate(clki->clk, clki->max_freq); if (ret) { dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", __func__, clki->name, clki->max_freq, ret); break; } trace_ufshcd_clk_scaling(dev_name(hba->dev), "scaled up", clki->name, clki->curr_freq, clki->max_freq); clki->curr_freq = clki->max_freq; } else if (!scale_up && clki->min_freq) { if (clki->curr_freq == clki->min_freq) continue; ret = clk_set_rate(clki->clk, clki->min_freq); if (ret) { dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", __func__, clki->name, clki->min_freq, ret); break; } trace_ufshcd_clk_scaling(dev_name(hba->dev), "scaled down", clki->name, clki->curr_freq, clki->min_freq); clki->curr_freq = clki->min_freq; } } dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__, clki->name, clk_get_rate(clki->clk)); } out: return ret; } /** * ufshcd_scale_clks - scale up or scale down UFS controller clocks * @hba: per adapter instance * @scale_up: True if scaling up and false if scaling down * * Returns 0 if successful * Returns < 0 for any other errors */ static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up) { int ret = 0; ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE); if (ret) return ret; ret = ufshcd_set_clk_freq(hba, scale_up); if (ret) return ret; ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE); if (ret) { ufshcd_set_clk_freq(hba, !scale_up); return ret; } return ret; } static inline void ufshcd_cancel_gate_work(struct ufs_hba *hba) { hrtimer_cancel(&hba->clk_gating.gate_hrtimer); cancel_work_sync(&hba->clk_gating.gate_work); } static void ufshcd_ungate_work(struct work_struct *work) { int ret; unsigned long flags; struct ufs_hba *hba = container_of(work, struct ufs_hba, clk_gating.ungate_work); ufshcd_cancel_gate_work(hba); spin_lock_irqsave(hba->host->host_lock, flags); if (hba->clk_gating.state == CLKS_ON) { spin_unlock_irqrestore(hba->host->host_lock, flags); goto unblock_reqs; } spin_unlock_irqrestore(hba->host->host_lock, flags); ufshcd_hba_vreg_set_hpm(hba); ufshcd_enable_clocks(hba); /* Exit from hibern8 */ if (ufshcd_can_hibern8_during_gating(hba)) { /* Prevent gating in this path */ hba->clk_gating.is_suspended = true; if (ufshcd_is_link_hibern8(hba)) { ret = ufshcd_uic_hibern8_exit(hba); if (ret) dev_err(hba->dev, "%s: hibern8 exit failed %d\n", __func__, ret); else ufshcd_set_link_active(hba); } hba->clk_gating.is_suspended = false; } unblock_reqs: ufshcd_scsi_unblock_requests(hba); } /** * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release. * Also, exit from hibern8 mode and set the link as active. * @hba: per adapter instance * @async: This indicates whether caller should ungate clocks asynchronously. */ int ufshcd_hold(struct ufs_hba *hba, bool async) { int rc = 0; unsigned long flags; if (!ufshcd_is_clkgating_allowed(hba)) goto out; spin_lock_irqsave(hba->host->host_lock, flags); hba->clk_gating.active_reqs++; if (ufshcd_eh_in_progress(hba)) { spin_unlock_irqrestore(hba->host->host_lock, flags); return 0; } start: switch (hba->clk_gating.state) { case CLKS_ON: /* * Wait for the ungate work to complete if in progress. * Though the clocks may be in ON state, the link could * still be in hibner8 state if hibern8 is allowed * during clock gating. * Make sure we exit hibern8 state also in addition to * clocks being ON. */ if (ufshcd_can_hibern8_during_gating(hba) && ufshcd_is_link_hibern8(hba)) { spin_unlock_irqrestore(hba->host->host_lock, flags); flush_work(&hba->clk_gating.ungate_work); spin_lock_irqsave(hba->host->host_lock, flags); goto start; } break; case REQ_CLKS_OFF: /* * If the timer was active but the callback was not running * we have nothing to do, just change state and return. */ if (hrtimer_try_to_cancel(&hba->clk_gating.gate_hrtimer) == 1) { hba->clk_gating.state = CLKS_ON; trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); break; } /* * If we are here, it means gating work is either done or * currently running. Hence, fall through to cancel gating * work and to enable clocks. */ case CLKS_OFF: __ufshcd_scsi_block_requests(hba); hba->clk_gating.state = REQ_CLKS_ON; trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); queue_work(hba->clk_gating.clk_gating_workq, &hba->clk_gating.ungate_work); /* * fall through to check if we should wait for this * work to be done or not. */ case REQ_CLKS_ON: if (async) { rc = -EAGAIN; hba->clk_gating.active_reqs--; break; } spin_unlock_irqrestore(hba->host->host_lock, flags); flush_work(&hba->clk_gating.ungate_work); /* Make sure state is CLKS_ON before returning */ spin_lock_irqsave(hba->host->host_lock, flags); goto start; default: dev_err(hba->dev, "%s: clk gating is in invalid state %d\n", __func__, hba->clk_gating.state); break; } spin_unlock_irqrestore(hba->host->host_lock, flags); out: hba->ufs_stats.clk_hold.ts = ktime_get(); return rc; } EXPORT_SYMBOL_GPL(ufshcd_hold); static void ufshcd_gate_work(struct work_struct *work) { struct ufs_hba *hba = container_of(work, struct ufs_hba, clk_gating.gate_work); unsigned long flags; spin_lock_irqsave(hba->host->host_lock, flags); /* * In case you are here to cancel this work the gating state * would be marked as REQ_CLKS_ON. In this case save time by * skipping the gating work and exit after changing the clock * state to CLKS_ON. */ if (hba->clk_gating.is_suspended || (hba->clk_gating.state != REQ_CLKS_OFF)) { hba->clk_gating.state = CLKS_ON; trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); goto rel_lock; } if (hba->clk_gating.active_reqs || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL || hba->lrb_in_use || hba->outstanding_tasks || hba->active_uic_cmd || hba->uic_async_done) goto rel_lock; spin_unlock_irqrestore(hba->host->host_lock, flags); if (ufshcd_is_hibern8_on_idle_allowed(hba) && hba->hibern8_on_idle.is_enabled) /* * Hibern8 enter work (on Idle) needs clocks to be ON hence * make sure that it is flushed before turning off the clocks. */ flush_delayed_work(&hba->hibern8_on_idle.enter_work); /* put the link into hibern8 mode before turning off clocks */ if (ufshcd_can_hibern8_during_gating(hba)) { if (ufshcd_uic_hibern8_enter(hba)) { hba->clk_gating.state = CLKS_ON; trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); goto out; } ufshcd_set_link_hibern8(hba); } /* * If auto hibern8 is supported then the link will already * be in hibern8 state and the ref clock can be gated. */ if ((ufshcd_is_auto_hibern8_supported(hba) || !ufshcd_is_link_active(hba)) && !hba->no_ref_clk_gating) ufshcd_disable_clocks(hba, true); else /* If link is active, device ref_clk can't be switched off */ ufshcd_disable_clocks_skip_ref_clk(hba, true); /* Put the host controller in low power mode if possible */ ufshcd_hba_vreg_set_lpm(hba); /* * In case you are here to cancel this work the gating state * would be marked as REQ_CLKS_ON. In this case keep the state * as REQ_CLKS_ON which would anyway imply that clocks are off * and a request to turn them on is pending. By doing this way, * we keep the state machine in tact and this would ultimately * prevent from doing cancel work multiple times when there are * new requests arriving before the current cancel work is done. */ spin_lock_irqsave(hba->host->host_lock, flags); if (hba->clk_gating.state == REQ_CLKS_OFF) { hba->clk_gating.state = CLKS_OFF; trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); } rel_lock: spin_unlock_irqrestore(hba->host->host_lock, flags); out: return; } /* host lock must be held before calling this variant */ static void __ufshcd_release(struct ufs_hba *hba, bool no_sched) { if (!ufshcd_is_clkgating_allowed(hba)) return; hba->clk_gating.active_reqs--; if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL || hba->lrb_in_use || hba->outstanding_tasks || hba->active_uic_cmd || hba->uic_async_done || ufshcd_eh_in_progress(hba) || no_sched) return; hba->clk_gating.state = REQ_CLKS_OFF; trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); hba->ufs_stats.clk_rel.ts = ktime_get(); hrtimer_start(&hba->clk_gating.gate_hrtimer, ms_to_ktime(hba->clk_gating.delay_ms), HRTIMER_MODE_REL); } void ufshcd_release(struct ufs_hba *hba, bool no_sched) { unsigned long flags; spin_lock_irqsave(hba->host->host_lock, flags); __ufshcd_release(hba, no_sched); spin_unlock_irqrestore(hba->host->host_lock, flags); } EXPORT_SYMBOL_GPL(ufshcd_release); static ssize_t ufshcd_clkgate_delay_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%lu\n", hba->clk_gating.delay_ms); } static ssize_t ufshcd_clkgate_delay_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); unsigned long flags, value; if (kstrtoul(buf, 0, &value)) return -EINVAL; spin_lock_irqsave(hba->host->host_lock, flags); hba->clk_gating.delay_ms = value; spin_unlock_irqrestore(hba->host->host_lock, flags); return count; } static ssize_t ufshcd_clkgate_delay_pwr_save_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%lu\n", hba->clk_gating.delay_ms_pwr_save); } static ssize_t ufshcd_clkgate_delay_pwr_save_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); unsigned long flags, value; if (kstrtoul(buf, 0, &value)) return -EINVAL; spin_lock_irqsave(hba->host->host_lock, flags); hba->clk_gating.delay_ms_pwr_save = value; if (ufshcd_is_clkscaling_supported(hba) && !hba->clk_scaling.is_scaled_up) hba->clk_gating.delay_ms = hba->clk_gating.delay_ms_pwr_save; spin_unlock_irqrestore(hba->host->host_lock, flags); return count; } static ssize_t ufshcd_clkgate_delay_perf_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%lu\n", hba->clk_gating.delay_ms_perf); } static ssize_t ufshcd_clkgate_delay_perf_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); unsigned long flags, value; if (kstrtoul(buf, 0, &value)) return -EINVAL; spin_lock_irqsave(hba->host->host_lock, flags); hba->clk_gating.delay_ms_perf = value; if (ufshcd_is_clkscaling_supported(hba) && hba->clk_scaling.is_scaled_up) hba->clk_gating.delay_ms = hba->clk_gating.delay_ms_perf; spin_unlock_irqrestore(hba->host->host_lock, flags); return count; } static ssize_t ufshcd_clkgate_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_gating.is_enabled); } static ssize_t ufshcd_clkgate_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); unsigned long flags; u32 value; if (kstrtou32(buf, 0, &value)) return -EINVAL; value = !!value; if (value == hba->clk_gating.is_enabled) goto out; if (value) { ufshcd_release(hba, false); } else { spin_lock_irqsave(hba->host->host_lock, flags); hba->clk_gating.active_reqs++; spin_unlock_irqrestore(hba->host->host_lock, flags); } hba->clk_gating.is_enabled = value; out: return count; } static enum hrtimer_restart ufshcd_clkgate_hrtimer_handler( struct hrtimer *timer) { struct ufs_hba *hba = container_of(timer, struct ufs_hba, clk_gating.gate_hrtimer); queue_work(hba->clk_gating.clk_gating_workq, &hba->clk_gating.gate_work); return HRTIMER_NORESTART; } static void ufshcd_init_clk_gating(struct ufs_hba *hba) { struct ufs_clk_gating *gating = &hba->clk_gating; char wq_name[sizeof("ufs_clk_gating_00")]; hba->clk_gating.state = CLKS_ON; if (!ufshcd_is_clkgating_allowed(hba)) return; /* * Disable hibern8 during clk gating if * auto hibern8 is supported */ if (ufshcd_is_auto_hibern8_supported(hba)) hba->caps &= ~UFSHCD_CAP_HIBERN8_WITH_CLK_GATING; INIT_WORK(&gating->gate_work, ufshcd_gate_work); INIT_WORK(&gating->ungate_work, ufshcd_ungate_work); /* * Clock gating work must be executed only after auto hibern8 * timeout has expired in the hardware or after aggressive * hibern8 on idle software timeout. Using jiffy based low * resolution delayed work is not reliable to guarantee this, * hence use a high resolution timer to make sure we schedule * the gate work precisely more than hibern8 timeout. * * Always make sure gating->delay_ms > hibern8_on_idle->delay_ms */ hrtimer_init(&gating->gate_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); gating->gate_hrtimer.function = ufshcd_clkgate_hrtimer_handler; snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d", hba->host->host_no); hba->clk_gating.clk_gating_workq = create_singlethread_workqueue(wq_name); gating->is_enabled = true; gating->delay_ms_pwr_save = UFSHCD_CLK_GATING_DELAY_MS_PWR_SAVE; gating->delay_ms_perf = UFSHCD_CLK_GATING_DELAY_MS_PERF; /* start with performance mode */ gating->delay_ms = gating->delay_ms_perf; if (!ufshcd_is_clkscaling_supported(hba)) goto scaling_not_supported; gating->delay_pwr_save_attr.show = ufshcd_clkgate_delay_pwr_save_show; gating->delay_pwr_save_attr.store = ufshcd_clkgate_delay_pwr_save_store; sysfs_attr_init(&gating->delay_pwr_save_attr.attr); gating->delay_pwr_save_attr.attr.name = "clkgate_delay_ms_pwr_save"; gating->delay_pwr_save_attr.attr.mode = S_IRUGO | S_IWUSR; if (device_create_file(hba->dev, &gating->delay_pwr_save_attr)) dev_err(hba->dev, "Failed to create sysfs for clkgate_delay_ms_pwr_save\n"); gating->delay_perf_attr.show = ufshcd_clkgate_delay_perf_show; gating->delay_perf_attr.store = ufshcd_clkgate_delay_perf_store; sysfs_attr_init(&gating->delay_perf_attr.attr); gating->delay_perf_attr.attr.name = "clkgate_delay_ms_perf"; gating->delay_perf_attr.attr.mode = S_IRUGO | S_IWUSR; if (device_create_file(hba->dev, &gating->delay_perf_attr)) dev_err(hba->dev, "Failed to create sysfs for clkgate_delay_ms_perf\n"); goto add_clkgate_enable; scaling_not_supported: hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show; hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store; sysfs_attr_init(&hba->clk_gating.delay_attr.attr); hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms"; hba->clk_gating.delay_attr.attr.mode = S_IRUGO | S_IWUSR; if (device_create_file(hba->dev, &hba->clk_gating.delay_attr)) dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n"); add_clkgate_enable: gating->enable_attr.show = ufshcd_clkgate_enable_show; gating->enable_attr.store = ufshcd_clkgate_enable_store; sysfs_attr_init(&gating->enable_attr.attr); gating->enable_attr.attr.name = "clkgate_enable"; gating->enable_attr.attr.mode = S_IRUGO | S_IWUSR; if (device_create_file(hba->dev, &gating->enable_attr)) dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n"); } static void ufshcd_exit_clk_gating(struct ufs_hba *hba) { if (!ufshcd_is_clkgating_allowed(hba)) return; if (ufshcd_is_clkscaling_supported(hba)) { device_remove_file(hba->dev, &hba->clk_gating.delay_pwr_save_attr); device_remove_file(hba->dev, &hba->clk_gating.delay_perf_attr); } else { device_remove_file(hba->dev, &hba->clk_gating.delay_attr); } device_remove_file(hba->dev, &hba->clk_gating.enable_attr); ufshcd_cancel_gate_work(hba); cancel_work_sync(&hba->clk_gating.ungate_work); destroy_workqueue(hba->clk_gating.clk_gating_workq); } static void ufshcd_set_auto_hibern8_timer(struct ufs_hba *hba, u32 delay) { ufshcd_rmwl(hba, AUTO_HIBERN8_TIMER_SCALE_MASK | AUTO_HIBERN8_IDLE_TIMER_MASK, AUTO_HIBERN8_TIMER_SCALE_1_MS | delay, REG_AUTO_HIBERN8_IDLE_TIMER); /* Make sure the timer gets applied before further operations */ mb(); } /** * ufshcd_hibern8_hold - Make sure that link is not in hibern8. * * @hba: per adapter instance * @async: This indicates whether caller wants to exit hibern8 asynchronously. * * Exit from hibern8 mode and set the link as active. * * Return 0 on success, non-zero on failure. */ static int ufshcd_hibern8_hold(struct ufs_hba *hba, bool async) { int rc = 0; unsigned long flags; if (!ufshcd_is_hibern8_on_idle_allowed(hba)) goto out; spin_lock_irqsave(hba->host->host_lock, flags); hba->hibern8_on_idle.active_reqs++; if (ufshcd_eh_in_progress(hba)) { spin_unlock_irqrestore(hba->host->host_lock, flags); return 0; } start: switch (hba->hibern8_on_idle.state) { case HIBERN8_EXITED: break; case REQ_HIBERN8_ENTER: if (cancel_delayed_work(&hba->hibern8_on_idle.enter_work)) { hba->hibern8_on_idle.state = HIBERN8_EXITED; trace_ufshcd_hibern8_on_idle(dev_name(hba->dev), hba->hibern8_on_idle.state); break; } /* * If we here, it means Hibern8 enter work is either done or * currently running. Hence, fall through to cancel hibern8 * work and exit hibern8. */ case HIBERN8_ENTERED: __ufshcd_scsi_block_requests(hba); hba->hibern8_on_idle.state = REQ_HIBERN8_EXIT; trace_ufshcd_hibern8_on_idle(dev_name(hba->dev), hba->hibern8_on_idle.state); schedule_work(&hba->hibern8_on_idle.exit_work); /* * fall through to check if we should wait for this * work to be done or not. */ case REQ_HIBERN8_EXIT: if (async) { rc = -EAGAIN; hba->hibern8_on_idle.active_reqs--; break; } else { spin_unlock_irqrestore(hba->host->host_lock, flags); flush_work(&hba->hibern8_on_idle.exit_work); /* Make sure state is HIBERN8_EXITED before returning */ spin_lock_irqsave(hba->host->host_lock, flags); goto start; } default: dev_err(hba->dev, "%s: H8 is in invalid state %d\n", __func__, hba->hibern8_on_idle.state); break; } spin_unlock_irqrestore(hba->host->host_lock, flags); out: return rc; } /* host lock must be held before calling this variant */ static void __ufshcd_hibern8_release(struct ufs_hba *hba, bool no_sched) { unsigned long delay_in_jiffies; if (!ufshcd_is_hibern8_on_idle_allowed(hba)) return; hba->hibern8_on_idle.active_reqs--; BUG_ON(hba->hibern8_on_idle.active_reqs < 0); if (hba->hibern8_on_idle.active_reqs || hba->hibern8_on_idle.is_suspended || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL || hba->lrb_in_use || hba->outstanding_tasks || hba->active_uic_cmd || hba->uic_async_done || ufshcd_eh_in_progress(hba) || no_sched) return; hba->hibern8_on_idle.state = REQ_HIBERN8_ENTER; trace_ufshcd_hibern8_on_idle(dev_name(hba->dev), hba->hibern8_on_idle.state); /* * Scheduling the delayed work after 1 jiffies will make the work to * get schedule any time from 0ms to 1000/HZ ms which is not desirable * for hibern8 enter work as it may impact the performance if it gets * scheduled almost immediately. Hence make sure that hibern8 enter * work gets scheduled atleast after 2 jiffies (any time between * 1000/HZ ms to 2000/HZ ms). */ delay_in_jiffies = msecs_to_jiffies(hba->hibern8_on_idle.delay_ms); if (delay_in_jiffies == 1) delay_in_jiffies++; schedule_delayed_work(&hba->hibern8_on_idle.enter_work, delay_in_jiffies); } static void ufshcd_hibern8_release(struct ufs_hba *hba, bool no_sched) { unsigned long flags; spin_lock_irqsave(hba->host->host_lock, flags); __ufshcd_hibern8_release(hba, no_sched); spin_unlock_irqrestore(hba->host->host_lock, flags); } static void ufshcd_hibern8_enter_work(struct work_struct *work) { struct ufs_hba *hba = container_of(work, struct ufs_hba, hibern8_on_idle.enter_work.work); unsigned long flags; spin_lock_irqsave(hba->host->host_lock, flags); if (hba->hibern8_on_idle.is_suspended) { hba->hibern8_on_idle.state = HIBERN8_EXITED; trace_ufshcd_hibern8_on_idle(dev_name(hba->dev), hba->hibern8_on_idle.state); goto rel_lock; } if (hba->hibern8_on_idle.active_reqs || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL || hba->lrb_in_use || hba->outstanding_tasks || hba->active_uic_cmd || hba->uic_async_done) goto rel_lock; spin_unlock_irqrestore(hba->host->host_lock, flags); if (ufshcd_is_link_active(hba) && ufshcd_uic_hibern8_enter(hba)) { /* Enter failed */ hba->hibern8_on_idle.state = HIBERN8_EXITED; trace_ufshcd_hibern8_on_idle(dev_name(hba->dev), hba->hibern8_on_idle.state); goto out; } ufshcd_set_link_hibern8(hba); /* * In case you are here to cancel this work the hibern8_on_idle.state * would be marked as REQ_HIBERN8_EXIT. In this case keep the state * as REQ_HIBERN8_EXIT which would anyway imply that we are in hibern8 * and a request to exit from it is pending. By doing this way, * we keep the state machine in tact and this would ultimately * prevent from doing cancel work multiple times when there are * new requests arriving before the current cancel work is done. */ spin_lock_irqsave(hba->host->host_lock, flags); if (hba->hibern8_on_idle.state == REQ_HIBERN8_ENTER) { hba->hibern8_on_idle.state = HIBERN8_ENTERED; trace_ufshcd_hibern8_on_idle(dev_name(hba->dev), hba->hibern8_on_idle.state); } rel_lock: spin_unlock_irqrestore(hba->host->host_lock, flags); out: return; } static void __ufshcd_set_auto_hibern8_timer(struct ufs_hba *hba, unsigned long delay_ms) { pm_runtime_get_sync(hba->dev); ufshcd_hold_all(hba); ufshcd_scsi_block_requests(hba); down_write(&hba->lock); /* wait for all the outstanding requests to finish */ ufshcd_wait_for_doorbell_clr(hba, U64_MAX); ufshcd_set_auto_hibern8_timer(hba, delay_ms); up_write(&hba->lock); ufshcd_scsi_unblock_requests(hba); ufshcd_release_all(hba); pm_runtime_put_sync(hba->dev); } static void ufshcd_hibern8_exit_work(struct work_struct *work) { int ret; unsigned long flags; struct ufs_hba *hba = container_of(work, struct ufs_hba, hibern8_on_idle.exit_work); cancel_delayed_work_sync(&hba->hibern8_on_idle.enter_work); spin_lock_irqsave(hba->host->host_lock, flags); if ((hba->hibern8_on_idle.state == HIBERN8_EXITED) || ufshcd_is_link_active(hba)) { hba->hibern8_on_idle.state = HIBERN8_EXITED; spin_unlock_irqrestore(hba->host->host_lock, flags); goto unblock_reqs; } spin_unlock_irqrestore(hba->host->host_lock, flags); /* Exit from hibern8 */ if (ufshcd_is_link_hibern8(hba)) { hba->ufs_stats.clk_hold.ctx = H8_EXIT_WORK; ufshcd_hold(hba, false); ret = ufshcd_uic_hibern8_exit(hba); hba->ufs_stats.clk_rel.ctx = H8_EXIT_WORK; ufshcd_release(hba, false); if (!ret) { spin_lock_irqsave(hba->host->host_lock, flags); ufshcd_set_link_active(hba); hba->hibern8_on_idle.state = HIBERN8_EXITED; trace_ufshcd_hibern8_on_idle(dev_name(hba->dev), hba->hibern8_on_idle.state); spin_unlock_irqrestore(hba->host->host_lock, flags); } } unblock_reqs: ufshcd_scsi_unblock_requests(hba); } static ssize_t ufshcd_hibern8_on_idle_delay_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%lu\n", hba->hibern8_on_idle.delay_ms); } static ssize_t ufshcd_hibern8_on_idle_delay_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); unsigned long flags, value; bool change = true; if (kstrtoul(buf, 0, &value)) return -EINVAL; spin_lock_irqsave(hba->host->host_lock, flags); if (hba->hibern8_on_idle.delay_ms == value) change = false; if (value >= hba->clk_gating.delay_ms_pwr_save || value >= hba->clk_gating.delay_ms_perf) { dev_err(hba->dev, "hibern8_on_idle_delay (%lu) can not be >= to clkgate_delay_ms_pwr_save (%lu) and clkgate_delay_ms_perf (%lu)\n", value, hba->clk_gating.delay_ms_pwr_save, hba->clk_gating.delay_ms_perf); spin_unlock_irqrestore(hba->host->host_lock, flags); return -EINVAL; } hba->hibern8_on_idle.delay_ms = value; spin_unlock_irqrestore(hba->host->host_lock, flags); /* Update auto hibern8 timer value if supported */ if (change && ufshcd_is_auto_hibern8_supported(hba) && hba->hibern8_on_idle.is_enabled) __ufshcd_set_auto_hibern8_timer(hba, hba->hibern8_on_idle.delay_ms); return count; } static ssize_t ufshcd_hibern8_on_idle_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%d\n", hba->hibern8_on_idle.is_enabled); } static ssize_t ufshcd_hibern8_on_idle_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); unsigned long flags; u32 value; if (kstrtou32(buf, 0, &value)) return -EINVAL; value = !!value; if (value == hba->hibern8_on_idle.is_enabled) goto out; /* Update auto hibern8 timer value if supported */ if (ufshcd_is_auto_hibern8_supported(hba)) { __ufshcd_set_auto_hibern8_timer(hba, value ? hba->hibern8_on_idle.delay_ms : value); goto update; } if (value) { /* * As clock gating work would wait for the hibern8 enter work * to finish, clocks would remain on during hibern8 enter work. */ ufshcd_hold(hba, false); ufshcd_release_all(hba); } else { spin_lock_irqsave(hba->host->host_lock, flags); hba->hibern8_on_idle.active_reqs++; spin_unlock_irqrestore(hba->host->host_lock, flags); } update: hba->hibern8_on_idle.is_enabled = value; out: return count; } static void ufshcd_init_hibern8_on_idle(struct ufs_hba *hba) { /* initialize the state variable here */ hba->hibern8_on_idle.state = HIBERN8_EXITED; if (!ufshcd_is_hibern8_on_idle_allowed(hba) && !ufshcd_is_auto_hibern8_supported(hba)) return; if (ufshcd_is_auto_hibern8_supported(hba)) { hba->hibern8_on_idle.delay_ms = 1; hba->hibern8_on_idle.state = AUTO_HIBERN8; /* * Disable SW hibern8 enter on idle in case * auto hibern8 is supported */ hba->caps &= ~UFSHCD_CAP_HIBERN8_ENTER_ON_IDLE; } else { hba->hibern8_on_idle.delay_ms = 10; INIT_DELAYED_WORK(&hba->hibern8_on_idle.enter_work, ufshcd_hibern8_enter_work); INIT_WORK(&hba->hibern8_on_idle.exit_work, ufshcd_hibern8_exit_work); } hba->hibern8_on_idle.is_enabled = true; hba->hibern8_on_idle.delay_attr.show = ufshcd_hibern8_on_idle_delay_show; hba->hibern8_on_idle.delay_attr.store = ufshcd_hibern8_on_idle_delay_store; sysfs_attr_init(&hba->hibern8_on_idle.delay_attr.attr); hba->hibern8_on_idle.delay_attr.attr.name = "hibern8_on_idle_delay_ms"; hba->hibern8_on_idle.delay_attr.attr.mode = S_IRUGO | S_IWUSR; if (device_create_file(hba->dev, &hba->hibern8_on_idle.delay_attr)) dev_err(hba->dev, "Failed to create sysfs for hibern8_on_idle_delay\n"); hba->hibern8_on_idle.enable_attr.show = ufshcd_hibern8_on_idle_enable_show; hba->hibern8_on_idle.enable_attr.store = ufshcd_hibern8_on_idle_enable_store; sysfs_attr_init(&hba->hibern8_on_idle.enable_attr.attr); hba->hibern8_on_idle.enable_attr.attr.name = "hibern8_on_idle_enable"; hba->hibern8_on_idle.enable_attr.attr.mode = S_IRUGO | S_IWUSR; if (device_create_file(hba->dev, &hba->hibern8_on_idle.enable_attr)) dev_err(hba->dev, "Failed to create sysfs for hibern8_on_idle_enable\n"); } static void ufshcd_exit_hibern8_on_idle(struct ufs_hba *hba) { if (!ufshcd_is_hibern8_on_idle_allowed(hba) && !ufshcd_is_auto_hibern8_supported(hba)) return; device_remove_file(hba->dev, &hba->hibern8_on_idle.delay_attr); device_remove_file(hba->dev, &hba->hibern8_on_idle.enable_attr); } static void ufshcd_hold_all(struct ufs_hba *hba) { ufshcd_hold(hba, false); ufshcd_hibern8_hold(hba, false); } static void ufshcd_release_all(struct ufs_hba *hba) { ufshcd_hibern8_release(hba, false); ufshcd_release(hba, false); } /* Must be called with host lock acquired */ static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba) { bool queue_resume_work = false; if (!ufshcd_is_clkscaling_supported(hba)) return; if (!hba->clk_scaling.active_reqs++) queue_resume_work = true; if (!hba->clk_scaling.is_allowed || hba->pm_op_in_progress) return; if (queue_resume_work) queue_work(hba->clk_scaling.workq, &hba->clk_scaling.resume_work); if (!hba->clk_scaling.window_start_t) { hba->clk_scaling.window_start_t = jiffies; hba->clk_scaling.tot_busy_t = 0; hba->clk_scaling.is_busy_started = false; } if (!hba->clk_scaling.is_busy_started) { hba->clk_scaling.busy_start_t = ktime_get(); hba->clk_scaling.is_busy_started = true; } } static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba) { struct ufs_clk_scaling *scaling = &hba->clk_scaling; if (!ufshcd_is_clkscaling_supported(hba)) return; if (!hba->outstanding_reqs && scaling->is_busy_started) { scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(), scaling->busy_start_t)); scaling->busy_start_t = ktime_set(0, 0); scaling->is_busy_started = false; } } /** * ufshcd_send_command - Send SCSI or device management commands * @hba: per adapter instance * @task_tag: Task tag of the command */ static inline int ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag) { int ret = 0; hba->lrb[task_tag].issue_time_stamp = ktime_get(); hba->lrb[task_tag].complete_time_stamp = ktime_set(0, 0); ufshcd_clk_scaling_start_busy(hba); __set_bit(task_tag, &hba->outstanding_reqs); ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL); /* Make sure that doorbell is committed immediately */ wmb(); ufshcd_cond_add_cmd_trace(hba, task_tag, "send"); ufshcd_update_tag_stats(hba, task_tag); return ret; } /** * ufshcd_copy_sense_data - Copy sense data in case of check condition * @lrb - pointer to local reference block */ static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp) { int len; if (lrbp->sense_buffer && ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) { int len_to_copy; len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len); len_to_copy = min_t(int, RESPONSE_UPIU_SENSE_DATA_LENGTH, len); memcpy(lrbp->sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data, min_t(int, len_to_copy, UFSHCD_REQ_SENSE_SIZE)); } } /** * ufshcd_copy_query_response() - Copy the Query Response and the data * descriptor * @hba: per adapter instance * @lrb - pointer to local reference block */ static int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { struct ufs_query_res *query_res = &hba->dev_cmd.query.response; memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE); /* Get the descriptor */ if (lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) { u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + GENERAL_UPIU_REQUEST_SIZE; u16 resp_len; u16 buf_len; /* data segment length */ resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) & MASK_QUERY_DATA_SEG_LEN; buf_len = be16_to_cpu( hba->dev_cmd.query.request.upiu_req.length); if (likely(buf_len >= resp_len)) { memcpy(hba->dev_cmd.query.descriptor, descp, resp_len); } else { dev_warn(hba->dev, "%s: Response size is bigger than buffer", __func__); return -EINVAL; } } return 0; } /** * ufshcd_hba_capabilities - Read controller capabilities * @hba: per adapter instance */ static inline void ufshcd_hba_capabilities(struct ufs_hba *hba) { hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES); /* nutrs and nutmrs are 0 based values */ hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1; hba->nutmrs = ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1; } /** * ufshcd_ready_for_uic_cmd - Check if controller is ready * to accept UIC commands * @hba: per adapter instance * Return true on success, else false */ static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba) { if (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY) return true; else return false; } /** * ufshcd_get_upmcrs - Get the power mode change request status * @hba: Pointer to adapter instance * * This function gets the UPMCRS field of HCS register * Returns value of UPMCRS field */ static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba) { return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7; } /** * ufshcd_dispatch_uic_cmd - Dispatch UIC commands to unipro layers * @hba: per adapter instance * @uic_cmd: UIC command * * Mutex must be held. */ static inline void ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) { WARN_ON(hba->active_uic_cmd); hba->active_uic_cmd = uic_cmd; ufshcd_dme_cmd_log(hba, "send", hba->active_uic_cmd->command); /* Write Args */ ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1); ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2); ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3); /* Write UIC Cmd */ ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK, REG_UIC_COMMAND); } /** * ufshcd_wait_for_uic_cmd - Wait complectioin of UIC command * @hba: per adapter instance * @uic_command: UIC command * * Must be called with mutex held. * Returns 0 only if success. */ static int ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) { int ret; unsigned long flags; if (wait_for_completion_timeout(&uic_cmd->done, msecs_to_jiffies(UIC_CMD_TIMEOUT))) ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; else ret = -ETIMEDOUT; if (ret) ufsdbg_set_err_state(hba); ufshcd_dme_cmd_log(hba, "cmp1", hba->active_uic_cmd->command); spin_lock_irqsave(hba->host->host_lock, flags); hba->active_uic_cmd = NULL; spin_unlock_irqrestore(hba->host->host_lock, flags); return ret; } /** * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result * @hba: per adapter instance * @uic_cmd: UIC command * @completion: initialize the completion only if this is set to true * * Identical to ufshcd_send_uic_cmd() expect mutex. Must be called * with mutex held and host_lock locked. * Returns 0 only if success. */ static int __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd, bool completion) { if (!ufshcd_ready_for_uic_cmd(hba)) { dev_err(hba->dev, "Controller not ready to accept UIC commands\n"); return -EIO; } if (completion) init_completion(&uic_cmd->done); ufshcd_dispatch_uic_cmd(hba, uic_cmd); return 0; } /** * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result * @hba: per adapter instance * @uic_cmd: UIC command * * Returns 0 only if success. */ static int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) { int ret; unsigned long flags; hba->ufs_stats.clk_hold.ctx = UIC_CMD_SEND; ufshcd_hold_all(hba); mutex_lock(&hba->uic_cmd_mutex); ufshcd_add_delay_before_dme_cmd(hba); spin_lock_irqsave(hba->host->host_lock, flags); ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true); spin_unlock_irqrestore(hba->host->host_lock, flags); if (!ret) ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd); ufshcd_save_tstamp_of_last_dme_cmd(hba); mutex_unlock(&hba->uic_cmd_mutex); ufshcd_release_all(hba); hba->ufs_stats.clk_rel.ctx = UIC_CMD_SEND; ufsdbg_error_inject_dispatcher(hba, ERR_INJECT_UIC, 0, &ret); return ret; } /** * ufshcd_map_sg - Map scatter-gather list to prdt * @lrbp - pointer to local reference block * * Returns 0 in case of success, non-zero value in case of failure */ static int ufshcd_map_sg(struct ufshcd_lrb *lrbp) { struct ufshcd_sg_entry *prd_table; struct scatterlist *sg; struct scsi_cmnd *cmd; int sg_segments; int i; cmd = lrbp->cmd; sg_segments = scsi_dma_map(cmd); if (sg_segments < 0) return sg_segments; if (sg_segments) { lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16((u16) (sg_segments)); prd_table = (struct ufshcd_sg_entry *)lrbp->ucd_prdt_ptr; scsi_for_each_sg(cmd, sg, sg_segments, i) { prd_table[i].size = cpu_to_le32(((u32) sg_dma_len(sg))-1); prd_table[i].base_addr = cpu_to_le32(lower_32_bits(sg->dma_address)); prd_table[i].upper_addr = cpu_to_le32(upper_32_bits(sg->dma_address)); prd_table[i].reserved = 0; } } else { lrbp->utr_descriptor_ptr->prd_table_length = 0; } return 0; } /** * ufshcd_enable_intr - enable interrupts * @hba: per adapter instance * @intrs: interrupt bits */ static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs) { u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); if (hba->ufs_version == UFSHCI_VERSION_10) { u32 rw; rw = set & INTERRUPT_MASK_RW_VER_10; set = rw | ((set ^ intrs) & intrs); } else { set |= intrs; } ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); } /** * ufshcd_disable_intr - disable interrupts * @hba: per adapter instance * @intrs: interrupt bits */ static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs) { u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); if (hba->ufs_version == UFSHCI_VERSION_10) { u32 rw; rw = (set & INTERRUPT_MASK_RW_VER_10) & ~(intrs & INTERRUPT_MASK_RW_VER_10); set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10); } else { set &= ~intrs; } ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); } static int ufshcd_prepare_crypto_utrd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr; u8 cc_index = 0; bool enable = false; u64 dun = 0; int ret; /* * Call vendor specific code to get crypto info for this request: * enable, crypto config. index, DUN. * If bypass is set, don't bother setting the other fields. */ ret = ufshcd_vops_crypto_req_setup(hba, lrbp, &cc_index, &enable, &dun); if (ret) { if (ret != -EAGAIN) { dev_err(hba->dev, "%s: failed to setup crypto request (%d)\n", __func__, ret); } return ret; } if (!enable) goto out; req_desc->header.dword_0 |= cc_index | UTRD_CRYPTO_ENABLE; req_desc->header.dword_1 = (u32)(dun & 0xFFFFFFFF); req_desc->header.dword_3 = (u32)((dun >> 32) & 0xFFFFFFFF); out: return 0; } /** * ufshcd_prepare_req_desc_hdr() - Fills the requests header * descriptor according to request * @hba: per adapter instance * @lrbp: pointer to local reference block * @upiu_flags: flags required in the header * @cmd_dir: requests data direction */ static int ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, u32 *upiu_flags, enum dma_data_direction cmd_dir) { struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr; u32 data_direction; u32 dword_0; if (cmd_dir == DMA_FROM_DEVICE) { data_direction = UTP_DEVICE_TO_HOST; *upiu_flags = UPIU_CMD_FLAGS_READ; } else if (cmd_dir == DMA_TO_DEVICE) { data_direction = UTP_HOST_TO_DEVICE; *upiu_flags = UPIU_CMD_FLAGS_WRITE; } else { data_direction = UTP_NO_DATA_TRANSFER; *upiu_flags = UPIU_CMD_FLAGS_NONE; } dword_0 = data_direction | (lrbp->command_type << UPIU_COMMAND_TYPE_OFFSET); if (lrbp->intr_cmd) dword_0 |= UTP_REQ_DESC_INT_CMD; /* Transfer request descriptor header fields */ req_desc->header.dword_0 = cpu_to_le32(dword_0); /* dword_1 is reserved, hence it is set to 0 */ req_desc->header.dword_1 = 0; /* * assigning invalid value for command status. Controller * updates OCS on command completion, with the command * status */ req_desc->header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS); /* dword_3 is reserved, hence it is set to 0 */ req_desc->header.dword_3 = 0; req_desc->prd_table_length = 0; if (ufshcd_is_crypto_supported(hba)) return ufshcd_prepare_crypto_utrd(hba, lrbp); return 0; } /** * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc, * for scsi commands * @lrbp - local reference block pointer * @upiu_flags - flags */ static void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u32 upiu_flags) { struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; unsigned short cdb_len; /* command descriptor fields */ ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD( UPIU_TRANSACTION_COMMAND, upiu_flags, lrbp->lun, lrbp->task_tag); ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD( UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0); /* Total EHS length and Data segment length will be zero */ ucd_req_ptr->header.dword_2 = 0; ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(lrbp->cmd->sdb.length); cdb_len = min_t(unsigned short, lrbp->cmd->cmd_len, MAX_CDB_SIZE); memcpy(ucd_req_ptr->sc.cdb, lrbp->cmd->cmnd, cdb_len); if (cdb_len < MAX_CDB_SIZE) memset(ucd_req_ptr->sc.cdb + cdb_len, 0, (MAX_CDB_SIZE - cdb_len)); memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); } /** * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc, * for query requsts * @hba: UFS hba * @lrbp: local reference block pointer * @upiu_flags: flags */ static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, u32 upiu_flags) { struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; struct ufs_query *query = &hba->dev_cmd.query; u16 len = be16_to_cpu(query->request.upiu_req.length); u8 *descp = (u8 *)lrbp->ucd_req_ptr + GENERAL_UPIU_REQUEST_SIZE; /* Query request header */ ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD( UPIU_TRANSACTION_QUERY_REQ, upiu_flags, lrbp->lun, lrbp->task_tag); ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD( 0, query->request.query_func, 0, 0); /* Data segment length */ ucd_req_ptr->header.dword_2 = UPIU_HEADER_DWORD( 0, 0, len >> 8, (u8)len); /* Copy the Query Request buffer as is */ memcpy(&ucd_req_ptr->qr, &query->request.upiu_req, QUERY_OSF_SIZE); /* Copy the Descriptor */ if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) memcpy(descp, query->descriptor, len); memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); } static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp) { struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req)); /* command descriptor fields */ ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD( UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag); /* clear rest of the fields of basic header */ ucd_req_ptr->header.dword_1 = 0; ucd_req_ptr->header.dword_2 = 0; memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); } /** * ufshcd_compose_upiu - form UFS Protocol Information Unit(UPIU) * @hba - per adapter instance * @lrb - pointer to local reference block */ static int ufshcd_compose_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { u32 upiu_flags; int ret = 0; switch (lrbp->command_type) { case UTP_CMD_TYPE_SCSI: if (likely(lrbp->cmd)) { ret = ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction); ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags); } else { ret = -EINVAL; } break; case UTP_CMD_TYPE_DEV_MANAGE: ret = ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE); if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY) ufshcd_prepare_utp_query_req_upiu( hba, lrbp, upiu_flags); else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP) ufshcd_prepare_utp_nop_upiu(lrbp); else ret = -EINVAL; break; case UTP_CMD_TYPE_UFS: /* For UFS native command implementation */ ret = -ENOTSUPP; dev_err(hba->dev, "%s: UFS native command are not supported\n", __func__); break; default: ret = -ENOTSUPP; dev_err(hba->dev, "%s: unknown command type: 0x%x\n", __func__, lrbp->command_type); break; } /* end of switch */ return ret; } /* * ufshcd_scsi_to_upiu_lun - maps scsi LUN to UPIU LUN * @scsi_lun: scsi LUN id * * Returns UPIU LUN id */ static inline u8 ufshcd_scsi_to_upiu_lun(unsigned int scsi_lun) { if (scsi_is_wlun(scsi_lun)) return (scsi_lun & UFS_UPIU_MAX_UNIT_NUM_ID) | UFS_UPIU_WLUN_ID; else return scsi_lun & UFS_UPIU_MAX_UNIT_NUM_ID; } /** * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID * @scsi_lun: UPIU W-LUN id * * Returns SCSI W-LUN id */ static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id) { return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE; } /** * ufshcd_get_write_lock - synchronize between shutdown, scaling & * arrival of requests * @hba: ufs host * * Lock is predominantly held by shutdown context thus, ensuring * that no requests from any other context may sneak through. */ static inline void ufshcd_get_write_lock(struct ufs_hba *hba) { down_write(&hba->lock); } /** * ufshcd_get_read_lock - synchronize between shutdown, scaling & * arrival of requests * @hba: ufs host * * Returns 1 if acquired, < 0 on contention * * After shutdown's initiated, allow requests only directed to the * well known device lun. The sync between scaling & issue is maintained * as is and this restructuring syncs shutdown with these too. */ static int ufshcd_get_read_lock(struct ufs_hba *hba, u64 lun) { int err = 0; err = down_read_trylock(&hba->lock); if (err > 0) goto out; /* let requests for well known device lun to go through */ if (ufshcd_scsi_to_upiu_lun(lun) == UFS_UPIU_UFS_DEVICE_WLUN) return 0; else if (!ufshcd_is_shutdown_ongoing(hba)) return -EAGAIN; else return -EPERM; out: return err; } /** * ufshcd_put_read_lock - synchronize between shutdown, scaling & * arrival of requests * @hba: ufs host * * Returns none */ static inline void ufshcd_put_read_lock(struct ufs_hba *hba) { up_read(&hba->lock); } /** * ufshcd_queuecommand - main entry point for SCSI requests * @cmd: command from SCSI Midlayer * @done: call back function * * Returns 0 for success, non-zero in case of failure */ static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd) { struct ufshcd_lrb *lrbp; struct ufs_hba *hba; unsigned long flags; int tag; int err = 0; bool has_read_lock = false; hba = shost_priv(host); if (!cmd || !cmd->request || !hba) return -EINVAL; tag = cmd->request->tag; if (!ufshcd_valid_tag(hba, tag)) { dev_err(hba->dev, "%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p", __func__, tag, cmd, cmd->request); BUG(); } err = ufshcd_get_read_lock(hba, cmd->device->lun); if (unlikely(err < 0)) { if (err == -EPERM) { set_host_byte(cmd, DID_ERROR); cmd->scsi_done(cmd); return 0; } if (err == -EAGAIN) return SCSI_MLQUEUE_HOST_BUSY; } else if (err == 1) { has_read_lock = true; } spin_lock_irqsave(hba->host->host_lock, flags); /* if error handling is in progress, return host busy */ if (ufshcd_eh_in_progress(hba)) { err = SCSI_MLQUEUE_HOST_BUSY; goto out_unlock; } switch (hba->ufshcd_state) { case UFSHCD_STATE_OPERATIONAL: break; case UFSHCD_STATE_RESET: err = SCSI_MLQUEUE_HOST_BUSY; goto out_unlock; case UFSHCD_STATE_ERROR: set_host_byte(cmd, DID_ERROR); cmd->scsi_done(cmd); goto out_unlock; default: dev_WARN_ONCE(hba->dev, 1, "%s: invalid state %d\n", __func__, hba->ufshcd_state); set_host_byte(cmd, DID_BAD_TARGET); cmd->scsi_done(cmd); goto out_unlock; } spin_unlock_irqrestore(hba->host->host_lock, flags); hba->req_abort_count = 0; /* acquire the tag to make sure device cmds don't use it */ if (test_and_set_bit_lock(tag, &hba->lrb_in_use)) { /* * Dev manage command in progress, requeue the command. * Requeuing the command helps in cases where the request *may* * find different tag instead of waiting for dev manage command * completion. */ err = SCSI_MLQUEUE_HOST_BUSY; goto out; } hba->ufs_stats.clk_hold.ctx = QUEUE_CMD; err = ufshcd_hold(hba, true); if (err) { err = SCSI_MLQUEUE_HOST_BUSY; clear_bit_unlock(tag, &hba->lrb_in_use); goto out; } if (ufshcd_is_clkgating_allowed(hba)) WARN_ON(hba->clk_gating.state != CLKS_ON); err = ufshcd_hibern8_hold(hba, true); if (err) { clear_bit_unlock(tag, &hba->lrb_in_use); err = SCSI_MLQUEUE_HOST_BUSY; hba->ufs_stats.clk_rel.ctx = QUEUE_CMD; ufshcd_release(hba, true); goto out; } if (ufshcd_is_hibern8_on_idle_allowed(hba)) WARN_ON(hba->hibern8_on_idle.state != HIBERN8_EXITED); /* Vote PM QoS for the request */ ufshcd_vops_pm_qos_req_start(hba, cmd->request); /* IO svc time latency histogram */ if (hba->latency_hist_enabled && (cmd->request->cmd_type == REQ_TYPE_FS)) { cmd->request->lat_hist_io_start = ktime_get(); cmd->request->lat_hist_enabled = 1; } else { cmd->request->lat_hist_enabled = 0; } WARN_ON(hba->clk_gating.state != CLKS_ON); lrbp = &hba->lrb[tag]; WARN_ON(lrbp->cmd); lrbp->cmd = cmd; lrbp->sense_bufflen = UFSHCD_REQ_SENSE_SIZE; lrbp->sense_buffer = cmd->sense_buffer; lrbp->task_tag = tag; lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba) ? true : false; lrbp->command_type = UTP_CMD_TYPE_SCSI; lrbp->req_abort_skip = false; /* form UPIU before issuing the command */ err = ufshcd_compose_upiu(hba, lrbp); if (err) { if (err != -EAGAIN) dev_err(hba->dev, "%s: failed to compose upiu %d\n", __func__, err); lrbp->cmd = NULL; clear_bit_unlock(tag, &hba->lrb_in_use); ufshcd_release_all(hba); ufshcd_vops_pm_qos_req_end(hba, cmd->request, true); goto out; } err = ufshcd_map_sg(lrbp); if (err) { lrbp->cmd = NULL; clear_bit_unlock(tag, &hba->lrb_in_use); ufshcd_release_all(hba); ufshcd_vops_pm_qos_req_end(hba, cmd->request, true); goto out; } err = ufshcd_vops_crypto_engine_cfg_start(hba, tag); if (err) { if (err != -EAGAIN) dev_err(hba->dev, "%s: failed to configure crypto engine %d\n", __func__, err); scsi_dma_unmap(lrbp->cmd); lrbp->cmd = NULL; clear_bit_unlock(tag, &hba->lrb_in_use); ufshcd_release_all(hba); ufshcd_vops_pm_qos_req_end(hba, cmd->request, true); goto out; } /* Make sure descriptors are ready before ringing the doorbell */ wmb(); /* issue command to the controller */ spin_lock_irqsave(hba->host->host_lock, flags); err = ufshcd_send_command(hba, tag); if (err) { spin_unlock_irqrestore(hba->host->host_lock, flags); scsi_dma_unmap(lrbp->cmd); lrbp->cmd = NULL; clear_bit_unlock(tag, &hba->lrb_in_use); ufshcd_release_all(hba); ufshcd_vops_pm_qos_req_end(hba, cmd->request, true); ufshcd_vops_crypto_engine_cfg_end(hba, lrbp, cmd->request); dev_err(hba->dev, "%s: failed sending command, %d\n", __func__, err); err = DID_ERROR; goto out; } out_unlock: spin_unlock_irqrestore(hba->host->host_lock, flags); out: if (has_read_lock) ufshcd_put_read_lock(hba); return err; } static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag) { lrbp->cmd = NULL; lrbp->sense_bufflen = 0; lrbp->sense_buffer = NULL; lrbp->task_tag = tag; lrbp->lun = 0; /* device management cmd is not specific to any LUN */ lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; lrbp->intr_cmd = true; /* No interrupt aggregation */ hba->dev_cmd.type = cmd_type; return ufshcd_compose_upiu(hba, lrbp); } static int ufshcd_clear_cmd(struct ufs_hba *hba, int tag) { int err = 0; unsigned long flags; u32 mask = 1 << tag; /* clear outstanding transaction before retry */ spin_lock_irqsave(hba->host->host_lock, flags); ufshcd_utrl_clear(hba, tag); spin_unlock_irqrestore(hba->host->host_lock, flags); /* * wait for for h/w to clear corresponding bit in door-bell. * max. wait is 1 sec. */ err = ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL, mask, ~mask, 1000, 1000, true); return err; } static int ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { struct ufs_query_res *query_res = &hba->dev_cmd.query.response; /* Get the UPIU response */ query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >> UPIU_RSP_CODE_OFFSET; return query_res->response; } /** * ufshcd_dev_cmd_completion() - handles device management command responses * @hba: per adapter instance * @lrbp: pointer to local reference block */ static int ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { int resp; int err = 0; hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); switch (resp) { case UPIU_TRANSACTION_NOP_IN: if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) { err = -EINVAL; dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp); } break; case UPIU_TRANSACTION_QUERY_RSP: err = ufshcd_check_query_response(hba, lrbp); if (!err) err = ufshcd_copy_query_response(hba, lrbp); break; case UPIU_TRANSACTION_REJECT_UPIU: /* TODO: handle Reject UPIU Response */ err = -EPERM; dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n", __func__); break; default: err = -EINVAL; dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n", __func__, resp); break; } return err; } static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int max_timeout) { int err = 0; unsigned long time_left; unsigned long flags; time_left = wait_for_completion_timeout(hba->dev_cmd.complete, msecs_to_jiffies(max_timeout)); spin_lock_irqsave(hba->host->host_lock, flags); hba->dev_cmd.complete = NULL; if (likely(time_left)) { err = ufshcd_get_tr_ocs(lrbp); if (!err) err = ufshcd_dev_cmd_completion(hba, lrbp); } spin_unlock_irqrestore(hba->host->host_lock, flags); if (!time_left) { err = -ETIMEDOUT; dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n", __func__, lrbp->task_tag); if (!ufshcd_clear_cmd(hba, lrbp->task_tag)) /* successfully cleared the command, retry if needed */ err = -EAGAIN; /* * in case of an error, after clearing the doorbell, * we also need to clear the outstanding_request * field in hba */ ufshcd_outstanding_req_clear(hba, lrbp->task_tag); } if (err) ufsdbg_set_err_state(hba); return err; } /** * ufshcd_get_dev_cmd_tag - Get device management command tag * @hba: per-adapter instance * @tag: pointer to variable with available slot value * * Get a free slot and lock it until device management command * completes. * * Returns false if free slot is unavailable for locking, else * return true with tag value in @tag. */ static bool ufshcd_get_dev_cmd_tag(struct ufs_hba *hba, int *tag_out) { int tag; bool ret = false; unsigned long tmp; if (!tag_out) goto out; do { tmp = ~hba->lrb_in_use; tag = find_last_bit(&tmp, hba->nutrs); if (tag >= hba->nutrs) goto out; } while (test_and_set_bit_lock(tag, &hba->lrb_in_use)); *tag_out = tag; ret = true; out: return ret; } static inline void ufshcd_put_dev_cmd_tag(struct ufs_hba *hba, int tag) { clear_bit_unlock(tag, &hba->lrb_in_use); } /** * ufshcd_exec_dev_cmd - API for sending device management requests * @hba - UFS hba * @cmd_type - specifies the type (NOP, Query...) * @timeout - time in seconds * * NOTE: Since there is only one available tag for device management commands, * it is expected you hold the hba->dev_cmd.lock mutex. */ static int ufshcd_exec_dev_cmd(struct ufs_hba *hba, enum dev_cmd_type cmd_type, int timeout) { struct ufshcd_lrb *lrbp; int err; int tag; struct completion wait; unsigned long flags; /* * May get invoked from shutdown and IOCTL contexts. * In shutdown context, it comes in with lock acquired. * In error recovery context, it may come with lock acquired. */ if (!ufshcd_is_shutdown_ongoing(hba) && !ufshcd_eh_in_progress(hba)) down_read(&hba->lock); /* * Get free slot, sleep if slots are unavailable. * Even though we use wait_event() which sleeps indefinitely, * the maximum wait time is bounded by SCSI request timeout. */ wait_event(hba->dev_cmd.tag_wq, ufshcd_get_dev_cmd_tag(hba, &tag)); init_completion(&wait); lrbp = &hba->lrb[tag]; WARN_ON(lrbp->cmd); err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag); if (unlikely(err)) goto out_put_tag; hba->dev_cmd.complete = &wait; /* Make sure descriptors are ready before ringing the doorbell */ wmb(); spin_lock_irqsave(hba->host->host_lock, flags); err = ufshcd_send_command(hba, tag); spin_unlock_irqrestore(hba->host->host_lock, flags); if (err) { dev_err(hba->dev, "%s: failed sending command, %d\n", __func__, err); goto out_put_tag; } err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout); out_put_tag: ufshcd_put_dev_cmd_tag(hba, tag); wake_up(&hba->dev_cmd.tag_wq); if (!ufshcd_is_shutdown_ongoing(hba) && !ufshcd_eh_in_progress(hba)) up_read(&hba->lock); return err; } /** * ufshcd_init_query() - init the query response and request parameters * @hba: per-adapter instance * @request: address of the request pointer to be initialized * @response: address of the response pointer to be initialized * @opcode: operation to perform * @idn: flag idn to access * @index: LU number to access * @selector: query/flag/descriptor further identification */ static inline void ufshcd_init_query(struct ufs_hba *hba, struct ufs_query_req **request, struct ufs_query_res **response, enum query_opcode opcode, u8 idn, u8 index, u8 selector) { int idn_t = (int)idn; ufsdbg_error_inject_dispatcher(hba, ERR_INJECT_QUERY, idn_t, (int *)&idn_t); idn = idn_t; *request = &hba->dev_cmd.query.request; *response = &hba->dev_cmd.query.response; memset(*request, 0, sizeof(struct ufs_query_req)); memset(*response, 0, sizeof(struct ufs_query_res)); (*request)->upiu_req.opcode = opcode; (*request)->upiu_req.idn = idn; (*request)->upiu_req.index = index; (*request)->upiu_req.selector = selector; ufshcd_update_query_stats(hba, opcode, idn); } static int ufshcd_query_flag_retry(struct ufs_hba *hba, enum query_opcode opcode, enum flag_idn idn, bool *flag_res) { int ret; int retries; for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) { ret = ufshcd_query_flag(hba, opcode, idn, flag_res); if (ret) dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n", __func__, ret, retries); else break; } if (ret) dev_err(hba->dev, "%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n", __func__, opcode, idn, ret, retries); return ret; } /** * ufshcd_query_flag() - API function for sending flag query requests * hba: per-adapter instance * query_opcode: flag query to perform * idn: flag idn to access * flag_res: the flag value after the query request completes * * Returns 0 for success, non-zero in case of failure */ int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode, enum flag_idn idn, bool *flag_res) { struct ufs_query_req *request = NULL; struct ufs_query_res *response = NULL; int err, index = 0, selector = 0; int timeout = QUERY_REQ_TIMEOUT; BUG_ON(!hba); ufshcd_hold_all(hba); mutex_lock(&hba->dev_cmd.lock); ufshcd_init_query(hba, &request, &response, opcode, idn, index, selector); switch (opcode) { case UPIU_QUERY_OPCODE_SET_FLAG: case UPIU_QUERY_OPCODE_CLEAR_FLAG: case UPIU_QUERY_OPCODE_TOGGLE_FLAG: request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; break; case UPIU_QUERY_OPCODE_READ_FLAG: request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; if (!flag_res) { /* No dummy reads */ dev_err(hba->dev, "%s: Invalid argument for read request\n", __func__); err = -EINVAL; goto out_unlock; } break; default: dev_err(hba->dev, "%s: Expected query flag opcode but got = %d\n", __func__, opcode); err = -EINVAL; goto out_unlock; } err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout); if (err) { dev_err(hba->dev, "%s: Sending flag query for idn %d failed, err = %d\n", __func__, request->upiu_req.idn, err); goto out_unlock; } if (flag_res) *flag_res = (be32_to_cpu(response->upiu_res.value) & MASK_QUERY_UPIU_FLAG_LOC) & 0x1; out_unlock: mutex_unlock(&hba->dev_cmd.lock); ufshcd_release_all(hba); return err; } EXPORT_SYMBOL(ufshcd_query_flag); /** * ufshcd_query_attr - API function for sending attribute requests * hba: per-adapter instance * opcode: attribute opcode * idn: attribute idn to access * index: index field * selector: selector field * attr_val: the attribute value after the query request completes * * Returns 0 for success, non-zero in case of failure */ int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector, u32 *attr_val) { struct ufs_query_req *request = NULL; struct ufs_query_res *response = NULL; int err; BUG_ON(!hba); ufshcd_hold_all(hba); if (!attr_val) { dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n", __func__, opcode); err = -EINVAL; goto out; } mutex_lock(&hba->dev_cmd.lock); ufshcd_init_query(hba, &request, &response, opcode, idn, index, selector); switch (opcode) { case UPIU_QUERY_OPCODE_WRITE_ATTR: request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; request->upiu_req.value = cpu_to_be32(*attr_val); break; case UPIU_QUERY_OPCODE_READ_ATTR: request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; break; default: dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n", __func__, opcode); err = -EINVAL; goto out_unlock; } err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); if (err) { dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", __func__, opcode, request->upiu_req.idn, index, err); goto out_unlock; } *attr_val = be32_to_cpu(response->upiu_res.value); out_unlock: mutex_unlock(&hba->dev_cmd.lock); out: ufshcd_release_all(hba); return err; } EXPORT_SYMBOL(ufshcd_query_attr); /** * ufshcd_query_attr_retry() - API function for sending query * attribute with retries * @hba: per-adapter instance * @opcode: attribute opcode * @idn: attribute idn to access * @index: index field * @selector: selector field * @attr_val: the attribute value after the query request * completes * * Returns 0 for success, non-zero in case of failure */ static int ufshcd_query_attr_retry(struct ufs_hba *hba, enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector, u32 *attr_val) { int ret = 0; u32 retries; for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { ret = ufshcd_query_attr(hba, opcode, idn, index, selector, attr_val); if (ret) dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n", __func__, ret, retries); else break; } if (ret) dev_err(hba->dev, "%s: query attribute, idn %d, failed with error %d after %d retires\n", __func__, idn, ret, retries); return ret; } static int __ufshcd_query_descriptor(struct ufs_hba *hba, enum query_opcode opcode, enum desc_idn idn, u8 index, u8 selector, u8 *desc_buf, int *buf_len) { struct ufs_query_req *request = NULL; struct ufs_query_res *response = NULL; int err; BUG_ON(!hba); ufshcd_hold_all(hba); if (!desc_buf) { dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n", __func__, opcode); err = -EINVAL; goto out; } if (*buf_len <= QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) { dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n", __func__, *buf_len); err = -EINVAL; goto out; } mutex_lock(&hba->dev_cmd.lock); ufshcd_init_query(hba, &request, &response, opcode, idn, index, selector); hba->dev_cmd.query.descriptor = desc_buf; request->upiu_req.length = cpu_to_be16(*buf_len); switch (opcode) { case UPIU_QUERY_OPCODE_WRITE_DESC: request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; break; case UPIU_QUERY_OPCODE_READ_DESC: request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; break; default: dev_err(hba->dev, "%s: Expected query descriptor opcode but got = 0x%.2x\n", __func__, opcode); err = -EINVAL; goto out_unlock; } err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); if (err) { dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", __func__, opcode, request->upiu_req.idn, index, err); goto out_unlock; } hba->dev_cmd.query.descriptor = NULL; *buf_len = be16_to_cpu(response->upiu_res.length); out_unlock: mutex_unlock(&hba->dev_cmd.lock); out: ufshcd_release_all(hba); return err; } /** * ufshcd_query_descriptor - API function for sending descriptor requests * hba: per-adapter instance * opcode: attribute opcode * idn: attribute idn to access * index: index field * selector: selector field * desc_buf: the buffer that contains the descriptor * buf_len: length parameter passed to the device * * Returns 0 for success, non-zero in case of failure. * The buf_len parameter will contain, on return, the length parameter * received on the response. */ int ufshcd_query_descriptor(struct ufs_hba *hba, enum query_opcode opcode, enum desc_idn idn, u8 index, u8 selector, u8 *desc_buf, int *buf_len) { int err; int retries; for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { err = __ufshcd_query_descriptor(hba, opcode, idn, index, selector, desc_buf, buf_len); if (!err || err == -EINVAL) break; } return err; } EXPORT_SYMBOL(ufshcd_query_descriptor); /** * ufshcd_read_desc_param - read the specified descriptor parameter * @hba: Pointer to adapter instance * @desc_id: descriptor idn value * @desc_index: descriptor index * @param_offset: offset of the parameter to read * @param_read_buf: pointer to buffer where parameter would be read * @param_size: sizeof(param_read_buf) * * Return 0 in case of success, non-zero otherwise */ static int ufshcd_read_desc_param(struct ufs_hba *hba, enum desc_idn desc_id, int desc_index, u32 param_offset, u8 *param_read_buf, u32 param_size) { int ret; u8 *desc_buf; u32 buff_len; bool is_kmalloc = true; /* safety checks */ if (desc_id >= QUERY_DESC_IDN_MAX) return -EINVAL; buff_len = ufs_query_desc_max_size[desc_id]; if ((param_offset + param_size) > buff_len) return -EINVAL; if (!param_offset && (param_size == buff_len)) { /* memory space already available to hold full descriptor */ desc_buf = param_read_buf; is_kmalloc = false; } else { /* allocate memory to hold full descriptor */ desc_buf = kmalloc(buff_len, GFP_KERNEL); if (!desc_buf) return -ENOMEM; } ret = ufshcd_query_descriptor(hba, UPIU_QUERY_OPCODE_READ_DESC, desc_id, desc_index, 0, desc_buf, &buff_len); if (ret) { dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d", __func__, desc_id, desc_index, param_offset, ret); goto out; } /* Sanity check */ if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) { dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header", __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]); ret = -EINVAL; goto out; } /* * While reading variable size descriptors (like string descriptor), * some UFS devices may report the "LENGTH" (field in "Transaction * Specific fields" of Query Response UPIU) same as what was requested * in Query Request UPIU instead of reporting the actual size of the * variable size descriptor. * Although it's safe to ignore the "LENGTH" field for variable size * descriptors as we can always derive the length of the descriptor from * the descriptor header fields. Hence this change impose the length * match check only for fixed size descriptors (for which we always * request the correct size as part of Query Request UPIU). */ if ((desc_id != QUERY_DESC_IDN_STRING) && (buff_len != desc_buf[QUERY_DESC_LENGTH_OFFSET])) { dev_err(hba->dev, "%s: desc_buf length mismatch: buff_len %d, buff_len(desc_header) %d", __func__, buff_len, desc_buf[QUERY_DESC_LENGTH_OFFSET]); ret = -EINVAL; goto out; } if (is_kmalloc) memcpy(param_read_buf, &desc_buf[param_offset], param_size); out: if (is_kmalloc) kfree(desc_buf); return ret; } static inline int ufshcd_read_desc(struct ufs_hba *hba, enum desc_idn desc_id, int desc_index, u8 *buf, u32 size) { return ufshcd_read_desc_param(hba, desc_id, desc_index, 0, buf, size); } static inline int ufshcd_read_power_desc(struct ufs_hba *hba, u8 *buf, u32 size) { return ufshcd_read_desc(hba, QUERY_DESC_IDN_POWER, 0, buf, size); } int ufshcd_read_device_desc(struct ufs_hba *hba, u8 *buf, u32 size) { return ufshcd_read_desc(hba, QUERY_DESC_IDN_DEVICE, 0, buf, size); } /** * ufshcd_read_string_desc - read string descriptor * @hba: pointer to adapter instance * @desc_index: descriptor index * @buf: pointer to buffer where descriptor would be read * @size: size of buf * @ascii: if true convert from unicode to ascii characters * * Return 0 in case of success, non-zero otherwise */ int ufshcd_read_string_desc(struct ufs_hba *hba, int desc_index, u8 *buf, u32 size, bool ascii) { int err = 0; err = ufshcd_read_desc(hba, QUERY_DESC_IDN_STRING, desc_index, buf, size); if (err) { dev_err(hba->dev, "%s: reading String Desc failed after %d retries. err = %d\n", __func__, QUERY_REQ_RETRIES, err); goto out; } if (ascii) { int desc_len; int ascii_len; int i; char *buff_ascii; desc_len = buf[0]; /* remove header and divide by 2 to move from UTF16 to UTF8 */ ascii_len = (desc_len - QUERY_DESC_HDR_SIZE) / 2 + 1; if (size < ascii_len + QUERY_DESC_HDR_SIZE) { dev_err(hba->dev, "%s: buffer allocated size is too small\n", __func__); err = -ENOMEM; goto out; } buff_ascii = kzalloc(ascii_len, GFP_KERNEL); if (!buff_ascii) { dev_err(hba->dev, "%s: Failed allocating %d bytes\n", __func__, ascii_len); err = -ENOMEM; goto out_free_buff; } /* * the descriptor contains string in UTF16 format * we need to convert to utf-8 so it can be displayed */ utf16s_to_utf8s((wchar_t *)&buf[QUERY_DESC_HDR_SIZE], desc_len - QUERY_DESC_HDR_SIZE, UTF16_BIG_ENDIAN, buff_ascii, ascii_len); /* replace non-printable or non-ASCII characters with spaces */ for (i = 0; i < ascii_len; i++) ufshcd_remove_non_printable(&buff_ascii[i]); memset(buf + QUERY_DESC_HDR_SIZE, 0, size - QUERY_DESC_HDR_SIZE); memcpy(buf + QUERY_DESC_HDR_SIZE, buff_ascii, ascii_len); buf[QUERY_DESC_LENGTH_OFFSET] = ascii_len + QUERY_DESC_HDR_SIZE; out_free_buff: kfree(buff_ascii); } out: return err; } /** * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter * @hba: Pointer to adapter instance * @lun: lun id * @param_offset: offset of the parameter to read * @param_read_buf: pointer to buffer where parameter would be read * @param_size: sizeof(param_read_buf) * * Return 0 in case of success, non-zero otherwise */ static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba, int lun, enum unit_desc_param param_offset, u8 *param_read_buf, u32 param_size) { /* * Unit descriptors are only available for general purpose LUs (LUN id * from 0 to 7) and RPMB Well known LU. */ if (!ufs_is_valid_unit_desc_lun(lun)) return -EOPNOTSUPP; return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun, param_offset, param_read_buf, param_size); } /** * ufshcd_memory_alloc - allocate memory for host memory space data structures * @hba: per adapter instance * * 1. Allocate DMA memory for Command Descriptor array * Each command descriptor consist of Command UPIU, Response UPIU and PRDT * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL). * 3. Allocate DMA memory for UTP Task Management Request Descriptor List * (UTMRDL) * 4. Allocate memory for local reference block(lrb). * * Returns 0 for success, non-zero in case of failure */ static int ufshcd_memory_alloc(struct ufs_hba *hba) { size_t utmrdl_size, utrdl_size, ucdl_size; /* Allocate memory for UTP command descriptors */ ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs); hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev, ucdl_size, &hba->ucdl_dma_addr, GFP_KERNEL); /* * UFSHCI requires UTP command descriptor to be 128 byte aligned. * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will * be aligned to 128 bytes as well */ if (!hba->ucdl_base_addr || WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) { dev_err(hba->dev, "Command Descriptor Memory allocation failed\n"); goto out; } /* * Allocate memory for UTP Transfer descriptors * UFSHCI requires 1024 byte alignment of UTRD */ utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs); hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev, utrdl_size, &hba->utrdl_dma_addr, GFP_KERNEL); if (!hba->utrdl_base_addr || WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) { dev_err(hba->dev, "Transfer Descriptor Memory allocation failed\n"); goto out; } /* * Allocate memory for UTP Task Management descriptors * UFSHCI requires 1024 byte alignment of UTMRD */ utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs; hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev, utmrdl_size, &hba->utmrdl_dma_addr, GFP_KERNEL); if (!hba->utmrdl_base_addr || WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) { dev_err(hba->dev, "Task Management Descriptor Memory allocation failed\n"); goto out; } /* Allocate memory for local reference block */ hba->lrb = devm_kzalloc(hba->dev, hba->nutrs * sizeof(struct ufshcd_lrb), GFP_KERNEL); if (!hba->lrb) { dev_err(hba->dev, "LRB Memory allocation failed\n"); goto out; } return 0; out: return -ENOMEM; } /** * ufshcd_host_memory_configure - configure local reference block with * memory offsets * @hba: per adapter instance * * Configure Host memory space * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA * address. * 2. Update each UTRD with Response UPIU offset, Response UPIU length * and PRDT offset. * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT * into local reference block. */ static void ufshcd_host_memory_configure(struct ufs_hba *hba) { struct utp_transfer_cmd_desc *cmd_descp; struct utp_transfer_req_desc *utrdlp; dma_addr_t cmd_desc_dma_addr; dma_addr_t cmd_desc_element_addr; u16 response_offset; u16 prdt_offset; int cmd_desc_size; int i; utrdlp = hba->utrdl_base_addr; cmd_descp = hba->ucdl_base_addr; response_offset = offsetof(struct utp_transfer_cmd_desc, response_upiu); prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table); cmd_desc_size = sizeof(struct utp_transfer_cmd_desc); cmd_desc_dma_addr = hba->ucdl_dma_addr; for (i = 0; i < hba->nutrs; i++) { /* Configure UTRD with command descriptor base address */ cmd_desc_element_addr = (cmd_desc_dma_addr + (cmd_desc_size * i)); utrdlp[i].command_desc_base_addr_lo = cpu_to_le32(lower_32_bits(cmd_desc_element_addr)); utrdlp[i].command_desc_base_addr_hi = cpu_to_le32(upper_32_bits(cmd_desc_element_addr)); /* Response upiu and prdt offset should be in double words */ utrdlp[i].response_upiu_offset = cpu_to_le16((response_offset >> 2)); utrdlp[i].prd_table_offset = cpu_to_le16((prdt_offset >> 2)); utrdlp[i].response_upiu_length = cpu_to_le16(ALIGNED_UPIU_SIZE >> 2); hba->lrb[i].utr_descriptor_ptr = (utrdlp + i); hba->lrb[i].utrd_dma_addr = hba->utrdl_dma_addr + (i * sizeof(struct utp_transfer_req_desc)); hba->lrb[i].ucd_req_ptr = (struct utp_upiu_req *)(cmd_descp + i); hba->lrb[i].ucd_req_dma_addr = cmd_desc_element_addr; hba->lrb[i].ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp[i].response_upiu; hba->lrb[i].ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset; hba->lrb[i].ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp[i].prd_table; hba->lrb[i].ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset; } } /** * ufshcd_dme_link_startup - Notify Unipro to perform link startup * @hba: per adapter instance * * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer, * in order to initialize the Unipro link startup procedure. * Once the Unipro links are up, the device connected to the controller * is detected. * * Returns 0 on success, non-zero value on failure */ static int ufshcd_dme_link_startup(struct ufs_hba *hba) { struct uic_command uic_cmd = {0}; int ret; uic_cmd.command = UIC_CMD_DME_LINK_STARTUP; ret = ufshcd_send_uic_cmd(hba, &uic_cmd); if (ret) dev_dbg(hba->dev, "dme-link-startup: error code %d\n", ret); return ret; } static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba) { #define MIN_DELAY_BEFORE_DME_CMDS_US 1000 unsigned long min_sleep_time_us; if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS)) return; /* * last_dme_cmd_tstamp will be 0 only for 1st call to * this function */ if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) { min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US; } else { unsigned long delta = (unsigned long) ktime_to_us( ktime_sub(ktime_get(), hba->last_dme_cmd_tstamp)); if (delta < MIN_DELAY_BEFORE_DME_CMDS_US) min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US - delta; else return; /* no more delay required */ } /* allow sleep for extra 50us if needed */ usleep_range(min_sleep_time_us, min_sleep_time_us + 50); } static inline void ufshcd_save_tstamp_of_last_dme_cmd( struct ufs_hba *hba) { if (hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS) hba->last_dme_cmd_tstamp = ktime_get(); } /** * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET * @hba: per adapter instance * @attr_sel: uic command argument1 * @attr_set: attribute set type as uic command argument2 * @mib_val: setting value as uic command argument3 * @peer: indicate whether peer or local * * Returns 0 on success, non-zero value on failure */ int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, u8 attr_set, u32 mib_val, u8 peer) { struct uic_command uic_cmd = {0}; static const char *const action[] = { "dme-set", "dme-peer-set" }; const char *set = action[!!peer]; int ret; int retries = UFS_UIC_COMMAND_RETRIES; ufsdbg_error_inject_dispatcher(hba, ERR_INJECT_DME_ATTR, attr_sel, &attr_sel); uic_cmd.command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET; uic_cmd.argument1 = attr_sel; uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set); uic_cmd.argument3 = mib_val; do { /* for peer attributes we retry upon failure */ ret = ufshcd_send_uic_cmd(hba, &uic_cmd); if (ret) dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n", set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret); } while (ret && peer && --retries); if (ret) dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n", set, UIC_GET_ATTR_ID(attr_sel), mib_val, UFS_UIC_COMMAND_RETRIES - retries); return ret; } EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr); /** * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET * @hba: per adapter instance * @attr_sel: uic command argument1 * @mib_val: the value of the attribute as returned by the UIC command * @peer: indicate whether peer or local * * Returns 0 on success, non-zero value on failure */ int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel, u32 *mib_val, u8 peer) { struct uic_command uic_cmd = {0}; static const char *const action[] = { "dme-get", "dme-peer-get" }; const char *get = action[!!peer]; int ret; int retries = UFS_UIC_COMMAND_RETRIES; struct ufs_pa_layer_attr orig_pwr_info; struct ufs_pa_layer_attr temp_pwr_info; bool pwr_mode_change = false; if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) { orig_pwr_info = hba->pwr_info; temp_pwr_info = orig_pwr_info; if (orig_pwr_info.pwr_tx == FAST_MODE || orig_pwr_info.pwr_rx == FAST_MODE) { temp_pwr_info.pwr_tx = FASTAUTO_MODE; temp_pwr_info.pwr_rx = FASTAUTO_MODE; pwr_mode_change = true; } else if (orig_pwr_info.pwr_tx == SLOW_MODE || orig_pwr_info.pwr_rx == SLOW_MODE) { temp_pwr_info.pwr_tx = SLOWAUTO_MODE; temp_pwr_info.pwr_rx = SLOWAUTO_MODE; pwr_mode_change = true; } if (pwr_mode_change) { ret = ufshcd_change_power_mode(hba, &temp_pwr_info); if (ret) goto out; } } uic_cmd.command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET; ufsdbg_error_inject_dispatcher(hba, ERR_INJECT_DME_ATTR, attr_sel, &attr_sel); uic_cmd.argument1 = attr_sel; do { /* for peer attributes we retry upon failure */ ret = ufshcd_send_uic_cmd(hba, &uic_cmd); if (ret) dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n", get, UIC_GET_ATTR_ID(attr_sel), ret); } while (ret && peer && --retries); if (ret) dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n", get, UIC_GET_ATTR_ID(attr_sel), UFS_UIC_COMMAND_RETRIES - retries); if (mib_val && !ret) *mib_val = uic_cmd.argument3; if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE) && pwr_mode_change) ufshcd_change_power_mode(hba, &orig_pwr_info); out: return ret; } EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr); /** * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power * state) and waits for it to take effect. * * @hba: per adapter instance * @cmd: UIC command to execute * * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER & * DME_HIBERNATE_EXIT commands take some time to take its effect on both host * and device UniPro link and hence it's final completion would be indicated by * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in * addition to normal UIC command completion Status (UCCS). This function only * returns after the relevant status bits indicate the completion. * * Returns 0 on success, non-zero value on failure */ static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd) { struct completion uic_async_done; unsigned long flags; u8 status; int ret; bool reenable_intr = false; mutex_lock(&hba->uic_cmd_mutex); init_completion(&uic_async_done); ufshcd_add_delay_before_dme_cmd(hba); spin_lock_irqsave(hba->host->host_lock, flags); hba->uic_async_done = &uic_async_done; if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) { ufshcd_disable_intr(hba, UIC_COMMAND_COMPL); /* * Make sure UIC command completion interrupt is disabled before * issuing UIC command. */ wmb(); reenable_intr = true; } ret = __ufshcd_send_uic_cmd(hba, cmd, false); spin_unlock_irqrestore(hba->host->host_lock, flags); if (ret) { dev_err(hba->dev, "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n", cmd->command, cmd->argument3, ret); goto out; } if (!wait_for_completion_timeout(hba->uic_async_done, msecs_to_jiffies(UIC_CMD_TIMEOUT))) { dev_err(hba->dev, "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n", cmd->command, cmd->argument3); ret = -ETIMEDOUT; goto out; } status = ufshcd_get_upmcrs(hba); if (status != PWR_LOCAL) { dev_err(hba->dev, "pwr ctrl cmd 0x%0x failed, host umpcrs:0x%x\n", cmd->command, status); ret = (status != PWR_OK) ? status : -1; } ufshcd_dme_cmd_log(hba, "cmp2", hba->active_uic_cmd->command); out: if (ret) { ufsdbg_set_err_state(hba); ufshcd_print_host_state(hba); ufshcd_print_pwr_info(hba); ufshcd_print_host_regs(hba); ufshcd_print_cmd_log(hba); } ufshcd_save_tstamp_of_last_dme_cmd(hba); spin_lock_irqsave(hba->host->host_lock, flags); hba->active_uic_cmd = NULL; hba->uic_async_done = NULL; if (reenable_intr) ufshcd_enable_intr(hba, UIC_COMMAND_COMPL); spin_unlock_irqrestore(hba->host->host_lock, flags); mutex_unlock(&hba->uic_cmd_mutex); return ret; } int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba, u64 wait_timeout_us) { unsigned long flags; int ret = 0; u32 tm_doorbell; u32 tr_doorbell; bool timeout = false, do_last_check = false; ktime_t start; ufshcd_hold_all(hba); spin_lock_irqsave(hba->host->host_lock, flags); /* * Wait for all the outstanding tasks/transfer requests. * Verify by checking the doorbell registers are clear. */ start = ktime_get(); do { if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) { ret = -EBUSY; goto out; } tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); if (!tm_doorbell && !tr_doorbell) { timeout = false; break; } else if (do_last_check) { break; } spin_unlock_irqrestore(hba->host->host_lock, flags); schedule(); if (ktime_to_us(ktime_sub(ktime_get(), start)) > wait_timeout_us) { timeout = true; /* * We might have scheduled out for long time so make * sure to check if doorbells are cleared by this time * or not. */ do_last_check = true; } spin_lock_irqsave(hba->host->host_lock, flags); } while (tm_doorbell || tr_doorbell); if (timeout) { dev_err(hba->dev, "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n", __func__, tm_doorbell, tr_doorbell); ret = -EBUSY; } out: spin_unlock_irqrestore(hba->host->host_lock, flags); ufshcd_release_all(hba); return ret; } /** * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage * using DME_SET primitives. * @hba: per adapter instance * @mode: powr mode value * * Returns 0 on success, non-zero value on failure */ static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode) { struct uic_command uic_cmd = {0}; int ret; if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) { ret = ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1); if (ret) { dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n", __func__, ret); goto out; } } uic_cmd.command = UIC_CMD_DME_SET; uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE); uic_cmd.argument3 = mode; hba->ufs_stats.clk_hold.ctx = PWRCTL_CMD_SEND; ufshcd_hold_all(hba); ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); hba->ufs_stats.clk_rel.ctx = PWRCTL_CMD_SEND; ufshcd_release_all(hba); out: return ret; } static int ufshcd_link_recovery(struct ufs_hba *hba) { int ret = 0; unsigned long flags; /* * Check if there is any race with fatal error handling. * If so, wait for it to complete. Even though fatal error * handling does reset and restore in some cases, don't assume * anything out of it. We are just avoiding race here. */ do { spin_lock_irqsave(hba->host->host_lock, flags); if (!(work_pending(&hba->eh_work) || hba->ufshcd_state == UFSHCD_STATE_RESET)) break; spin_unlock_irqrestore(hba->host->host_lock, flags); dev_dbg(hba->dev, "%s: reset in progress\n", __func__); flush_work(&hba->eh_work); } while (1); /* * we don't know if previous reset had really reset the host controller * or not. So let's force reset here to be sure. */ hba->ufshcd_state = UFSHCD_STATE_ERROR; hba->force_host_reset = true; schedule_work(&hba->eh_work); /* wait for the reset work to finish */ do { if (!(work_pending(&hba->eh_work) || hba->ufshcd_state == UFSHCD_STATE_RESET)) break; spin_unlock_irqrestore(hba->host->host_lock, flags); dev_dbg(hba->dev, "%s: reset in progress\n", __func__); flush_work(&hba->eh_work); spin_lock_irqsave(hba->host->host_lock, flags); } while (1); if (!((hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL) && ufshcd_is_link_active(hba))) ret = -ENOLINK; spin_unlock_irqrestore(hba->host->host_lock, flags); return ret; } static int __ufshcd_uic_hibern8_enter(struct ufs_hba *hba) { int ret; struct uic_command uic_cmd = {0}; ktime_t start = ktime_get(); uic_cmd.command = UIC_CMD_DME_HIBER_ENTER; ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter", ktime_to_us(ktime_sub(ktime_get(), start)), ret); /* * Do full reinit if enter failed or if LINERESET was detected during * Hibern8 operation. After LINERESET, link moves to default PWM-G1 * mode hence full reinit is required to move link to HS speeds. */ if (ret || hba->full_init_linereset) { int err; hba->full_init_linereset = false; ufshcd_update_error_stats(hba, UFS_ERR_HIBERN8_ENTER); dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d", __func__, ret); /* * If link recovery fails then return error code (-ENOLINK) * returned ufshcd_link_recovery(). * If link recovery succeeds then return -EAGAIN to attempt * hibern8 enter retry again. */ err = ufshcd_link_recovery(hba); if (err) { dev_err(hba->dev, "%s: link recovery failed", __func__); ret = err; } else { ret = -EAGAIN; } } else { dev_dbg(hba->dev, "%s: Hibern8 Enter at %lld us", __func__, ktime_to_us(ktime_get())); } return ret; } int ufshcd_uic_hibern8_enter(struct ufs_hba *hba) { int ret = 0, retries; for (retries = UIC_HIBERN8_ENTER_RETRIES; retries > 0; retries--) { ret = __ufshcd_uic_hibern8_enter(hba); if (!ret) goto out; else if (ret != -EAGAIN) /* Unable to recover the link, so no point proceeding */ BUG(); } out: return ret; } int ufshcd_uic_hibern8_exit(struct ufs_hba *hba) { struct uic_command uic_cmd = {0}; int ret; ktime_t start = ktime_get(); uic_cmd.command = UIC_CMD_DME_HIBER_EXIT; ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit", ktime_to_us(ktime_sub(ktime_get(), start)), ret); /* Do full reinit if exit failed */ if (ret) { ufshcd_update_error_stats(hba, UFS_ERR_HIBERN8_EXIT); dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d", __func__, ret); ret = ufshcd_link_recovery(hba); /* Unable to recover the link, so no point proceeding */ if (ret) BUG(); } else { dev_dbg(hba->dev, "%s: Hibern8 Exit at %lld us", __func__, ktime_to_us(ktime_get())); hba->ufs_stats.last_hibern8_exit_tstamp = ktime_get(); hba->ufs_stats.hibern8_exit_cnt++; } return ret; } /** * ufshcd_init_pwr_info - setting the POR (power on reset) * values in hba power info * @hba: per-adapter instance */ static void ufshcd_init_pwr_info(struct ufs_hba *hba) { hba->pwr_info.gear_rx = UFS_PWM_G1; hba->pwr_info.gear_tx = UFS_PWM_G1; hba->pwr_info.lane_rx = 1; hba->pwr_info.lane_tx = 1; hba->pwr_info.pwr_rx = SLOWAUTO_MODE; hba->pwr_info.pwr_tx = SLOWAUTO_MODE; hba->pwr_info.hs_rate = 0; } /** * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device * @hba: per-adapter instance */ static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba) { struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info; if (hba->max_pwr_info.is_valid) return 0; pwr_info->pwr_tx = FAST_MODE; pwr_info->pwr_rx = FAST_MODE; pwr_info->hs_rate = PA_HS_MODE_B; /* Get the connected lane count */ ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES), &pwr_info->lane_rx); ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), &pwr_info->lane_tx); if (!pwr_info->lane_rx || !pwr_info->lane_tx) { dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n", __func__, pwr_info->lane_rx, pwr_info->lane_tx); return -EINVAL; } /* * First, get the maximum gears of HS speed. * If a zero value, it means there is no HSGEAR capability. * Then, get the maximum gears of PWM speed. */ ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx); if (!pwr_info->gear_rx) { ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), &pwr_info->gear_rx); if (!pwr_info->gear_rx) { dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n", __func__, pwr_info->gear_rx); return -EINVAL; } pwr_info->pwr_rx = SLOW_MODE; } ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_tx); if (!pwr_info->gear_tx) { ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), &pwr_info->gear_tx); if (!pwr_info->gear_tx) { dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n", __func__, pwr_info->gear_tx); return -EINVAL; } pwr_info->pwr_tx = SLOW_MODE; } hba->max_pwr_info.is_valid = true; return 0; } int ufshcd_change_power_mode(struct ufs_hba *hba, struct ufs_pa_layer_attr *pwr_mode) { int ret = 0; /* if already configured to the requested pwr_mode */ if (!hba->restore_needed && pwr_mode->gear_rx == hba->pwr_info.gear_rx && pwr_mode->gear_tx == hba->pwr_info.gear_tx && pwr_mode->lane_rx == hba->pwr_info.lane_rx && pwr_mode->lane_tx == hba->pwr_info.lane_tx && pwr_mode->pwr_rx == hba->pwr_info.pwr_rx && pwr_mode->pwr_tx == hba->pwr_info.pwr_tx && pwr_mode->hs_rate == hba->pwr_info.hs_rate) { dev_dbg(hba->dev, "%s: power already configured\n", __func__); return 0; } ufsdbg_error_inject_dispatcher(hba, ERR_INJECT_PWR_CHANGE, 0, &ret); if (ret) return ret; /* * Configure attributes for power mode change with below. * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION, * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION, * - PA_HSSERIES */ ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES), pwr_mode->lane_rx); if (pwr_mode->pwr_rx == FASTAUTO_MODE || pwr_mode->pwr_rx == FAST_MODE) ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), TRUE); else ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), FALSE); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES), pwr_mode->lane_tx); if (pwr_mode->pwr_tx == FASTAUTO_MODE || pwr_mode->pwr_tx == FAST_MODE) ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), TRUE); else ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), FALSE); if (pwr_mode->pwr_rx == FASTAUTO_MODE || pwr_mode->pwr_tx == FASTAUTO_MODE || pwr_mode->pwr_rx == FAST_MODE || pwr_mode->pwr_tx == FAST_MODE) ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES), pwr_mode->hs_rate); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), DL_FC0ProtectionTimeOutVal_Default); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), DL_TC0ReplayTimeOutVal_Default); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), DL_AFC0ReqTimeOutVal_Default); ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal), DL_FC0ProtectionTimeOutVal_Default); ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal), DL_TC0ReplayTimeOutVal_Default); ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal), DL_AFC0ReqTimeOutVal_Default); ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4 | pwr_mode->pwr_tx); if (ret) { ufshcd_update_error_stats(hba, UFS_ERR_POWER_MODE_CHANGE); dev_err(hba->dev, "%s: power mode change failed %d\n", __func__, ret); } else { ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL, pwr_mode); memcpy(&hba->pwr_info, pwr_mode, sizeof(struct ufs_pa_layer_attr)); } return ret; } /** * ufshcd_config_pwr_mode - configure a new power mode * @hba: per-adapter instance * @desired_pwr_mode: desired power configuration */ static int ufshcd_config_pwr_mode(struct ufs_hba *hba, struct ufs_pa_layer_attr *desired_pwr_mode) { struct ufs_pa_layer_attr final_params = { 0 }; int ret; ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE, desired_pwr_mode, &final_params); if (ret) memcpy(&final_params, desired_pwr_mode, sizeof(final_params)); ret = ufshcd_change_power_mode(hba, &final_params); if (!ret) ufshcd_print_pwr_info(hba); return ret; } /** * ufshcd_complete_dev_init() - checks device readiness * hba: per-adapter instance * * Set fDeviceInit flag and poll until device toggles it. */ static int ufshcd_complete_dev_init(struct ufs_hba *hba) { int i; int err; bool flag_res = 1; err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, QUERY_FLAG_IDN_FDEVICEINIT, NULL); if (err) { dev_err(hba->dev, "%s setting fDeviceInit flag failed with error %d\n", __func__, err); goto out; } /* poll for max. 1000 iterations for fDeviceInit flag to clear */ for (i = 0; i < 1000 && !err && flag_res; i++) err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG, QUERY_FLAG_IDN_FDEVICEINIT, &flag_res); if (err) dev_err(hba->dev, "%s reading fDeviceInit flag failed with error %d\n", __func__, err); else if (flag_res) dev_err(hba->dev, "%s fDeviceInit was not cleared by the device\n", __func__); out: return err; } /** * ufshcd_make_hba_operational - Make UFS controller operational * @hba: per adapter instance * * To bring UFS host controller to operational state, * 1. Enable required interrupts * 2. Configure interrupt aggregation * 3. Program UTRL and UTMRL base address * 4. Configure run-stop-registers * * Returns 0 on success, non-zero value on failure */ static int ufshcd_make_hba_operational(struct ufs_hba *hba) { int err = 0; u32 reg; /* Enable required interrupts */ ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS); /* Configure interrupt aggregation */ if (ufshcd_is_intr_aggr_allowed(hba)) ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO); else ufshcd_disable_intr_aggr(hba); /* Configure UTRL and UTMRL base address registers */ ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), REG_UTP_TRANSFER_REQ_LIST_BASE_L); ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), REG_UTP_TRANSFER_REQ_LIST_BASE_H); ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), REG_UTP_TASK_REQ_LIST_BASE_L); ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), REG_UTP_TASK_REQ_LIST_BASE_H); /* * Make sure base address and interrupt setup are updated before * enabling the run/stop registers below. */ wmb(); /* * UCRDY, UTMRLDY and UTRLRDY bits must be 1 */ reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS); if (!(ufshcd_get_lists_status(reg))) { ufshcd_enable_run_stop_reg(hba); } else { dev_err(hba->dev, "Host controller not ready to process requests"); err = -EIO; goto out; } out: return err; } /** * ufshcd_hba_stop - Send controller to reset state * @hba: per adapter instance * @can_sleep: perform sleep or just spin */ static inline void ufshcd_hba_stop(struct ufs_hba *hba, bool can_sleep) { int err; ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE); err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE, CONTROLLER_DISABLE, 10, 1, can_sleep); if (err) dev_err(hba->dev, "%s: Controller disable failed\n", __func__); } /** * ufshcd_hba_enable - initialize the controller * @hba: per adapter instance * * The controller resets itself and controller firmware initialization * sequence kicks off. When controller is ready it will set * the Host Controller Enable bit to 1. * * Returns 0 on success, non-zero value on failure */ static int ufshcd_hba_enable(struct ufs_hba *hba) { int retry; /* * msleep of 1 and 5 used in this function might result in msleep(20), * but it was necessary to send the UFS FPGA to reset mode during * development and testing of this driver. msleep can be changed to * mdelay and retry count can be reduced based on the controller. */ if (!ufshcd_is_hba_active(hba)) /* change controller state to "reset state" */ ufshcd_hba_stop(hba, true); /* UniPro link is disabled at this point */ ufshcd_set_link_off(hba); ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); /* start controller initialization sequence */ ufshcd_hba_start(hba); /* * To initialize a UFS host controller HCE bit must be set to 1. * During initialization the HCE bit value changes from 1->0->1. * When the host controller completes initialization sequence * it sets the value of HCE bit to 1. The same HCE bit is read back * to check if the controller has completed initialization sequence. * So without this delay the value HCE = 1, set in the previous * instruction might be read back. * This delay can be changed based on the controller. */ msleep(1); /* wait for the host controller to complete initialization */ retry = 10; while (ufshcd_is_hba_active(hba)) { if (retry) { retry--; } else { dev_err(hba->dev, "Controller enable failed\n"); return -EIO; } msleep(5); } /* enable UIC related interrupts */ ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); return 0; } static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer) { int tx_lanes, i, err = 0; if (!peer) ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), &tx_lanes); else ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), &tx_lanes); for (i = 0; i < tx_lanes; i++) { if (!peer) err = ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_LCC_ENABLE, UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 0); else err = ufshcd_dme_peer_set(hba, UIC_ARG_MIB_SEL(TX_LCC_ENABLE, UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 0); if (err) { dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d", __func__, peer, i, err); break; } } return err; } static inline int ufshcd_disable_host_tx_lcc(struct ufs_hba *hba) { return ufshcd_disable_tx_lcc(hba, false); } static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba) { return ufshcd_disable_tx_lcc(hba, true); } /** * ufshcd_link_startup - Initialize unipro link startup * @hba: per adapter instance * * Returns 0 for success, non-zero in case of failure */ static int ufshcd_link_startup(struct ufs_hba *hba) { int ret; int retries = DME_LINKSTARTUP_RETRIES; bool link_startup_again = false; /* * If UFS device isn't active then we will have to issue link startup * 2 times to make sure the device state move to active. */ if (!ufshcd_is_ufs_dev_active(hba)) link_startup_again = true; link_startup: do { ufshcd_vops_link_startup_notify(hba, PRE_CHANGE); ret = ufshcd_dme_link_startup(hba); if (ret) ufshcd_update_error_stats(hba, UFS_ERR_LINKSTARTUP); /* check if device is detected by inter-connect layer */ if (!ret && !ufshcd_is_device_present(hba)) { ufshcd_update_error_stats(hba, UFS_ERR_LINKSTARTUP); dev_err(hba->dev, "%s: Device not present\n", __func__); ret = -ENXIO; goto out; } /* * DME link lost indication is only received when link is up, * but we can't be sure if the link is up until link startup * succeeds. So reset the local Uni-Pro and try again. */ if (ret && ufshcd_hba_enable(hba)) goto out; } while (ret && retries--); if (ret) /* failed to get the link up... retire */ goto out; if (link_startup_again) { link_startup_again = false; retries = DME_LINKSTARTUP_RETRIES; goto link_startup; } /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */ ufshcd_init_pwr_info(hba); ufshcd_print_pwr_info(hba); if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) { ret = ufshcd_disable_device_tx_lcc(hba); if (ret) goto out; } if (hba->dev_quirks & UFS_DEVICE_QUIRK_BROKEN_LCC) { ret = ufshcd_disable_host_tx_lcc(hba); if (ret) goto out; } /* Include any host controller configuration via UIC commands */ ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE); if (ret) goto out; ret = ufshcd_make_hba_operational(hba); out: if (ret) { dev_err(hba->dev, "link startup failed %d\n", ret); ufshcd_print_host_state(hba); ufshcd_print_pwr_info(hba); ufshcd_print_host_regs(hba); } return ret; } /** * ufshcd_verify_dev_init() - Verify device initialization * @hba: per-adapter instance * * Send NOP OUT UPIU and wait for NOP IN response to check whether the * device Transport Protocol (UTP) layer is ready after a reset. * If the UTP layer at the device side is not initialized, it may * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations. */ static int ufshcd_verify_dev_init(struct ufs_hba *hba) { int err = 0; int retries; ufshcd_hold_all(hba); mutex_lock(&hba->dev_cmd.lock); for (retries = NOP_OUT_RETRIES; retries > 0; retries--) { err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP, NOP_OUT_TIMEOUT); if (!err || err == -ETIMEDOUT) break; dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err); } mutex_unlock(&hba->dev_cmd.lock); ufshcd_release_all(hba); if (err) dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err); return err; } /** * ufshcd_set_queue_depth - set lun queue depth * @sdev: pointer to SCSI device * * Read bLUQueueDepth value and activate scsi tagged command * queueing. For WLUN, queue depth is set to 1. For best-effort * cases (bLUQueueDepth = 0) the queue depth is set to a maximum * value that host can queue. */ static void ufshcd_set_queue_depth(struct scsi_device *sdev) { int ret = 0; u8 lun_qdepth; struct ufs_hba *hba; hba = shost_priv(sdev->host); lun_qdepth = hba->nutrs; ret = ufshcd_read_unit_desc_param(hba, ufshcd_scsi_to_upiu_lun(sdev->lun), UNIT_DESC_PARAM_LU_Q_DEPTH, &lun_qdepth, sizeof(lun_qdepth)); /* Some WLUN doesn't support unit descriptor */ if (ret == -EOPNOTSUPP) lun_qdepth = 1; else if (!lun_qdepth) /* eventually, we can figure out the real queue depth */ lun_qdepth = hba->nutrs; else lun_qdepth = min_t(int, lun_qdepth, hba->nutrs); dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n", __func__, lun_qdepth); scsi_change_queue_depth(sdev, lun_qdepth); } /* * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR * @hba: per-adapter instance * @lun: UFS device lun id * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info * * Returns 0 in case of success and b_lu_write_protect status would be returned * @b_lu_write_protect parameter. * Returns -ENOTSUPP if reading b_lu_write_protect is not supported. * Returns -EINVAL in case of invalid parameters passed to this function. */ static int ufshcd_get_lu_wp(struct ufs_hba *hba, u8 lun, u8 *b_lu_write_protect) { int ret; if (!b_lu_write_protect) ret = -EINVAL; /* * According to UFS device spec, RPMB LU can't be write * protected so skip reading bLUWriteProtect parameter for * it. For other W-LUs, UNIT DESCRIPTOR is not available. */ else if (lun >= UFS_UPIU_MAX_GENERAL_LUN) ret = -ENOTSUPP; else ret = ufshcd_read_unit_desc_param(hba, lun, UNIT_DESC_PARAM_LU_WR_PROTECT, b_lu_write_protect, sizeof(*b_lu_write_protect)); return ret; } /** * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect * status * @hba: per-adapter instance * @sdev: pointer to SCSI device * */ static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba, struct scsi_device *sdev) { if (hba->dev_info.f_power_on_wp_en && !hba->dev_info.is_lu_power_on_wp) { u8 b_lu_write_protect; if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun), &b_lu_write_protect) && (b_lu_write_protect == UFS_LU_POWER_ON_WP)) hba->dev_info.is_lu_power_on_wp = true; } } /** * ufshcd_slave_alloc - handle initial SCSI device configurations * @sdev: pointer to SCSI device * * Returns success */ static int ufshcd_slave_alloc(struct scsi_device *sdev) { struct ufs_hba *hba; hba = shost_priv(sdev->host); /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */ sdev->use_10_for_ms = 1; /* allow SCSI layer to restart the device in case of errors */ sdev->allow_restart = 1; /* REPORT SUPPORTED OPERATION CODES is not supported */ sdev->no_report_opcodes = 1; /* WRITE_SAME command is not supported*/ sdev->no_write_same = 1; ufshcd_set_queue_depth(sdev); ufshcd_get_lu_power_on_wp_status(hba, sdev); return 0; } /** * ufshcd_change_queue_depth - change queue depth * @sdev: pointer to SCSI device * @depth: required depth to set * * Change queue depth and make sure the max. limits are not crossed. */ static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth) { struct ufs_hba *hba = shost_priv(sdev->host); if (depth > hba->nutrs) depth = hba->nutrs; return scsi_change_queue_depth(sdev, depth); } /** * ufshcd_slave_configure - adjust SCSI device configurations * @sdev: pointer to SCSI device */ static int ufshcd_slave_configure(struct scsi_device *sdev) { struct request_queue *q = sdev->request_queue; blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1); blk_queue_max_segment_size(q, PRDT_DATA_BYTE_COUNT_MAX); sdev->autosuspend_delay = UFSHCD_AUTO_SUSPEND_DELAY_MS; sdev->use_rpm_auto = 1; return 0; } /** * ufshcd_slave_destroy - remove SCSI device configurations * @sdev: pointer to SCSI device */ static void ufshcd_slave_destroy(struct scsi_device *sdev) { struct ufs_hba *hba; hba = shost_priv(sdev->host); /* Drop the reference as it won't be needed anymore */ if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) { unsigned long flags; spin_lock_irqsave(hba->host->host_lock, flags); hba->sdev_ufs_device = NULL; spin_unlock_irqrestore(hba->host->host_lock, flags); } } /** * ufshcd_task_req_compl - handle task management request completion * @hba: per adapter instance * @index: index of the completed request * @resp: task management service response * * Returns non-zero value on error, zero on success */ static int ufshcd_task_req_compl(struct ufs_hba *hba, u32 index, u8 *resp) { struct utp_task_req_desc *task_req_descp; struct utp_upiu_task_rsp *task_rsp_upiup; unsigned long flags; int ocs_value; int task_result; spin_lock_irqsave(hba->host->host_lock, flags); /* Clear completed tasks from outstanding_tasks */ __clear_bit(index, &hba->outstanding_tasks); task_req_descp = hba->utmrdl_base_addr; ocs_value = ufshcd_get_tmr_ocs(&task_req_descp[index]); if (ocs_value == OCS_SUCCESS) { task_rsp_upiup = (struct utp_upiu_task_rsp *) task_req_descp[index].task_rsp_upiu; task_result = be32_to_cpu(task_rsp_upiup->header.dword_1); task_result = ((task_result & MASK_TASK_RESPONSE) >> 8); if (resp) *resp = (u8)task_result; } else { dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__, ocs_value); } spin_unlock_irqrestore(hba->host->host_lock, flags); return ocs_value; } /** * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status * @lrb: pointer to local reference block of completed command * @scsi_status: SCSI command status * * Returns value base on SCSI command status */ static inline int ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status) { int result = 0; switch (scsi_status) { case SAM_STAT_CHECK_CONDITION: ufshcd_copy_sense_data(lrbp); case SAM_STAT_GOOD: result |= DID_OK << 16 | COMMAND_COMPLETE << 8 | scsi_status; break; case SAM_STAT_TASK_SET_FULL: case SAM_STAT_BUSY: case SAM_STAT_TASK_ABORTED: ufshcd_copy_sense_data(lrbp); result |= scsi_status; break; default: result |= DID_ERROR << 16; break; } /* end of switch */ return result; } /** * ufshcd_transfer_rsp_status - Get overall status of the response * @hba: per adapter instance * @lrb: pointer to local reference block of completed command * * Returns result of the command to notify SCSI midlayer */ static inline int ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) { int result = 0; int scsi_status; int ocs; bool print_prdt; /* overall command status of utrd */ ocs = ufshcd_get_tr_ocs(lrbp); switch (ocs) { case OCS_SUCCESS: result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); switch (result) { case UPIU_TRANSACTION_RESPONSE: /* * get the response UPIU result to extract * the SCSI command status */ result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr); /* * get the result based on SCSI status response * to notify the SCSI midlayer of the command status */ scsi_status = result & MASK_SCSI_STATUS; result = ufshcd_scsi_cmd_status(lrbp, scsi_status); /* * Currently we are only supporting BKOPs exception * events hence we can ignore BKOPs exception event * during power management callbacks. BKOPs exception * event is not expected to be raised in runtime suspend * callback as it allows the urgent bkops. * During system suspend, we are anyway forcefully * disabling the bkops and if urgent bkops is needed * it will be enabled on system resume. Long term * solution could be to abort the system suspend if * UFS device needs urgent BKOPs. */ if (!hba->pm_op_in_progress && ufshcd_is_exception_event(lrbp->ucd_rsp_ptr)) schedule_work(&hba->eeh_work); break; case UPIU_TRANSACTION_REJECT_UPIU: /* TODO: handle Reject UPIU Response */ result = DID_ERROR << 16; dev_err(hba->dev, "Reject UPIU not fully implemented\n"); break; default: result = DID_ERROR << 16; dev_err(hba->dev, "Unexpected request response code = %x\n", result); break; } break; case OCS_ABORTED: result |= DID_ABORT << 16; break; case OCS_INVALID_COMMAND_STATUS: result |= DID_REQUEUE << 16; break; case OCS_INVALID_CMD_TABLE_ATTR: case OCS_INVALID_PRDT_ATTR: case OCS_MISMATCH_DATA_BUF_SIZE: case OCS_MISMATCH_RESP_UPIU_SIZE: case OCS_PEER_COMM_FAILURE: case OCS_FATAL_ERROR: case OCS_DEVICE_FATAL_ERROR: case OCS_INVALID_CRYPTO_CONFIG: case OCS_GENERAL_CRYPTO_ERROR: default: result |= DID_ERROR << 16; dev_err(hba->dev, "OCS error from controller = %x for tag %d\n", ocs, lrbp->task_tag); /* * This is called in interrupt context, hence avoid sleep * while printing debug registers. Also print only the minimum * debug registers needed to debug OCS failure. */ __ufshcd_print_host_regs(hba, true); ufshcd_print_host_state(hba); break; } /* end of switch */ if ((host_byte(result) != DID_OK) && !hba->silence_err_logs) { print_prdt = (ocs == OCS_INVALID_PRDT_ATTR || ocs == OCS_MISMATCH_DATA_BUF_SIZE); ufshcd_print_trs(hba, 1 << lrbp->task_tag, print_prdt); } if ((host_byte(result) == DID_ERROR) || (host_byte(result) == DID_ABORT)) ufsdbg_set_err_state(hba); return result; } /** * ufshcd_uic_cmd_compl - handle completion of uic command * @hba: per adapter instance * @intr_status: interrupt status generated by the controller * * Returns * IRQ_HANDLED - If interrupt is valid * IRQ_NONE - If invalid interrupt */ static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status) { irqreturn_t retval = IRQ_NONE; if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) { hba->active_uic_cmd->argument2 |= ufshcd_get_uic_cmd_result(hba); hba->active_uic_cmd->argument3 = ufshcd_get_dme_attr_val(hba); complete(&hba->active_uic_cmd->done); retval = IRQ_HANDLED; } if (intr_status & UFSHCD_UIC_PWR_MASK) { if (hba->uic_async_done) { complete(hba->uic_async_done); retval = IRQ_HANDLED; } else if (ufshcd_is_auto_hibern8_supported(hba)) { /* * If uic_async_done flag is not set then this * is an Auto hibern8 err interrupt. * Perform a host reset followed by a full * link recovery. */ hba->ufshcd_state = UFSHCD_STATE_ERROR; hba->force_host_reset = true; dev_err(hba->dev, "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n", __func__, (intr_status & UIC_HIBERNATE_ENTER) ? "Enter" : "Exit", intr_status, ufshcd_get_upmcrs(hba)); __ufshcd_print_host_regs(hba, true); ufshcd_print_host_state(hba); schedule_work(&hba->eh_work); retval = IRQ_HANDLED; } } return retval; } /** * ufshcd_abort_outstanding_requests - abort all outstanding transfer requests. * @hba: per adapter instance * @result: error result to inform scsi layer about */ void ufshcd_abort_outstanding_transfer_requests(struct ufs_hba *hba, int result) { u8 index; struct ufshcd_lrb *lrbp; struct scsi_cmnd *cmd; if (!hba->outstanding_reqs) return; for_each_set_bit(index, &hba->outstanding_reqs, hba->nutrs) { lrbp = &hba->lrb[index]; cmd = lrbp->cmd; if (cmd) { ufshcd_cond_add_cmd_trace(hba, index, "failed"); ufshcd_update_error_stats(hba, UFS_ERR_INT_FATAL_ERRORS); scsi_dma_unmap(cmd); cmd->result = result; /* Clear pending transfer requests */ ufshcd_clear_cmd(hba, index); ufshcd_outstanding_req_clear(hba, index); clear_bit_unlock(index, &hba->lrb_in_use); lrbp->complete_time_stamp = ktime_get(); update_req_stats(hba, lrbp); /* Mark completed command as NULL in LRB */ lrbp->cmd = NULL; ufshcd_release_all(hba); if (cmd->request) { /* * As we are accessing the "request" structure, * this must be called before calling * ->scsi_done() callback. */ ufshcd_vops_pm_qos_req_end(hba, cmd->request, true); ufshcd_vops_crypto_engine_cfg_end(hba, lrbp, cmd->request); } /* Do not touch lrbp after scsi done */ cmd->scsi_done(cmd); } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE) { if (hba->dev_cmd.complete) { ufshcd_cond_add_cmd_trace(hba, index, "dev_failed"); ufshcd_outstanding_req_clear(hba, index); complete(hba->dev_cmd.complete); } } if (ufshcd_is_clkscaling_supported(hba)) hba->clk_scaling.active_reqs--; } } /** * __ufshcd_transfer_req_compl - handle SCSI and query command completion * @hba: per adapter instance * @completed_reqs: requests to complete */ static void __ufshcd_transfer_req_compl(struct ufs_hba *hba, unsigned long completed_reqs) { struct ufshcd_lrb *lrbp; struct scsi_cmnd *cmd; int result; int index; struct request *req; for_each_set_bit(index, &completed_reqs, hba->nutrs) { lrbp = &hba->lrb[index]; cmd = lrbp->cmd; if (cmd) { ufshcd_cond_add_cmd_trace(hba, index, "complete"); ufshcd_update_tag_stats_completion(hba, cmd); result = ufshcd_transfer_rsp_status(hba, lrbp); scsi_dma_unmap(cmd); cmd->result = result; clear_bit_unlock(index, &hba->lrb_in_use); lrbp->complete_time_stamp = ktime_get(); update_req_stats(hba, lrbp); /* Mark completed command as NULL in LRB */ lrbp->cmd = NULL; hba->ufs_stats.clk_rel.ctx = XFR_REQ_COMPL; __ufshcd_release(hba, false); __ufshcd_hibern8_release(hba, false); if (cmd->request) { /* * As we are accessing the "request" structure, * this must be called before calling * ->scsi_done() callback. */ ufshcd_vops_pm_qos_req_end(hba, cmd->request, false); ufshcd_vops_crypto_engine_cfg_end(hba, lrbp, cmd->request); } clear_bit_unlock(index, &hba->lrb_in_use); req = cmd->request; if (req) { /* Update IO svc time latency histogram */ if (req->lat_hist_enabled) { ktime_t completion; u_int64_t delta_us; completion = ktime_get(); delta_us = ktime_us_delta(completion, req->lat_hist_io_start); /* rq_data_dir() => true if WRITE */ blk_update_latency_hist(&hba->io_lat_s, (rq_data_dir(req) == READ), delta_us); } } /* Do not touch lrbp after scsi done */ cmd->scsi_done(cmd); } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE) { if (hba->dev_cmd.complete) { ufshcd_cond_add_cmd_trace(hba, index, "dcmp"); complete(hba->dev_cmd.complete); } } if (ufshcd_is_clkscaling_supported(hba)) hba->clk_scaling.active_reqs--; } /* clear corresponding bits of completed commands */ hba->outstanding_reqs ^= completed_reqs; ufshcd_clk_scaling_update_busy(hba); /* we might have free'd some tags above */ wake_up(&hba->dev_cmd.tag_wq); } /** * ufshcd_transfer_req_compl - handle SCSI and query command completion * @hba: per adapter instance * * Returns * IRQ_HANDLED - If interrupt is valid * IRQ_NONE - If invalid interrupt */ static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba) { unsigned long completed_reqs; u32 tr_doorbell; /* Resetting interrupt aggregation counters first and reading the * DOOR_BELL afterward allows us to handle all the completed requests. * In order to prevent other interrupts starvation the DB is read once * after reset. The down side of this solution is the possibility of * false interrupt if device completes another request after resetting * aggregation and before reading the DB. */ if (ufshcd_is_intr_aggr_allowed(hba)) ufshcd_reset_intr_aggr(hba); tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); completed_reqs = tr_doorbell ^ hba->outstanding_reqs; if (completed_reqs) { __ufshcd_transfer_req_compl(hba, completed_reqs); return IRQ_HANDLED; } else { return IRQ_NONE; } } /** * ufshcd_disable_ee - disable exception event * @hba: per-adapter instance * @mask: exception event to disable * * Disables exception event in the device so that the EVENT_ALERT * bit is not set. * * Returns zero on success, non-zero error value on failure. */ static int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask) { int err = 0; u32 val; if (!(hba->ee_ctrl_mask & mask)) goto out; val = hba->ee_ctrl_mask & ~mask; val &= 0xFFFF; /* 2 bytes */ err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val); if (!err) hba->ee_ctrl_mask &= ~mask; out: return err; } /** * ufshcd_enable_ee - enable exception event * @hba: per-adapter instance * @mask: exception event to enable * * Enable corresponding exception event in the device to allow * device to alert host in critical scenarios. * * Returns zero on success, non-zero error value on failure. */ static int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask) { int err = 0; u32 val; if (hba->ee_ctrl_mask & mask) goto out; val = hba->ee_ctrl_mask | mask; val &= 0xFFFF; /* 2 bytes */ err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val); if (!err) hba->ee_ctrl_mask |= mask; out: return err; } /** * ufshcd_enable_auto_bkops - Allow device managed BKOPS * @hba: per-adapter instance * * Allow device to manage background operations on its own. Enabling * this might lead to inconsistent latencies during normal data transfers * as the device is allowed to manage its own way of handling background * operations. * * Returns zero on success, non-zero on failure. */ static int ufshcd_enable_auto_bkops(struct ufs_hba *hba) { int err = 0; if (hba->auto_bkops_enabled) goto out; err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, QUERY_FLAG_IDN_BKOPS_EN, NULL); if (err) { dev_err(hba->dev, "%s: failed to enable bkops %d\n", __func__, err); goto out; } hba->auto_bkops_enabled = true; trace_ufshcd_auto_bkops_state(dev_name(hba->dev), 1); /* No need of URGENT_BKOPS exception from the device */ err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); if (err) dev_err(hba->dev, "%s: failed to disable exception event %d\n", __func__, err); out: return err; } /** * ufshcd_disable_auto_bkops - block device in doing background operations * @hba: per-adapter instance * * Disabling background operations improves command response latency but * has drawback of device moving into critical state where the device is * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the * host is idle so that BKOPS are managed effectively without any negative * impacts. * * Returns zero on success, non-zero on failure. */ static int ufshcd_disable_auto_bkops(struct ufs_hba *hba) { int err = 0; if (!hba->auto_bkops_enabled) goto out; /* * If host assisted BKOPs is to be enabled, make sure * urgent bkops exception is allowed. */ err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS); if (err) { dev_err(hba->dev, "%s: failed to enable exception event %d\n", __func__, err); goto out; } err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG, QUERY_FLAG_IDN_BKOPS_EN, NULL); if (err) { dev_err(hba->dev, "%s: failed to disable bkops %d\n", __func__, err); ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); goto out; } hba->auto_bkops_enabled = false; trace_ufshcd_auto_bkops_state(dev_name(hba->dev), 0); out: return err; } /** * ufshcd_force_reset_auto_bkops - force reset auto bkops state * @hba: per adapter instance * * After a device reset the device may toggle the BKOPS_EN flag * to default value. The s/w tracking variables should be updated * as well. This function would change the auto-bkops state based on * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND. */ static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba) { if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) { hba->auto_bkops_enabled = false; hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS; ufshcd_enable_auto_bkops(hba); } else { hba->auto_bkops_enabled = true; hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS; ufshcd_disable_auto_bkops(hba); } } static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status) { return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status); } /** * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status * @hba: per-adapter instance * @status: bkops_status value * * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn * flag in the device to permit background operations if the device * bkops_status is greater than or equal to "status" argument passed to * this function, disable otherwise. * * Returns 0 for success, non-zero in case of failure. * * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag * to know whether auto bkops is enabled or disabled after this function * returns control to it. */ static int ufshcd_bkops_ctrl(struct ufs_hba *hba, enum bkops_status status) { int err; u32 curr_status = 0; err = ufshcd_get_bkops_status(hba, &curr_status); if (err) { dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", __func__, err); goto out; } else if (curr_status > BKOPS_STATUS_MAX) { dev_err(hba->dev, "%s: invalid BKOPS status %d\n", __func__, curr_status); err = -EINVAL; goto out; } if (curr_status >= status) err = ufshcd_enable_auto_bkops(hba); else err = ufshcd_disable_auto_bkops(hba); out: return err; } /** * ufshcd_urgent_bkops - handle urgent bkops exception event * @hba: per-adapter instance * * Enable fBackgroundOpsEn flag in the device to permit background * operations. * * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled * and negative error value for any other failure. */ static int ufshcd_urgent_bkops(struct ufs_hba *hba) { return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl); } static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status) { return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, QUERY_ATTR_IDN_EE_STATUS, 0, 0, status); } static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba) { int err; u32 curr_status = 0; if (hba->is_urgent_bkops_lvl_checked) goto enable_auto_bkops; err = ufshcd_get_bkops_status(hba, &curr_status); if (err) { dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", __func__, err); goto out; } /* * We are seeing that some devices are raising the urgent bkops * exception events even when BKOPS status doesn't indicate performace * impacted or critical. Handle these device by determining their urgent * bkops status at runtime. */ if (curr_status < BKOPS_STATUS_PERF_IMPACT) { dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n", __func__, curr_status); /* update the current status as the urgent bkops level */ hba->urgent_bkops_lvl = curr_status; hba->is_urgent_bkops_lvl_checked = true; } enable_auto_bkops: err = ufshcd_enable_auto_bkops(hba); out: if (err < 0) dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n", __func__, err); } /** * ufshcd_exception_event_handler - handle exceptions raised by device * @work: pointer to work data * * Read bExceptionEventStatus attribute from the device and handle the * exception event accordingly. */ static void ufshcd_exception_event_handler(struct work_struct *work) { struct ufs_hba *hba; int err; u32 status = 0; hba = container_of(work, struct ufs_hba, eeh_work); pm_runtime_get_sync(hba->dev); ufshcd_scsi_block_requests(hba); err = ufshcd_get_ee_status(hba, &status); if (err) { dev_err(hba->dev, "%s: failed to get exception status %d\n", __func__, err); goto out; } status &= hba->ee_ctrl_mask; if (status & MASK_EE_URGENT_BKOPS) ufshcd_bkops_exception_event_handler(hba); out: ufshcd_scsi_unblock_requests(hba); pm_runtime_put_sync(hba->dev); return; } /* Complete requests that have door-bell cleared */ static void ufshcd_complete_requests(struct ufs_hba *hba) { ufshcd_transfer_req_compl(hba); ufshcd_tmc_handler(hba); } /** * ufshcd_quirk_dl_nac_errors - This function checks if error handling is * to recover from the DL NAC errors or not. * @hba: per-adapter instance * * Returns true if error handling is required, false otherwise */ static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba) { unsigned long flags; bool err_handling = true; spin_lock_irqsave(hba->host->host_lock, flags); /* * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the * device fatal error and/or DL NAC & REPLAY timeout errors. */ if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR)) goto out; if ((hba->saved_err & DEVICE_FATAL_ERROR) || ((hba->saved_err & UIC_ERROR) && (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR))) { /* * we have to do error recovery but atleast silence the error * logs. */ hba->silence_err_logs = true; goto out; } if ((hba->saved_err & UIC_ERROR) && (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) { int err; /* * wait for 50ms to see if we can get any other errors or not. */ spin_unlock_irqrestore(hba->host->host_lock, flags); msleep(50); spin_lock_irqsave(hba->host->host_lock, flags); /* * now check if we have got any other severe errors other than * DL NAC error? */ if ((hba->saved_err & INT_FATAL_ERRORS) || ((hba->saved_err & UIC_ERROR) && (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR))) { if (((hba->saved_err & INT_FATAL_ERRORS) == DEVICE_FATAL_ERROR) || (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) hba->silence_err_logs = true; goto out; } /* * As DL NAC is the only error received so far, send out NOP * command to confirm if link is still active or not. * - If we don't get any response then do error recovery. * - If we get response then clear the DL NAC error bit. */ /* silence the error logs from NOP command */ hba->silence_err_logs = true; spin_unlock_irqrestore(hba->host->host_lock, flags); err = ufshcd_verify_dev_init(hba); spin_lock_irqsave(hba->host->host_lock, flags); hba->silence_err_logs = false; if (err) { hba->silence_err_logs = true; goto out; } /* Link seems to be alive hence ignore the DL NAC errors */ if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR) hba->saved_err &= ~UIC_ERROR; /* clear NAC error */ hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; if (!hba->saved_uic_err) { err_handling = false; goto out; } /* * there seems to be some errors other than NAC, so do error * recovery */ hba->silence_err_logs = true; } out: spin_unlock_irqrestore(hba->host->host_lock, flags); return err_handling; } /** * ufshcd_err_handler - handle UFS errors that require s/w attention * @work: pointer to work structure */ static void ufshcd_err_handler(struct work_struct *work) { struct ufs_hba *hba; unsigned long flags; bool err_xfer = false, err_tm = false; int err = 0; int tag; bool needs_reset = false; bool clks_enabled = false; hba = container_of(work, struct ufs_hba, eh_work); spin_lock_irqsave(hba->host->host_lock, flags); ufsdbg_set_err_state(hba); if (hba->ufshcd_state == UFSHCD_STATE_RESET) goto out; /* * Make sure the clocks are ON before we proceed with err * handling. For the majority of cases err handler would be * run with clocks ON. There is a possibility that the err * handler was scheduled due to auto hibern8 error interrupt, * in which case the clocks could be gated or be in the * process of gating when the err handler runs. */ if (unlikely((hba->clk_gating.state != CLKS_ON) && ufshcd_is_auto_hibern8_supported(hba))) { spin_unlock_irqrestore(hba->host->host_lock, flags); hba->ufs_stats.clk_hold.ctx = ERR_HNDLR_WORK; ufshcd_hold(hba, false); spin_lock_irqsave(hba->host->host_lock, flags); clks_enabled = true; } hba->ufshcd_state = UFSHCD_STATE_RESET; ufshcd_set_eh_in_progress(hba); /* Complete requests that have door-bell cleared by h/w */ ufshcd_complete_requests(hba); if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { bool ret; spin_unlock_irqrestore(hba->host->host_lock, flags); /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */ ret = ufshcd_quirk_dl_nac_errors(hba); spin_lock_irqsave(hba->host->host_lock, flags); if (!ret) goto skip_err_handling; } /* * Dump controller state before resetting. Transfer requests state * will be dump as part of the request completion. */ if (hba->saved_err & (INT_FATAL_ERRORS | UIC_ERROR)) { dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x", __func__, hba->saved_err, hba->saved_uic_err); if (!hba->silence_err_logs) { /* release lock as print host regs sleeps */ spin_unlock_irqrestore(hba->host->host_lock, flags); ufshcd_print_host_regs(hba); ufshcd_print_host_state(hba); ufshcd_print_pwr_info(hba); ufshcd_print_tmrs(hba, hba->outstanding_tasks); ufshcd_print_cmd_log(hba); spin_lock_irqsave(hba->host->host_lock, flags); } } if ((hba->saved_err & INT_FATAL_ERRORS) || hba->saved_ce_err || hba->force_host_reset || ((hba->saved_err & UIC_ERROR) && (hba->saved_uic_err & (UFSHCD_UIC_DL_PA_INIT_ERROR | UFSHCD_UIC_DL_NAC_RECEIVED_ERROR | UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) needs_reset = true; /* * if host reset is required then skip clearing the pending * transfers forcefully because they will automatically get * cleared after link startup. */ if (needs_reset) goto skip_pending_xfer_clear; /* release lock as clear command might sleep */ spin_unlock_irqrestore(hba->host->host_lock, flags); /* Clear pending transfer requests */ for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) { if (ufshcd_clear_cmd(hba, tag)) { err_xfer = true; goto lock_skip_pending_xfer_clear; } } /* Clear pending task management requests */ for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) { if (ufshcd_clear_tm_cmd(hba, tag)) { err_tm = true; goto lock_skip_pending_xfer_clear; } } lock_skip_pending_xfer_clear: spin_lock_irqsave(hba->host->host_lock, flags); /* Complete the requests that are cleared by s/w */ ufshcd_complete_requests(hba); if (err_xfer || err_tm) needs_reset = true; skip_pending_xfer_clear: /* Fatal errors need reset */ if (needs_reset) { unsigned long max_doorbells = (1UL << hba->nutrs) - 1; if (hba->saved_err & INT_FATAL_ERRORS) ufshcd_update_error_stats(hba, UFS_ERR_INT_FATAL_ERRORS); if (hba->saved_ce_err) ufshcd_update_error_stats(hba, UFS_ERR_CRYPTO_ENGINE); if (hba->saved_err & UIC_ERROR) ufshcd_update_error_stats(hba, UFS_ERR_INT_UIC_ERROR); if (err_xfer || err_tm) ufshcd_update_error_stats(hba, UFS_ERR_CLEAR_PEND_XFER_TM); /* * ufshcd_reset_and_restore() does the link reinitialization * which will need atleast one empty doorbell slot to send the * device management commands (NOP and query commands). * If there is no slot empty at this moment then free up last * slot forcefully. */ if (hba->outstanding_reqs == max_doorbells) __ufshcd_transfer_req_compl(hba, (1UL << (hba->nutrs - 1))); spin_unlock_irqrestore(hba->host->host_lock, flags); err = ufshcd_reset_and_restore(hba); spin_lock_irqsave(hba->host->host_lock, flags); if (err) { dev_err(hba->dev, "%s: reset and restore failed\n", __func__); hba->ufshcd_state = UFSHCD_STATE_ERROR; } /* * Inform scsi mid-layer that we did reset and allow to handle * Unit Attention properly. */ scsi_report_bus_reset(hba->host, 0); hba->saved_err = 0; hba->saved_uic_err = 0; hba->saved_ce_err = 0; hba->force_host_reset = false; } skip_err_handling: if (!needs_reset) { hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; if (hba->saved_err || hba->saved_uic_err) dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x", __func__, hba->saved_err, hba->saved_uic_err); } hba->silence_err_logs = false; if (clks_enabled) { __ufshcd_release(hba, false); hba->ufs_stats.clk_rel.ctx = ERR_HNDLR_WORK; } out: ufshcd_clear_eh_in_progress(hba); spin_unlock_irqrestore(hba->host->host_lock, flags); } static void ufshcd_update_uic_reg_hist(struct ufs_uic_err_reg_hist *reg_hist, u32 reg) { reg_hist->reg[reg_hist->pos] = reg; reg_hist->tstamp[reg_hist->pos] = ktime_get(); reg_hist->pos = (reg_hist->pos + 1) % UIC_ERR_REG_HIST_LENGTH; } static void ufshcd_rls_handler(struct work_struct *work) { struct ufs_hba *hba; int ret = 0; u32 mode; hba = container_of(work, struct ufs_hba, rls_work); ufshcd_scsi_block_requests(hba); pm_runtime_get_sync(hba->dev); ret = ufshcd_wait_for_doorbell_clr(hba, U64_MAX); if (ret) { dev_err(hba->dev, "Timed out (%d) waiting for DB to clear\n", ret); goto out; } ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode); if (hba->pwr_info.pwr_rx != ((mode >> PWR_RX_OFFSET) & PWR_INFO_MASK)) hba->restore_needed = true; if (hba->pwr_info.pwr_tx != (mode & PWR_INFO_MASK)) hba->restore_needed = true; ufshcd_dme_get(hba, UIC_ARG_MIB(PA_RXGEAR), &mode); if (hba->pwr_info.gear_rx != mode) hba->restore_needed = true; ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TXGEAR), &mode); if (hba->pwr_info.gear_tx != mode) hba->restore_needed = true; if (hba->restore_needed) ret = ufshcd_config_pwr_mode(hba, &(hba->pwr_info)); if (ret) dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n", __func__, ret); else hba->restore_needed = false; out: ufshcd_scsi_unblock_requests(hba); pm_runtime_put_sync(hba->dev); } /** * ufshcd_update_uic_error - check and set fatal UIC error flags. * @hba: per-adapter instance * * Returns * IRQ_HANDLED - If interrupt is valid * IRQ_NONE - If invalid interrupt */ static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba) { u32 reg; irqreturn_t retval = IRQ_NONE; /* PHY layer lane error */ reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) && (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) { /* * To know whether this error is fatal or not, DB timeout * must be checked but this error is handled separately. */ dev_dbg(hba->dev, "%s: UIC Lane error reported, reg 0x%x\n", __func__, reg); ufshcd_update_uic_reg_hist(&hba->ufs_stats.pa_err, reg); /* * Don't ignore LINERESET indication during hibern8 * enter operation. */ if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) { struct uic_command *cmd = hba->active_uic_cmd; if (cmd) { if (cmd->command == UIC_CMD_DME_HIBER_ENTER) { dev_err(hba->dev, "%s: LINERESET during hibern8 enter, reg 0x%x\n", __func__, reg); hba->full_init_linereset = true; } } if (!hba->full_init_linereset) schedule_work(&hba->rls_work); } retval |= IRQ_HANDLED; } /* PA_INIT_ERROR is fatal and needs UIC reset */ reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER); if ((reg & UIC_DATA_LINK_LAYER_ERROR) && (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) { ufshcd_update_uic_reg_hist(&hba->ufs_stats.dl_err, reg); if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT) { hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR; } else if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED) hba->uic_error |= UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT) hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR; } retval |= IRQ_HANDLED; } /* UIC NL/TL/DME errors needs software retry */ reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER); if ((reg & UIC_NETWORK_LAYER_ERROR) && (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) { ufshcd_update_uic_reg_hist(&hba->ufs_stats.nl_err, reg); hba->uic_error |= UFSHCD_UIC_NL_ERROR; retval |= IRQ_HANDLED; } reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER); if ((reg & UIC_TRANSPORT_LAYER_ERROR) && (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) { ufshcd_update_uic_reg_hist(&hba->ufs_stats.tl_err, reg); hba->uic_error |= UFSHCD_UIC_TL_ERROR; retval |= IRQ_HANDLED; } reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME); if ((reg & UIC_DME_ERROR) && (reg & UIC_DME_ERROR_CODE_MASK)) { ufshcd_update_uic_reg_hist(&hba->ufs_stats.dme_err, reg); hba->uic_error |= UFSHCD_UIC_DME_ERROR; retval |= IRQ_HANDLED; } dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n", __func__, hba->uic_error); return retval; } /** * ufshcd_check_errors - Check for errors that need s/w attention * @hba: per-adapter instance * * Returns * IRQ_HANDLED - If interrupt is valid * IRQ_NONE - If invalid interrupt */ static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba) { bool queue_eh_work = false; irqreturn_t retval = IRQ_NONE; if (hba->errors & INT_FATAL_ERRORS || hba->ce_error) queue_eh_work = true; if (hba->errors & UIC_ERROR) { hba->uic_error = 0; retval = ufshcd_update_uic_error(hba); if (hba->uic_error) queue_eh_work = true; } if (queue_eh_work) { /* * update the transfer error masks to sticky bits, let's do this * irrespective of current ufshcd_state. */ hba->saved_err |= hba->errors; hba->saved_uic_err |= hba->uic_error; hba->saved_ce_err |= hba->ce_error; /* handle fatal errors only when link is functional */ if (hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL) { /* * Set error handling in progress flag early so that we * don't issue new requests any more. */ ufshcd_set_eh_in_progress(hba); hba->ufshcd_state = UFSHCD_STATE_ERROR; schedule_work(&hba->eh_work); } retval |= IRQ_HANDLED; } /* * if (!queue_eh_work) - * Other errors are either non-fatal where host recovers * itself without s/w intervention or errors that will be * handled by the SCSI core layer. */ return retval; } /** * ufshcd_tmc_handler - handle task management function completion * @hba: per adapter instance * * Returns * IRQ_HANDLED - If interrupt is valid * IRQ_NONE - If invalid interrupt */ static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba) { u32 tm_doorbell; tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); hba->tm_condition = tm_doorbell ^ hba->outstanding_tasks; if (hba->tm_condition) { wake_up(&hba->tm_wq); return IRQ_HANDLED; } else { return IRQ_NONE; } } /** * ufshcd_sl_intr - Interrupt service routine * @hba: per adapter instance * @intr_status: contains interrupts generated by the controller * * Returns * IRQ_HANDLED - If interrupt is valid * IRQ_NONE - If invalid interrupt */ static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status) { irqreturn_t retval = IRQ_NONE; ufsdbg_error_inject_dispatcher(hba, ERR_INJECT_INTR, intr_status, &intr_status); ufshcd_vops_crypto_engine_get_status(hba, &hba->ce_error); hba->errors = UFSHCD_ERROR_MASK & intr_status; if (hba->errors || hba->ce_error) retval |= ufshcd_check_errors(hba); if (intr_status & UFSHCD_UIC_MASK) retval |= ufshcd_uic_cmd_compl(hba, intr_status); if (intr_status & UTP_TASK_REQ_COMPL) retval |= ufshcd_tmc_handler(hba); if (intr_status & UTP_TRANSFER_REQ_COMPL) retval |= ufshcd_transfer_req_compl(hba); return retval; } /** * ufshcd_intr - Main interrupt service routine * @irq: irq number * @__hba: pointer to adapter instance * * Returns * IRQ_HANDLED - If interrupt is valid * IRQ_NONE - If invalid interrupt */ static irqreturn_t ufshcd_intr(int irq, void *__hba) { u32 intr_status, enabled_intr_status; irqreturn_t retval = IRQ_NONE; struct ufs_hba *hba = __hba; int retries = hba->nutrs; spin_lock(hba->host->host_lock); intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); hba->ufs_stats.last_intr_status = intr_status; hba->ufs_stats.last_intr_ts = ktime_get(); /* * There could be max of hba->nutrs reqs in flight and in worst case * if the reqs get finished 1 by 1 after the interrupt status is * read, make sure we handle them by checking the interrupt status * again in a loop until we process all of the reqs before returning. */ do { enabled_intr_status = intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE); if (intr_status) ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); if (enabled_intr_status) retval |= ufshcd_sl_intr(hba, enabled_intr_status); intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); } while (intr_status && --retries); if (retval == IRQ_NONE) { dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x\n", __func__, intr_status); ufshcd_hex_dump("host regs: ", hba->mmio_base, UFSHCI_REG_SPACE_SIZE); } spin_unlock(hba->host->host_lock); return retval; } static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag) { int err = 0; u32 mask = 1 << tag; unsigned long flags; if (!test_bit(tag, &hba->outstanding_tasks)) goto out; spin_lock_irqsave(hba->host->host_lock, flags); ufshcd_writel(hba, ~(1 << tag), REG_UTP_TASK_REQ_LIST_CLEAR); spin_unlock_irqrestore(hba->host->host_lock, flags); /* poll for max. 1 sec to clear door bell register by h/w */ err = ufshcd_wait_for_register(hba, REG_UTP_TASK_REQ_DOOR_BELL, mask, 0, 1000, 1000, true); out: return err; } /** * ufshcd_issue_tm_cmd - issues task management commands to controller * @hba: per adapter instance * @lun_id: LUN ID to which TM command is sent * @task_id: task ID to which the TM command is applicable * @tm_function: task management function opcode * @tm_response: task management service response return value * * Returns non-zero value on error, zero on success. */ static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id, u8 tm_function, u8 *tm_response) { struct utp_task_req_desc *task_req_descp; struct utp_upiu_task_req *task_req_upiup; struct Scsi_Host *host; unsigned long flags; int free_slot; int err; int task_tag; host = hba->host; /* * Get free slot, sleep if slots are unavailable. * Even though we use wait_event() which sleeps indefinitely, * the maximum wait time is bounded by %TM_CMD_TIMEOUT. */ wait_event(hba->tm_tag_wq, ufshcd_get_tm_free_slot(hba, &free_slot)); hba->ufs_stats.clk_hold.ctx = TM_CMD_SEND; ufshcd_hold_all(hba); spin_lock_irqsave(host->host_lock, flags); task_req_descp = hba->utmrdl_base_addr; task_req_descp += free_slot; /* Configure task request descriptor */ task_req_descp->header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD); task_req_descp->header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS); /* Configure task request UPIU */ task_req_upiup = (struct utp_upiu_task_req *) task_req_descp->task_req_upiu; task_tag = hba->nutrs + free_slot; task_req_upiup->header.dword_0 = UPIU_HEADER_DWORD(UPIU_TRANSACTION_TASK_REQ, 0, lun_id, task_tag); task_req_upiup->header.dword_1 = UPIU_HEADER_DWORD(0, tm_function, 0, 0); /* * The host shall provide the same value for LUN field in the basic * header and for Input Parameter. */ task_req_upiup->input_param1 = cpu_to_be32(lun_id); task_req_upiup->input_param2 = cpu_to_be32(task_id); /* send command to the controller */ __set_bit(free_slot, &hba->outstanding_tasks); /* Make sure descriptors are ready before ringing the task doorbell */ wmb(); ufshcd_writel(hba, 1 << free_slot, REG_UTP_TASK_REQ_DOOR_BELL); /* Make sure that doorbell is committed immediately */ wmb(); spin_unlock_irqrestore(host->host_lock, flags); /* wait until the task management command is completed */ err = wait_event_timeout(hba->tm_wq, test_bit(free_slot, &hba->tm_condition), msecs_to_jiffies(TM_CMD_TIMEOUT)); if (!err) { dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n", __func__, tm_function); if (ufshcd_clear_tm_cmd(hba, free_slot)) dev_WARN(hba->dev, "%s: unable clear tm cmd (slot %d) after timeout\n", __func__, free_slot); err = -ETIMEDOUT; } else { err = ufshcd_task_req_compl(hba, free_slot, tm_response); } clear_bit(free_slot, &hba->tm_condition); ufshcd_put_tm_slot(hba, free_slot); wake_up(&hba->tm_tag_wq); hba->ufs_stats.clk_rel.ctx = TM_CMD_SEND; ufshcd_release_all(hba); return err; } /** * ufshcd_eh_device_reset_handler - device reset handler registered to * scsi layer. * @cmd: SCSI command pointer * * Returns SUCCESS/FAILED */ static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd) { struct Scsi_Host *host; struct ufs_hba *hba; unsigned int tag; u32 pos; int err; u8 resp = 0xF; struct ufshcd_lrb *lrbp; unsigned long flags; host = cmd->device->host; hba = shost_priv(host); tag = cmd->request->tag; ufshcd_print_cmd_log(hba); lrbp = &hba->lrb[tag]; err = ufshcd_issue_tm_cmd(hba, lrbp->lun, 0, UFS_LOGICAL_RESET, &resp); if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { if (!err) err = resp; goto out; } /* clear the commands that were pending for corresponding LUN */ for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) { if (hba->lrb[pos].lun == lrbp->lun) { err = ufshcd_clear_cmd(hba, pos); if (err) break; } } spin_lock_irqsave(host->host_lock, flags); ufshcd_transfer_req_compl(hba); spin_unlock_irqrestore(host->host_lock, flags); out: hba->req_abort_count = 0; if (!err) { err = SUCCESS; } else { dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); err = FAILED; } return err; } static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap) { struct ufshcd_lrb *lrbp; int tag; for_each_set_bit(tag, &bitmap, hba->nutrs) { lrbp = &hba->lrb[tag]; lrbp->req_abort_skip = true; } } /** * ufshcd_abort - abort a specific command * @cmd: SCSI command pointer * * Abort the pending command in device by sending UFS_ABORT_TASK task management * command, and in host controller by clearing the door-bell register. There can * be race between controller sending the command to the device while abort is * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is * really issued and then try to abort it. * * Returns SUCCESS/FAILED */ static int ufshcd_abort(struct scsi_cmnd *cmd) { struct Scsi_Host *host; struct ufs_hba *hba; unsigned long flags; unsigned int tag; int err = 0; int poll_cnt; u8 resp = 0xF; struct ufshcd_lrb *lrbp; u32 reg; host = cmd->device->host; hba = shost_priv(host); tag = cmd->request->tag; if (!ufshcd_valid_tag(hba, tag)) { dev_err(hba->dev, "%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p", __func__, tag, cmd, cmd->request); BUG(); } lrbp = &hba->lrb[tag]; ufshcd_update_error_stats(hba, UFS_ERR_TASK_ABORT); /* * Task abort to the device W-LUN is illegal. When this command * will fail, due to spec violation, scsi err handling next step * will be to send LU reset which, again, is a spec violation. * To avoid these unnecessary/illegal step we skip to the last error * handling stage: reset and restore. */ if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) return ufshcd_eh_host_reset_handler(cmd); ufshcd_hold_all(hba); reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); /* If command is already aborted/completed, return SUCCESS */ if (!(test_bit(tag, &hba->outstanding_reqs))) { dev_err(hba->dev, "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n", __func__, tag, hba->outstanding_reqs, reg); goto out; } if (!(reg & (1 << tag))) { dev_err(hba->dev, "%s: cmd was completed, but without a notifying intr, tag = %d", __func__, tag); } /* Print Transfer Request of aborted task */ dev_err(hba->dev, "%s: Device abort task at tag %d", __func__, tag); /* * Print detailed info about aborted request. * As more than one request might get aborted at the same time, * print full information only for the first aborted request in order * to reduce repeated printouts. For other aborted requests only print * basic details. */ scsi_print_command(cmd); if (!hba->req_abort_count) { ufshcd_print_fsm_state(hba); ufshcd_print_host_regs(hba); ufshcd_print_host_state(hba); ufshcd_print_pwr_info(hba); ufshcd_print_trs(hba, 1 << tag, true); } else { ufshcd_print_trs(hba, 1 << tag, false); } hba->req_abort_count++; /* Skip task abort in case previous aborts failed and report failure */ if (lrbp->req_abort_skip) { err = -EIO; goto out; } for (poll_cnt = 100; poll_cnt; poll_cnt--) { err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, UFS_QUERY_TASK, &resp); if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) { /* cmd pending in the device */ dev_err(hba->dev, "%s: cmd pending in the device. tag = %d", __func__, tag); break; } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) { /* * cmd not pending in the device, check if it is * in transition. */ dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.", __func__, tag); reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); if (reg & (1 << tag)) { /* sleep for max. 200us to stabilize */ usleep_range(100, 200); continue; } /* command completed already */ dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.", __func__, tag); goto out; } else { dev_err(hba->dev, "%s: no response from device. tag = %d, err %d", __func__, tag, err); if (!err) err = resp; /* service response error */ goto out; } } if (!poll_cnt) { err = -EBUSY; goto out; } err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, UFS_ABORT_TASK, &resp); if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { if (!err) { err = resp; /* service response error */ dev_err(hba->dev, "%s: issued. tag = %d, err %d", __func__, tag, err); } goto out; } err = ufshcd_clear_cmd(hba, tag); if (err) { dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d", __func__, tag, err); goto out; } scsi_dma_unmap(cmd); spin_lock_irqsave(host->host_lock, flags); ufshcd_outstanding_req_clear(hba, tag); hba->lrb[tag].cmd = NULL; spin_unlock_irqrestore(host->host_lock, flags); clear_bit_unlock(tag, &hba->lrb_in_use); wake_up(&hba->dev_cmd.tag_wq); out: if (!err) { err = SUCCESS; } else { dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); err = FAILED; } /* * This ufshcd_release_all() corresponds to the original scsi cmd that * got aborted here (as we won't get any IRQ for it). */ ufshcd_release_all(hba); return err; } /** * ufshcd_host_reset_and_restore - reset and restore host controller * @hba: per-adapter instance * * Note that host controller reset may issue DME_RESET to * local and remote (device) Uni-Pro stack and the attributes * are reset to default state. * * Returns zero on success, non-zero on failure */ static int ufshcd_host_reset_and_restore(struct ufs_hba *hba) { int err; unsigned long flags; /* Reset the host controller */ spin_lock_irqsave(hba->host->host_lock, flags); ufshcd_hba_stop(hba, false); spin_unlock_irqrestore(hba->host->host_lock, flags); /* scale up clocks to max frequency before full reinitialization */ ufshcd_set_clk_freq(hba, true); err = ufshcd_hba_enable(hba); if (err) goto out; /* Establish the link again and restore the device */ err = ufshcd_probe_hba(hba); if (!err && (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)) { err = -EIO; goto out; } if (!err) { err = ufshcd_vops_crypto_engine_reset(hba); if (err) { dev_err(hba->dev, "%s: failed to reset crypto engine %d\n", __func__, err); goto out; } } out: if (err) dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err); return err; } /** * ufshcd_reset_and_restore - reset and re-initialize host/device * @hba: per-adapter instance * * Reset and recover device, host and re-establish link. This * is helpful to recover the communication in fatal error conditions. * * Returns zero on success, non-zero on failure */ static int ufshcd_reset_and_restore(struct ufs_hba *hba) { int err = 0; unsigned long flags; int retries = MAX_HOST_RESET_RETRIES; do { err = ufshcd_vops_full_reset(hba); if (err) dev_warn(hba->dev, "%s: full reset returned %d\n", __func__, err); err = ufshcd_reset_device(hba); if (err) dev_warn(hba->dev, "%s: device reset failed. err %d\n", __func__, err); err = ufshcd_host_reset_and_restore(hba); } while (err && --retries); /* * There is no point proceeding even after failing * to recover after multiple retries. */ if (err) BUG(); /* * After reset the door-bell might be cleared, complete * outstanding requests in s/w here. */ spin_lock_irqsave(hba->host->host_lock, flags); ufshcd_transfer_req_compl(hba); ufshcd_tmc_handler(hba); spin_unlock_irqrestore(hba->host->host_lock, flags); return err; } /** * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer * @cmd - SCSI command pointer * * Returns SUCCESS/FAILED */ static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd) { int err = SUCCESS; unsigned long flags; struct ufs_hba *hba; hba = shost_priv(cmd->device->host); /* * Check if there is any race with fatal error handling. * If so, wait for it to complete. Even though fatal error * handling does reset and restore in some cases, don't assume * anything out of it. We are just avoiding race here. */ do { spin_lock_irqsave(hba->host->host_lock, flags); if (!(work_pending(&hba->eh_work) || hba->ufshcd_state == UFSHCD_STATE_RESET)) break; spin_unlock_irqrestore(hba->host->host_lock, flags); dev_err(hba->dev, "%s: reset in progress - 1\n", __func__); flush_work(&hba->eh_work); } while (1); /* * we don't know if previous reset had really reset the host controller * or not. So let's force reset here to be sure. */ hba->ufshcd_state = UFSHCD_STATE_ERROR; hba->force_host_reset = true; schedule_work(&hba->eh_work); /* wait for the reset work to finish */ do { if (!(work_pending(&hba->eh_work) || hba->ufshcd_state == UFSHCD_STATE_RESET)) break; spin_unlock_irqrestore(hba->host->host_lock, flags); dev_err(hba->dev, "%s: reset in progress - 2\n", __func__); flush_work(&hba->eh_work); spin_lock_irqsave(hba->host->host_lock, flags); } while (1); if (!((hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL) && ufshcd_is_link_active(hba))) { err = FAILED; hba->ufshcd_state = UFSHCD_STATE_ERROR; } spin_unlock_irqrestore(hba->host->host_lock, flags); return err; } /** * ufshcd_get_max_icc_level - calculate the ICC level * @sup_curr_uA: max. current supported by the regulator * @start_scan: row at the desc table to start scan from * @buff: power descriptor buffer * * Returns calculated max ICC level for specific regulator */ static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, char *buff) { int i; int curr_uA; u16 data; u16 unit; for (i = start_scan; i >= 0; i--) { data = be16_to_cpu(*((u16 *)(buff + 2*i))); unit = (data & ATTR_ICC_LVL_UNIT_MASK) >> ATTR_ICC_LVL_UNIT_OFFSET; curr_uA = data & ATTR_ICC_LVL_VALUE_MASK; switch (unit) { case UFSHCD_NANO_AMP: curr_uA = curr_uA / 1000; break; case UFSHCD_MILI_AMP: curr_uA = curr_uA * 1000; break; case UFSHCD_AMP: curr_uA = curr_uA * 1000 * 1000; break; case UFSHCD_MICRO_AMP: default: break; } if (sup_curr_uA >= curr_uA) break; } if (i < 0) { i = 0; pr_err("%s: Couldn't find valid icc_level = %d", __func__, i); } return (u32)i; } /** * ufshcd_calc_icc_level - calculate the max ICC level * In case regulators are not initialized we'll return 0 * @hba: per-adapter instance * @desc_buf: power descriptor buffer to extract ICC levels from. * @len: length of desc_buff * * Returns calculated ICC level */ static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba, u8 *desc_buf, int len) { u32 icc_level = 0; if (!hba->vreg_info.vcc || !hba->vreg_info.vccq || !hba->vreg_info.vccq2) { dev_err(hba->dev, "%s: Regulator capability was not set, actvIccLevel=%d", __func__, icc_level); goto out; } if (hba->vreg_info.vcc) icc_level = ufshcd_get_max_icc_level( hba->vreg_info.vcc->max_uA, POWER_DESC_MAX_ACTV_ICC_LVLS - 1, &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]); if (hba->vreg_info.vccq) icc_level = ufshcd_get_max_icc_level( hba->vreg_info.vccq->max_uA, icc_level, &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]); if (hba->vreg_info.vccq2) icc_level = ufshcd_get_max_icc_level( hba->vreg_info.vccq2->max_uA, icc_level, &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]); out: return icc_level; } static void ufshcd_init_icc_levels(struct ufs_hba *hba) { int ret; int buff_len = QUERY_DESC_POWER_MAX_SIZE; u8 desc_buf[QUERY_DESC_POWER_MAX_SIZE]; ret = ufshcd_read_power_desc(hba, desc_buf, buff_len); if (ret) { dev_err(hba->dev, "%s: Failed reading power descriptor.len = %d ret = %d", __func__, buff_len, ret); return; } hba->init_prefetch_data.icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf, buff_len); dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, hba->init_prefetch_data.icc_level); ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &hba->init_prefetch_data.icc_level); if (ret) dev_err(hba->dev, "%s: Failed configuring bActiveICCLevel = %d ret = %d", __func__, hba->init_prefetch_data.icc_level , ret); } /** * ufshcd_scsi_add_wlus - Adds required W-LUs * @hba: per-adapter instance * * UFS device specification requires the UFS devices to support 4 well known * logical units: * "REPORT_LUNS" (address: 01h) * "UFS Device" (address: 50h) * "RPMB" (address: 44h) * "BOOT" (address: 30h) * UFS device's power management needs to be controlled by "POWER CONDITION" * field of SSU (START STOP UNIT) command. But this "power condition" field * will take effect only when its sent to "UFS device" well known logical unit * hence we require the scsi_device instance to represent this logical unit in * order for the UFS host driver to send the SSU command for power management. * We also require the scsi_device instance for "RPMB" (Replay Protected Memory * Block) LU so user space process can control this LU. User space may also * want to have access to BOOT LU. * This function adds scsi device instances for each of all well known LUs * (except "REPORT LUNS" LU). * * Returns zero on success (all required W-LUs are added successfully), * non-zero error value on failure (if failed to add any of the required W-LU). */ static int ufshcd_scsi_add_wlus(struct ufs_hba *hba) { int ret = 0; struct scsi_device *sdev_rpmb; struct scsi_device *sdev_boot; hba->sdev_ufs_device = __scsi_add_device(hba->host, 0, 0, ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL); if (IS_ERR(hba->sdev_ufs_device)) { ret = PTR_ERR(hba->sdev_ufs_device); hba->sdev_ufs_device = NULL; goto out; } scsi_device_put(hba->sdev_ufs_device); sdev_boot = __scsi_add_device(hba->host, 0, 0, ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL); if (IS_ERR(sdev_boot)) { ret = PTR_ERR(sdev_boot); goto remove_sdev_ufs_device; } scsi_device_put(sdev_boot); sdev_rpmb = __scsi_add_device(hba->host, 0, 0, ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL); if (IS_ERR(sdev_rpmb)) { ret = PTR_ERR(sdev_rpmb); goto remove_sdev_boot; } scsi_device_put(sdev_rpmb); goto out; remove_sdev_boot: scsi_remove_device(sdev_boot); remove_sdev_ufs_device: scsi_remove_device(hba->sdev_ufs_device); out: return ret; } /** * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro * @hba: per-adapter instance * * PA_TActivate parameter can be tuned manually if UniPro version is less than * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce * the hibern8 exit latency. * * Returns zero on success, non-zero error value on failure. */ static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba) { int ret = 0; u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate; if (!ufshcd_is_unipro_pa_params_tuning_req(hba)) return 0; ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB_SEL( RX_MIN_ACTIVATETIME_CAPABILITY, UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), &peer_rx_min_activatetime); if (ret) goto out; /* make sure proper unit conversion is applied */ tuned_pa_tactivate = ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US) / PA_TACTIVATE_TIME_UNIT_US); ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), tuned_pa_tactivate); out: return ret; } /** * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro * @hba: per-adapter instance * * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY. * This optimal value can help reduce the hibern8 exit latency. * * Returns zero on success, non-zero error value on failure. */ static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba) { int ret = 0; u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0; u32 max_hibern8_time, tuned_pa_hibern8time; ret = ufshcd_dme_get(hba, UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY, UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), &local_tx_hibern8_time_cap); if (ret) goto out; ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY, UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), &peer_rx_hibern8_time_cap); if (ret) goto out; max_hibern8_time = max(local_tx_hibern8_time_cap, peer_rx_hibern8_time_cap); /* make sure proper unit conversion is applied */ tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US) / PA_HIBERN8_TIME_UNIT_US); ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), tuned_pa_hibern8time); out: return ret; } /** * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is * less than device PA_TACTIVATE time. * @hba: per-adapter instance * * Some UFS devices require host PA_TACTIVATE to be lower than device * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk * for such devices. * * Returns zero on success, non-zero error value on failure. */ static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba) { int ret = 0; u32 granularity, peer_granularity; u32 pa_tactivate, peer_pa_tactivate; u32 pa_tactivate_us, peer_pa_tactivate_us; u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100}; ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY), &granularity); if (ret) goto out; ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY), &peer_granularity); if (ret) goto out; if ((granularity < PA_GRANULARITY_MIN_VAL) || (granularity > PA_GRANULARITY_MAX_VAL)) { dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d", __func__, granularity); return -EINVAL; } if ((peer_granularity < PA_GRANULARITY_MIN_VAL) || (peer_granularity > PA_GRANULARITY_MAX_VAL)) { dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d", __func__, peer_granularity); return -EINVAL; } ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate); if (ret) goto out; ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &peer_pa_tactivate); if (ret) goto out; pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1]; peer_pa_tactivate_us = peer_pa_tactivate * gran_to_us_table[peer_granularity - 1]; if (pa_tactivate_us > peer_pa_tactivate_us) { u32 new_peer_pa_tactivate; new_peer_pa_tactivate = pa_tactivate_us / gran_to_us_table[peer_granularity - 1]; new_peer_pa_tactivate++; ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE), new_peer_pa_tactivate); } out: return ret; } static void ufshcd_tune_unipro_params(struct ufs_hba *hba) { if (ufshcd_is_unipro_pa_params_tuning_req(hba)) { ufshcd_tune_pa_tactivate(hba); ufshcd_tune_pa_hibern8time(hba); } if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE) /* set 1ms timeout for PA_TACTIVATE */ ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10); if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE) ufshcd_quirk_tune_host_pa_tactivate(hba); ufshcd_vops_apply_dev_quirks(hba); } static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba) { int err_reg_hist_size = sizeof(struct ufs_uic_err_reg_hist); hba->ufs_stats.hibern8_exit_cnt = 0; hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); memset(&hba->ufs_stats.pa_err, 0, err_reg_hist_size); memset(&hba->ufs_stats.dl_err, 0, err_reg_hist_size); memset(&hba->ufs_stats.nl_err, 0, err_reg_hist_size); memset(&hba->ufs_stats.tl_err, 0, err_reg_hist_size); memset(&hba->ufs_stats.dme_err, 0, err_reg_hist_size); hba->req_abort_count = 0; } static void ufshcd_apply_pm_quirks(struct ufs_hba *hba) { if (hba->dev_quirks & UFS_DEVICE_QUIRK_NO_LINK_OFF) { if (ufs_get_pm_lvl_to_link_pwr_state(hba->rpm_lvl) == UIC_LINK_OFF_STATE) { hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE); dev_info(hba->dev, "UFS_DEVICE_QUIRK_NO_LINK_OFF enabled, changed rpm_lvl to %d\n", hba->rpm_lvl); } if (ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl) == UIC_LINK_OFF_STATE) { hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE); dev_info(hba->dev, "UFS_DEVICE_QUIRK_NO_LINK_OFF enabled, changed spm_lvl to %d\n", hba->spm_lvl); } } } /** * ufshcd_probe_hba - probe hba to detect device and initialize * @hba: per-adapter instance * * Execute link-startup and verify device initialization */ static int ufshcd_probe_hba(struct ufs_hba *hba) { int ret; ktime_t start = ktime_get(); ret = ufshcd_link_startup(hba); if (ret) goto out; /* Debug counters initialization */ ufshcd_clear_dbg_ufs_stats(hba); /* set the default level for urgent bkops */ hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT; hba->is_urgent_bkops_lvl_checked = false; /* UniPro link is active now */ ufshcd_set_link_active(hba); ret = ufshcd_verify_dev_init(hba); if (ret) goto out; ret = ufshcd_complete_dev_init(hba); if (ret) goto out; ufs_advertise_fixup_device(hba); ufshcd_tune_unipro_params(hba); ufshcd_apply_pm_quirks(hba); ret = ufshcd_set_vccq_rail_unused(hba, (hba->dev_quirks & UFS_DEVICE_NO_VCCQ) ? true : false); if (ret) goto out; /* UFS device is also active now */ ufshcd_set_ufs_dev_active(hba); ufshcd_force_reset_auto_bkops(hba); hba->wlun_dev_clr_ua = true; if (ufshcd_get_max_pwr_mode(hba)) { dev_err(hba->dev, "%s: Failed getting max supported power mode\n", __func__); } else { ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info); if (ret) { dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n", __func__, ret); goto out; } } /* set the state as operational after switching to desired gear */ hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; /* * If we are in error handling context or in power management callbacks * context, no need to scan the host */ if (!ufshcd_eh_in_progress(hba) && !hba->pm_op_in_progress) { bool flag; /* clear any previous UFS device information */ memset(&hba->dev_info, 0, sizeof(hba->dev_info)); if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG, QUERY_FLAG_IDN_PWR_ON_WPE, &flag)) hba->dev_info.f_power_on_wp_en = flag; if (!hba->is_init_prefetch) ufshcd_init_icc_levels(hba); /* Add required well known logical units to scsi mid layer */ if (ufshcd_scsi_add_wlus(hba)) goto out; /* Initialize devfreq after UFS device is detected */ if (ufshcd_is_clkscaling_supported(hba)) { memcpy(&hba->clk_scaling.saved_pwr_info.info, &hba->pwr_info, sizeof(struct ufs_pa_layer_attr)); hba->clk_scaling.saved_pwr_info.is_valid = true; hba->clk_scaling.is_scaled_up = true; if (!hba->devfreq) { hba->devfreq = devfreq_add_device(hba->dev, &ufs_devfreq_profile, "simple_ondemand", gov_data); if (IS_ERR(hba->devfreq)) { ret = PTR_ERR(hba->devfreq); dev_err(hba->dev, "Unable to register with devfreq %d\n", ret); goto out; } } hba->clk_scaling.is_allowed = true; } scsi_scan_host(hba->host); pm_runtime_put_sync(hba->dev); } if (!hba->is_init_prefetch) hba->is_init_prefetch = true; /* * Enable auto hibern8 if supported, after full host and * device initialization. */ if (ufshcd_is_auto_hibern8_supported(hba)) ufshcd_set_auto_hibern8_timer(hba, hba->hibern8_on_idle.delay_ms); out: /* * If we failed to initialize the device or the device is not * present, turn off the power/clocks etc. */ if (ret && !ufshcd_eh_in_progress(hba) && !hba->pm_op_in_progress) { pm_runtime_put_sync(hba->dev); ufshcd_hba_exit(hba); } trace_ufshcd_init(dev_name(hba->dev), ret, ktime_to_us(ktime_sub(ktime_get(), start)), hba->curr_dev_pwr_mode, hba->uic_link_state); return ret; } /** * ufshcd_async_scan - asynchronous execution for probing hba * @data: data pointer to pass to this function * @cookie: cookie data */ static void ufshcd_async_scan(void *data, async_cookie_t cookie) { struct ufs_hba *hba = (struct ufs_hba *)data; /* * Don't allow clock gating and hibern8 enter for faster device * detection. */ ufshcd_hold_all(hba); ufshcd_probe_hba(hba); ufshcd_release_all(hba); } /** * ufshcd_query_ioctl - perform user read queries * @hba: per-adapter instance * @lun: used for lun specific queries * @buffer: user space buffer for reading and submitting query data and params * @return: 0 for success negative error code otherwise * * Expected/Submitted buffer structure is struct ufs_ioctl_query_data. * It will read the opcode, idn and buf_length parameters, and, put the * response in the buffer field while updating the used size in buf_length. */ static int ufshcd_query_ioctl(struct ufs_hba *hba, u8 lun, void __user *buffer) { struct ufs_ioctl_query_data *ioctl_data; int err = 0; int length = 0; void *data_ptr; bool flag; u32 att; u8 index; u8 *desc = NULL; ioctl_data = kzalloc(sizeof(struct ufs_ioctl_query_data), GFP_KERNEL); if (!ioctl_data) { dev_err(hba->dev, "%s: Failed allocating %zu bytes\n", __func__, sizeof(struct ufs_ioctl_query_data)); err = -ENOMEM; goto out; } /* extract params from user buffer */ err = copy_from_user(ioctl_data, buffer, sizeof(struct ufs_ioctl_query_data)); if (err) { dev_err(hba->dev, "%s: Failed copying buffer from user, err %d\n", __func__, err); goto out_release_mem; } /* verify legal parameters & send query */ switch (ioctl_data->opcode) { case UPIU_QUERY_OPCODE_READ_DESC: switch (ioctl_data->idn) { case QUERY_DESC_IDN_DEVICE: case QUERY_DESC_IDN_CONFIGURAION: case QUERY_DESC_IDN_INTERCONNECT: case QUERY_DESC_IDN_GEOMETRY: case QUERY_DESC_IDN_POWER: index = 0; break; case QUERY_DESC_IDN_UNIT: if (!ufs_is_valid_unit_desc_lun(lun)) { dev_err(hba->dev, "%s: No unit descriptor for lun 0x%x\n", __func__, lun); err = -EINVAL; goto out_release_mem; } index = lun; break; default: goto out_einval; } length = min_t(int, QUERY_DESC_MAX_SIZE, ioctl_data->buf_size); desc = kzalloc(length, GFP_KERNEL); if (!desc) { dev_err(hba->dev, "%s: Failed allocating %d bytes\n", __func__, length); err = -ENOMEM; goto out_release_mem; } err = ufshcd_query_descriptor(hba, ioctl_data->opcode, ioctl_data->idn, index, 0, desc, &length); break; case UPIU_QUERY_OPCODE_READ_ATTR: switch (ioctl_data->idn) { case QUERY_ATTR_IDN_BOOT_LU_EN: case QUERY_ATTR_IDN_POWER_MODE: case QUERY_ATTR_IDN_ACTIVE_ICC_LVL: case QUERY_ATTR_IDN_OOO_DATA_EN: case QUERY_ATTR_IDN_BKOPS_STATUS: case QUERY_ATTR_IDN_PURGE_STATUS: case QUERY_ATTR_IDN_MAX_DATA_IN: case QUERY_ATTR_IDN_MAX_DATA_OUT: case QUERY_ATTR_IDN_REF_CLK_FREQ: case QUERY_ATTR_IDN_CONF_DESC_LOCK: case QUERY_ATTR_IDN_MAX_NUM_OF_RTT: case QUERY_ATTR_IDN_EE_CONTROL: case QUERY_ATTR_IDN_EE_STATUS: case QUERY_ATTR_IDN_SECONDS_PASSED: index = 0; break; case QUERY_ATTR_IDN_DYN_CAP_NEEDED: case QUERY_ATTR_IDN_CORR_PRG_BLK_NUM: index = lun; break; default: goto out_einval; } err = ufshcd_query_attr(hba, ioctl_data->opcode, ioctl_data->idn, index, 0, &att); break; case UPIU_QUERY_OPCODE_WRITE_ATTR: err = copy_from_user(&att, buffer + sizeof(struct ufs_ioctl_query_data), sizeof(u32)); if (err) { dev_err(hba->dev, "%s: Failed copying buffer from user, err %d\n", __func__, err); goto out_release_mem; } switch (ioctl_data->idn) { case QUERY_ATTR_IDN_BOOT_LU_EN: index = 0; if (att > QUERY_ATTR_IDN_BOOT_LU_EN_MAX) { dev_err(hba->dev, "%s: Illegal ufs query ioctl data, opcode 0x%x, idn 0x%x, att 0x%x\n", __func__, ioctl_data->opcode, (unsigned int)ioctl_data->idn, att); err = -EINVAL; goto out_release_mem; } break; default: goto out_einval; } err = ufshcd_query_attr(hba, ioctl_data->opcode, ioctl_data->idn, index, 0, &att); break; case UPIU_QUERY_OPCODE_READ_FLAG: switch (ioctl_data->idn) { case QUERY_FLAG_IDN_FDEVICEINIT: case QUERY_FLAG_IDN_PERMANENT_WPE: case QUERY_FLAG_IDN_PWR_ON_WPE: case QUERY_FLAG_IDN_BKOPS_EN: case QUERY_FLAG_IDN_PURGE_ENABLE: case QUERY_FLAG_IDN_FPHYRESOURCEREMOVAL: case QUERY_FLAG_IDN_BUSY_RTC: break; default: goto out_einval; } err = ufshcd_query_flag_retry(hba, ioctl_data->opcode, ioctl_data->idn, &flag); break; default: goto out_einval; } if (err) { dev_err(hba->dev, "%s: Query for idn %d failed\n", __func__, ioctl_data->idn); goto out_release_mem; } /* * copy response data * As we might end up reading less data then what is specified in * "ioctl_data->buf_size". So we are updating "ioctl_data-> * buf_size" to what exactly we have read. */ switch (ioctl_data->opcode) { case UPIU_QUERY_OPCODE_READ_DESC: ioctl_data->buf_size = min_t(int, ioctl_data->buf_size, length); data_ptr = desc; break; case UPIU_QUERY_OPCODE_READ_ATTR: ioctl_data->buf_size = sizeof(u32); data_ptr = &att; break; case UPIU_QUERY_OPCODE_READ_FLAG: ioctl_data->buf_size = 1; data_ptr = &flag; break; case UPIU_QUERY_OPCODE_WRITE_ATTR: goto out_release_mem; default: goto out_einval; } /* copy to user */ err = copy_to_user(buffer, ioctl_data, sizeof(struct ufs_ioctl_query_data)); if (err) dev_err(hba->dev, "%s: Failed copying back to user.\n", __func__); err = copy_to_user(buffer + sizeof(struct ufs_ioctl_query_data), data_ptr, ioctl_data->buf_size); if (err) dev_err(hba->dev, "%s: err %d copying back to user.\n", __func__, err); goto out_release_mem; out_einval: dev_err(hba->dev, "%s: illegal ufs query ioctl data, opcode 0x%x, idn 0x%x\n", __func__, ioctl_data->opcode, (unsigned int)ioctl_data->idn); err = -EINVAL; out_release_mem: kfree(ioctl_data); kfree(desc); out: return err; } /** * ufshcd_ioctl - ufs ioctl callback registered in scsi_host * @dev: scsi device required for per LUN queries * @cmd: command opcode * @buffer: user space buffer for transferring data * * Supported commands: * UFS_IOCTL_QUERY */ static int ufshcd_ioctl(struct scsi_device *dev, int cmd, void __user *buffer) { struct ufs_hba *hba = shost_priv(dev->host); int err = 0; BUG_ON(!hba); if (!buffer) { dev_err(hba->dev, "%s: User buffer is NULL!\n", __func__); return -EINVAL; } switch (cmd) { case UFS_IOCTL_QUERY: pm_runtime_get_sync(hba->dev); err = ufshcd_query_ioctl(hba, ufshcd_scsi_to_upiu_lun(dev->lun), buffer); pm_runtime_put_sync(hba->dev); break; default: err = -ENOIOCTLCMD; dev_dbg(hba->dev, "%s: Unsupported ioctl cmd %d\n", __func__, cmd); break; } return err; } static enum blk_eh_timer_return ufshcd_eh_timed_out(struct scsi_cmnd *scmd) { unsigned long flags; struct Scsi_Host *host; struct ufs_hba *hba; int index; bool found = false; if (!scmd || !scmd->device || !scmd->device->host) return BLK_EH_NOT_HANDLED; host = scmd->device->host; hba = shost_priv(host); if (!hba) return BLK_EH_NOT_HANDLED; spin_lock_irqsave(host->host_lock, flags); for_each_set_bit(index, &hba->outstanding_reqs, hba->nutrs) { if (hba->lrb[index].cmd == scmd) { found = true; break; } } spin_unlock_irqrestore(host->host_lock, flags); /* * Bypass SCSI error handling and reset the block layer timer if this * SCSI command was not actually dispatched to UFS driver, otherwise * let SCSI layer handle the error as usual. */ return found ? BLK_EH_NOT_HANDLED : BLK_EH_RESET_TIMER; } static struct scsi_host_template ufshcd_driver_template = { .module = THIS_MODULE, .name = UFSHCD, .proc_name = UFSHCD, .queuecommand = ufshcd_queuecommand, .slave_alloc = ufshcd_slave_alloc, .slave_configure = ufshcd_slave_configure, .slave_destroy = ufshcd_slave_destroy, .change_queue_depth = ufshcd_change_queue_depth, .eh_abort_handler = ufshcd_abort, .eh_device_reset_handler = ufshcd_eh_device_reset_handler, .eh_host_reset_handler = ufshcd_eh_host_reset_handler, .eh_timed_out = ufshcd_eh_timed_out, .ioctl = ufshcd_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ufshcd_ioctl, #endif .this_id = -1, .sg_tablesize = SG_ALL, .cmd_per_lun = UFSHCD_CMD_PER_LUN, .can_queue = UFSHCD_CAN_QUEUE, .max_host_blocked = 1, .track_queue_depth = 1, }; static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg, int ua) { int ret; if (!vreg) return 0; ret = regulator_set_load(vreg->reg, ua); if (ret < 0) { dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n", __func__, vreg->name, ua, ret); } return ret; } static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba, struct ufs_vreg *vreg) { if (!vreg) return 0; else if (vreg->unused) return 0; else return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA); } static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, struct ufs_vreg *vreg) { if (!vreg) return 0; else if (vreg->unused) return 0; else return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA); } static int ufshcd_config_vreg(struct device *dev, struct ufs_vreg *vreg, bool on) { int ret = 0; struct regulator *reg = vreg->reg; const char *name = vreg->name; int min_uV, uA_load; BUG_ON(!vreg); if (regulator_count_voltages(reg) > 0) { min_uV = on ? vreg->min_uV : 0; ret = regulator_set_voltage(reg, min_uV, vreg->max_uV); if (ret) { dev_err(dev, "%s: %s set voltage failed, err=%d\n", __func__, name, ret); goto out; } uA_load = on ? vreg->max_uA : 0; ret = ufshcd_config_vreg_load(dev, vreg, uA_load); if (ret) goto out; } out: return ret; } static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg) { int ret = 0; if (!vreg) goto out; else if (vreg->enabled || vreg->unused) goto out; ret = ufshcd_config_vreg(dev, vreg, true); if (!ret) ret = regulator_enable(vreg->reg); if (!ret) vreg->enabled = true; else dev_err(dev, "%s: %s enable failed, err=%d\n", __func__, vreg->name, ret); out: return ret; } static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg) { int ret = 0; if (!vreg) goto out; else if (!vreg->enabled || vreg->unused) goto out; ret = regulator_disable(vreg->reg); if (!ret) { /* ignore errors on applying disable config */ ufshcd_config_vreg(dev, vreg, false); vreg->enabled = false; } else { dev_err(dev, "%s: %s disable failed, err=%d\n", __func__, vreg->name, ret); } out: return ret; } static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on) { int ret = 0; struct device *dev = hba->dev; struct ufs_vreg_info *info = &hba->vreg_info; if (!info) goto out; ret = ufshcd_toggle_vreg(dev, info->vcc, on); if (ret) goto out; ret = ufshcd_toggle_vreg(dev, info->vccq, on); if (ret) goto out; ret = ufshcd_toggle_vreg(dev, info->vccq2, on); if (ret) goto out; out: if (ret) { ufshcd_toggle_vreg(dev, info->vccq2, false); ufshcd_toggle_vreg(dev, info->vccq, false); ufshcd_toggle_vreg(dev, info->vcc, false); } return ret; } static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on) { struct ufs_vreg_info *info = &hba->vreg_info; int ret = 0; if (info->vdd_hba) { ret = ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on); if (!ret) ufshcd_vops_update_sec_cfg(hba, on); } return ret; } static int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg) { int ret = 0; if (!vreg) goto out; vreg->reg = devm_regulator_get(dev, vreg->name); if (IS_ERR(vreg->reg)) { ret = PTR_ERR(vreg->reg); dev_err(dev, "%s: %s get failed, err=%d\n", __func__, vreg->name, ret); } out: return ret; } static int ufshcd_init_vreg(struct ufs_hba *hba) { int ret = 0; struct device *dev = hba->dev; struct ufs_vreg_info *info = &hba->vreg_info; if (!info) goto out; ret = ufshcd_get_vreg(dev, info->vcc); if (ret) goto out; ret = ufshcd_get_vreg(dev, info->vccq); if (ret) goto out; ret = ufshcd_get_vreg(dev, info->vccq2); out: return ret; } static int ufshcd_init_hba_vreg(struct ufs_hba *hba) { struct ufs_vreg_info *info = &hba->vreg_info; if (info) return ufshcd_get_vreg(hba->dev, info->vdd_hba); return 0; } static int ufshcd_set_vccq_rail_unused(struct ufs_hba *hba, bool unused) { int ret = 0; struct ufs_vreg_info *info = &hba->vreg_info; if (!info) goto out; else if (!info->vccq) goto out; if (unused) { /* shut off the rail here */ ret = ufshcd_toggle_vreg(hba->dev, info->vccq, false); /* * Mark this rail as no longer used, so it doesn't get enabled * later by mistake */ if (!ret) info->vccq->unused = true; } else { /* * rail should have been already enabled hence just make sure * that unused flag is cleared. */ info->vccq->unused = false; } out: return ret; } static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on, bool skip_ref_clk, bool is_gating_context) { int ret = 0; struct ufs_clk_info *clki; struct list_head *head = &hba->clk_list_head; unsigned long flags; ktime_t start = ktime_get(); bool clk_state_changed = false; if (!head || list_empty(head)) goto out; /* call vendor specific bus vote before enabling the clocks */ if (on) { ret = ufshcd_vops_set_bus_vote(hba, on); if (ret) return ret; } /* * vendor specific setup_clocks ops may depend on clocks managed by * this standard driver hence call the vendor specific setup_clocks * before disabling the clocks managed here. */ if (!on) { ret = ufshcd_vops_setup_clocks(hba, on, is_gating_context); if (ret) return ret; } list_for_each_entry(clki, head, list) { if (!IS_ERR_OR_NULL(clki->clk)) { if (skip_ref_clk && !strcmp(clki->name, "ref_clk")) continue; clk_state_changed = on ^ clki->enabled; if (on && !clki->enabled) { ret = clk_prepare_enable(clki->clk); if (ret) { dev_err(hba->dev, "%s: %s prepare enable failed, %d\n", __func__, clki->name, ret); goto out; } } else if (!on && clki->enabled) { clk_disable_unprepare(clki->clk); } clki->enabled = on; dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__, clki->name, on ? "en" : "dis"); } } /* * vendor specific setup_clocks ops may depend on clocks managed by * this standard driver hence call the vendor specific setup_clocks * after enabling the clocks managed here. */ if (on) { ret = ufshcd_vops_setup_clocks(hba, on, is_gating_context); if (ret) goto out; } /* * call vendor specific bus vote to remove the vote after * disabling the clocks. */ if (!on) ret = ufshcd_vops_set_bus_vote(hba, on); out: if (ret) { if (on) /* Can't do much if this fails */ (void) ufshcd_vops_set_bus_vote(hba, false); list_for_each_entry(clki, head, list) { if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled) clk_disable_unprepare(clki->clk); } } else if (!ret && on) { spin_lock_irqsave(hba->host->host_lock, flags); hba->clk_gating.state = CLKS_ON; trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); spin_unlock_irqrestore(hba->host->host_lock, flags); /* restore the secure configuration as clocks are enabled */ ufshcd_vops_update_sec_cfg(hba, true); } if (clk_state_changed) trace_ufshcd_profile_clk_gating(dev_name(hba->dev), (on ? "on" : "off"), ktime_to_us(ktime_sub(ktime_get(), start)), ret); return ret; } static int ufshcd_enable_clocks(struct ufs_hba *hba) { return ufshcd_setup_clocks(hba, true, false, false); } static int ufshcd_disable_clocks(struct ufs_hba *hba, bool is_gating_context) { return ufshcd_setup_clocks(hba, false, false, is_gating_context); } static int ufshcd_disable_clocks_skip_ref_clk(struct ufs_hba *hba, bool is_gating_context) { return ufshcd_setup_clocks(hba, false, true, is_gating_context); } static int ufshcd_init_clocks(struct ufs_hba *hba) { int ret = 0; struct ufs_clk_info *clki; struct device *dev = hba->dev; struct list_head *head = &hba->clk_list_head; if (!head || list_empty(head)) goto out; list_for_each_entry(clki, head, list) { if (!clki->name) continue; clki->clk = devm_clk_get(dev, clki->name); if (IS_ERR(clki->clk)) { ret = PTR_ERR(clki->clk); dev_err(dev, "%s: %s clk get failed, %d\n", __func__, clki->name, ret); goto out; } if (clki->max_freq) { ret = clk_set_rate(clki->clk, clki->max_freq); if (ret) { dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", __func__, clki->name, clki->max_freq, ret); goto out; } clki->curr_freq = clki->max_freq; } dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__, clki->name, clk_get_rate(clki->clk)); } out: return ret; } static int ufshcd_variant_hba_init(struct ufs_hba *hba) { int err = 0; if (!hba->var || !hba->var->vops) goto out; err = ufshcd_vops_init(hba); if (err) goto out; err = ufshcd_vops_setup_regulators(hba, true); if (err) goto out_exit; goto out; out_exit: ufshcd_vops_exit(hba); out: if (err) dev_err(hba->dev, "%s: variant %s init failed err %d\n", __func__, ufshcd_get_var_name(hba), err); return err; } static void ufshcd_variant_hba_exit(struct ufs_hba *hba) { if (!hba->var || !hba->var->vops) return; ufshcd_vops_setup_regulators(hba, false); ufshcd_vops_exit(hba); } static int ufshcd_hba_init(struct ufs_hba *hba) { int err; /* * Handle host controller power separately from the UFS device power * rails as it will help controlling the UFS host controller power * collapse easily which is different than UFS device power collapse. * Also, enable the host controller power before we go ahead with rest * of the initialization here. */ err = ufshcd_init_hba_vreg(hba); if (err) goto out; err = ufshcd_setup_hba_vreg(hba, true); if (err) goto out; err = ufshcd_init_clocks(hba); if (err) goto out_disable_hba_vreg; err = ufshcd_enable_clocks(hba); if (err) goto out_disable_hba_vreg; err = ufshcd_init_vreg(hba); if (err) goto out_disable_clks; err = ufshcd_setup_vreg(hba, true); if (err) goto out_disable_clks; err = ufshcd_variant_hba_init(hba); if (err) goto out_disable_vreg; hba->is_powered = true; goto out; out_disable_vreg: ufshcd_setup_vreg(hba, false); out_disable_clks: ufshcd_disable_clocks(hba, false); out_disable_hba_vreg: ufshcd_setup_hba_vreg(hba, false); out: return err; } static void ufshcd_hba_exit(struct ufs_hba *hba) { if (hba->is_powered) { ufshcd_variant_hba_exit(hba); ufshcd_setup_vreg(hba, false); if (ufshcd_is_clkscaling_supported(hba)) { if (hba->devfreq) ufshcd_suspend_clkscaling(hba); destroy_workqueue(hba->clk_scaling.workq); } ufshcd_disable_clocks(hba, false); ufshcd_setup_hba_vreg(hba, false); hba->is_powered = false; } } static int ufshcd_send_request_sense(struct ufs_hba *hba, struct scsi_device *sdp) { unsigned char cmd[6] = {REQUEST_SENSE, 0, 0, 0, UFSHCD_REQ_SENSE_SIZE, 0}; char *buffer; int ret; buffer = kzalloc(UFSHCD_REQ_SENSE_SIZE, GFP_KERNEL); if (!buffer) { ret = -ENOMEM; goto out; } ret = scsi_execute_req_flags(sdp, cmd, DMA_FROM_DEVICE, buffer, UFSHCD_REQ_SENSE_SIZE, NULL, msecs_to_jiffies(1000), 3, NULL, REQ_PM); if (ret) pr_err("%s: failed with err %d\n", __func__, ret); kfree(buffer); out: return ret; } /** * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device * power mode * @hba: per adapter instance * @pwr_mode: device power mode to set * * Returns 0 if requested power mode is set successfully * Returns non-zero if failed to set the requested power mode */ static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba, enum ufs_dev_pwr_mode pwr_mode) { unsigned char cmd[6] = { START_STOP }; struct scsi_sense_hdr sshdr; struct scsi_device *sdp; unsigned long flags; int ret; spin_lock_irqsave(hba->host->host_lock, flags); sdp = hba->sdev_ufs_device; if (sdp) { ret = scsi_device_get(sdp); if (!ret && !scsi_device_online(sdp)) { ret = -ENODEV; scsi_device_put(sdp); } } else { ret = -ENODEV; } spin_unlock_irqrestore(hba->host->host_lock, flags); if (ret) return ret; /* * If scsi commands fail, the scsi mid-layer schedules scsi error- * handling, which would wait for host to be resumed. Since we know * we are functional while we are here, skip host resume in error * handling context. */ hba->host->eh_noresume = 1; if (hba->wlun_dev_clr_ua) { ret = ufshcd_send_request_sense(hba, sdp); if (ret) goto out; /* Unit attention condition is cleared now */ hba->wlun_dev_clr_ua = false; } cmd[4] = pwr_mode << 4; /* * Current function would be generally called from the power management * callbacks hence set the REQ_PM flag so that it doesn't resume the * already suspended childs. */ ret = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr, START_STOP_TIMEOUT, 0, NULL, REQ_PM); if (ret) { sdev_printk(KERN_WARNING, sdp, "START_STOP failed for power mode: %d, result %x\n", pwr_mode, ret); if (driver_byte(ret) & DRIVER_SENSE) scsi_print_sense_hdr(sdp, NULL, &sshdr); } if (!ret) hba->curr_dev_pwr_mode = pwr_mode; out: scsi_device_put(sdp); hba->host->eh_noresume = 0; return ret; } static int ufshcd_link_state_transition(struct ufs_hba *hba, enum uic_link_state req_link_state, int check_for_bkops) { int ret = 0; if (req_link_state == hba->uic_link_state) return 0; if (req_link_state == UIC_LINK_HIBERN8_STATE) { ret = ufshcd_uic_hibern8_enter(hba); if (!ret) ufshcd_set_link_hibern8(hba); else goto out; } /* * If autobkops is enabled, link can't be turned off because * turning off the link would also turn off the device. */ else if ((req_link_state == UIC_LINK_OFF_STATE) && (!check_for_bkops || (check_for_bkops && !hba->auto_bkops_enabled))) { /* * Let's make sure that link is in low power mode, we are doing * this currently by putting the link in Hibern8. Otherway to * put the link in low power mode is to send the DME end point * to device and then send the DME reset command to local * unipro. But putting the link in hibern8 is much faster. */ ret = ufshcd_uic_hibern8_enter(hba); if (ret) goto out; /* * Change controller state to "reset state" which * should also put the link in off/reset state */ ufshcd_hba_stop(hba, true); /* * TODO: Check if we need any delay to make sure that * controller is reset */ ufshcd_set_link_off(hba); } out: return ret; } static void ufshcd_vreg_set_lpm(struct ufs_hba *hba) { /* * It seems some UFS devices may keep drawing more than sleep current * (atleast for 500us) from UFS rails (especially from VCCQ rail). * To avoid this situation, add 2ms delay before putting these UFS * rails in LPM mode. */ if (!ufshcd_is_link_active(hba)) usleep_range(2000, 2100); /* * If UFS device is either in UFS_Sleep turn off VCC rail to save some * power. * * If UFS device and link is in OFF state, all power supplies (VCC, * VCCQ, VCCQ2) can be turned off if power on write protect is not * required. If UFS link is inactive (Hibern8 or OFF state) and device * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode. * * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway * in low power state which would save some power. */ if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && !hba->dev_info.is_lu_power_on_wp) { ufshcd_setup_vreg(hba, false); } else if (!ufshcd_is_ufs_dev_active(hba)) { ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); if (!ufshcd_is_link_active(hba)) { ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2); } } } static int ufshcd_vreg_set_hpm(struct ufs_hba *hba) { int ret = 0; if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && !hba->dev_info.is_lu_power_on_wp) { ret = ufshcd_setup_vreg(hba, true); } else if (!ufshcd_is_ufs_dev_active(hba)) { if (!ret && !ufshcd_is_link_active(hba)) { ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); if (ret) goto vcc_disable; ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); if (ret) goto vccq_lpm; } ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true); } goto out; vccq_lpm: ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); vcc_disable: ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); out: return ret; } static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba) { if (ufshcd_is_link_off(hba) || (ufshcd_is_link_hibern8(hba) && ufshcd_is_power_collapse_during_hibern8_allowed(hba))) ufshcd_setup_hba_vreg(hba, false); } static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba) { if (ufshcd_is_link_off(hba) || (ufshcd_is_link_hibern8(hba) && ufshcd_is_power_collapse_during_hibern8_allowed(hba))) ufshcd_setup_hba_vreg(hba, true); } /** * ufshcd_suspend - helper function for suspend operations * @hba: per adapter instance * @pm_op: desired low power operation type * * This function will try to put the UFS device and link into low power * mode based on the "rpm_lvl" (Runtime PM level) or "spm_lvl" * (System PM level). * * If this function is called during shutdown, it will make sure that * both UFS device and UFS link is powered off. * * NOTE: UFS device & link must be active before we enter in this function. * * Returns 0 for success and non-zero for failure */ static int ufshcd_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) { int ret = 0; enum ufs_pm_level pm_lvl; enum ufs_dev_pwr_mode req_dev_pwr_mode; enum uic_link_state req_link_state; hba->pm_op_in_progress = 1; if (!ufshcd_is_shutdown_pm(pm_op)) { pm_lvl = ufshcd_is_runtime_pm(pm_op) ? hba->rpm_lvl : hba->spm_lvl; req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl); req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl); } else { req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE; req_link_state = UIC_LINK_OFF_STATE; } /* * If we can't transition into any of the low power modes * just gate the clocks. */ WARN_ON(hba->hibern8_on_idle.is_enabled && hba->hibern8_on_idle.active_reqs); ufshcd_hold_all(hba); hba->clk_gating.is_suspended = true; hba->hibern8_on_idle.is_suspended = true; if (hba->clk_scaling.is_allowed) { cancel_work_sync(&hba->clk_scaling.suspend_work); cancel_work_sync(&hba->clk_scaling.resume_work); ufshcd_suspend_clkscaling(hba); } if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE && req_link_state == UIC_LINK_ACTIVE_STATE) { goto disable_clks; } if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) && (req_link_state == hba->uic_link_state)) goto enable_gating; /* UFS device & link must be active before we enter in this function */ if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) { ret = -EINVAL; goto enable_gating; } if (ufshcd_is_runtime_pm(pm_op)) { if (ufshcd_can_autobkops_during_suspend(hba)) { /* * The device is idle with no requests in the queue, * allow background operations if bkops status shows * that performance might be impacted. */ ret = ufshcd_urgent_bkops(hba); if (ret) goto enable_gating; } else { /* make sure that auto bkops is disabled */ ufshcd_disable_auto_bkops(hba); } } if ((req_dev_pwr_mode != hba->curr_dev_pwr_mode) && ((ufshcd_is_runtime_pm(pm_op) && !hba->auto_bkops_enabled) || !ufshcd_is_runtime_pm(pm_op))) { /* ensure that bkops is disabled */ ufshcd_disable_auto_bkops(hba); ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode); if (ret) goto enable_gating; } ret = ufshcd_link_state_transition(hba, req_link_state, 1); if (ret) goto set_dev_active; if (ufshcd_is_link_hibern8(hba) && ufshcd_is_hibern8_on_idle_allowed(hba)) hba->hibern8_on_idle.state = HIBERN8_ENTERED; ufshcd_vreg_set_lpm(hba); disable_clks: /* * Call vendor specific suspend callback. As these callbacks may access * vendor specific host controller register space call them before the * host clocks are ON. */ ret = ufshcd_vops_suspend(hba, pm_op); if (ret) goto set_link_active; if (!ufshcd_is_link_active(hba)) ret = ufshcd_disable_clocks(hba, false); else /* If link is active, device ref_clk can't be switched off */ ret = ufshcd_disable_clocks_skip_ref_clk(hba, false); if (ret) goto set_link_active; if (ufshcd_is_clkgating_allowed(hba)) { hba->clk_gating.state = CLKS_OFF; trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); } /* * Disable the host irq as host controller as there won't be any * host controller transaction expected till resume. */ ufshcd_disable_irq(hba); /* Put the host controller in low power mode if possible */ ufshcd_hba_vreg_set_lpm(hba); goto out; set_link_active: if (hba->clk_scaling.is_allowed) ufshcd_resume_clkscaling(hba); ufshcd_vreg_set_hpm(hba); if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba)) { ufshcd_set_link_active(hba); } else if (ufshcd_is_link_off(hba)) { ufshcd_update_error_stats(hba, UFS_ERR_VOPS_SUSPEND); ufshcd_host_reset_and_restore(hba); } set_dev_active: if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE)) ufshcd_disable_auto_bkops(hba); enable_gating: if (hba->clk_scaling.is_allowed) ufshcd_resume_clkscaling(hba); hba->hibern8_on_idle.is_suspended = false; hba->clk_gating.is_suspended = false; ufshcd_release_all(hba); out: hba->pm_op_in_progress = 0; if (ret) ufshcd_update_error_stats(hba, UFS_ERR_SUSPEND); return ret; } /** * ufshcd_resume - helper function for resume operations * @hba: per adapter instance * @pm_op: runtime PM or system PM * * This function basically brings the UFS device, UniPro link and controller * to active state. * * Returns 0 for success and non-zero for failure */ static int ufshcd_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) { int ret; enum uic_link_state old_link_state; hba->pm_op_in_progress = 1; old_link_state = hba->uic_link_state; ufshcd_hba_vreg_set_hpm(hba); /* Make sure clocks are enabled before accessing controller */ ret = ufshcd_enable_clocks(hba); if (ret) goto out; /* enable the host irq as host controller would be active soon */ ufshcd_enable_irq(hba); ret = ufshcd_vreg_set_hpm(hba); if (ret) goto disable_irq_and_vops_clks; /* * Call vendor specific resume callback. As these callbacks may access * vendor specific host controller register space call them when the * host clocks are ON. */ ret = ufshcd_vops_resume(hba, pm_op); if (ret) goto disable_vreg; if (ufshcd_is_link_hibern8(hba)) { ret = ufshcd_uic_hibern8_exit(hba); if (!ret) { ufshcd_set_link_active(hba); if (ufshcd_is_hibern8_on_idle_allowed(hba)) hba->hibern8_on_idle.state = HIBERN8_EXITED; } else { goto vendor_suspend; } } else if (ufshcd_is_link_off(hba)) { /* * A full initialization of the host and the device is required * since the link was put to off during suspend. */ ret = ufshcd_reset_and_restore(hba); /* * ufshcd_reset_and_restore() should have already * set the link state as active */ if (ret || !ufshcd_is_link_active(hba)) goto vendor_suspend; /* mark link state as hibern8 exited */ if (ufshcd_is_hibern8_on_idle_allowed(hba)) hba->hibern8_on_idle.state = HIBERN8_EXITED; } if (!ufshcd_is_ufs_dev_active(hba)) { ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE); if (ret) goto set_old_link_state; } if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) ufshcd_enable_auto_bkops(hba); else /* * If BKOPs operations are urgently needed at this moment then * keep auto-bkops enabled or else disable it. */ ufshcd_urgent_bkops(hba); hba->clk_gating.is_suspended = false; hba->hibern8_on_idle.is_suspended = false; if (hba->clk_scaling.is_allowed) ufshcd_resume_clkscaling(hba); /* Schedule clock gating in case of no access to UFS device yet */ ufshcd_release_all(hba); goto out; set_old_link_state: ufshcd_link_state_transition(hba, old_link_state, 0); if (ufshcd_is_link_hibern8(hba) && ufshcd_is_hibern8_on_idle_allowed(hba)) hba->hibern8_on_idle.state = HIBERN8_ENTERED; vendor_suspend: ufshcd_vops_suspend(hba, pm_op); disable_vreg: ufshcd_vreg_set_lpm(hba); disable_irq_and_vops_clks: ufshcd_disable_irq(hba); if (hba->clk_scaling.is_allowed) ufshcd_suspend_clkscaling(hba); ufshcd_disable_clocks(hba, false); if (ufshcd_is_clkgating_allowed(hba)) hba->clk_gating.state = CLKS_OFF; out: hba->pm_op_in_progress = 0; if (ret) ufshcd_update_error_stats(hba, UFS_ERR_RESUME); return ret; } /** * ufshcd_system_suspend - system suspend routine * @hba: per adapter instance * @pm_op: runtime PM or system PM * * Check the description of ufshcd_suspend() function for more details. * * Returns 0 for success and non-zero for failure */ int ufshcd_system_suspend(struct ufs_hba *hba) { int ret = 0; ktime_t start = ktime_get(); if (!hba || !hba->is_powered) return 0; if ((ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl) == hba->curr_dev_pwr_mode) && (ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl) == hba->uic_link_state)) goto out; if (pm_runtime_suspended(hba->dev)) { /* * UFS device and/or UFS link low power states during runtime * suspend seems to be different than what is expected during * system suspend. Hence runtime resume the devic & link and * let the system suspend low power states to take effect. * TODO: If resume takes longer time, we might have optimize * it in future by not resuming everything if possible. */ ret = ufshcd_runtime_resume(hba); if (ret) goto out; } ret = ufshcd_suspend(hba, UFS_SYSTEM_PM); out: trace_ufshcd_system_suspend(dev_name(hba->dev), ret, ktime_to_us(ktime_sub(ktime_get(), start)), hba->curr_dev_pwr_mode, hba->uic_link_state); if (!ret) hba->is_sys_suspended = true; return ret; } EXPORT_SYMBOL(ufshcd_system_suspend); /** * ufshcd_system_resume - system resume routine * @hba: per adapter instance * * Returns 0 for success and non-zero for failure */ int ufshcd_system_resume(struct ufs_hba *hba) { int ret = 0; ktime_t start = ktime_get(); if (!hba) return -EINVAL; if (!hba->is_powered || pm_runtime_suspended(hba->dev)) /* * Let the runtime resume take care of resuming * if runtime suspended. */ goto out; else ret = ufshcd_resume(hba, UFS_SYSTEM_PM); out: trace_ufshcd_system_resume(dev_name(hba->dev), ret, ktime_to_us(ktime_sub(ktime_get(), start)), hba->curr_dev_pwr_mode, hba->uic_link_state); return ret; } EXPORT_SYMBOL(ufshcd_system_resume); /** * ufshcd_runtime_suspend - runtime suspend routine * @hba: per adapter instance * * Check the description of ufshcd_suspend() function for more details. * * Returns 0 for success and non-zero for failure */ int ufshcd_runtime_suspend(struct ufs_hba *hba) { int ret = 0; ktime_t start = ktime_get(); if (!hba) return -EINVAL; if (!hba->is_powered) goto out; else ret = ufshcd_suspend(hba, UFS_RUNTIME_PM); out: trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret, ktime_to_us(ktime_sub(ktime_get(), start)), hba->curr_dev_pwr_mode, hba->uic_link_state); return ret; } EXPORT_SYMBOL(ufshcd_runtime_suspend); /** * ufshcd_runtime_resume - runtime resume routine * @hba: per adapter instance * * This function basically brings the UFS device, UniPro link and controller * to active state. Following operations are done in this function: * * 1. Turn on all the controller related clocks * 2. Bring the UniPro link out of Hibernate state * 3. If UFS device is in sleep state, turn ON VCC rail and bring the UFS device * to active state. * 4. If auto-bkops is enabled on the device, disable it. * * So following would be the possible power state after this function return * successfully: * S1: UFS device in Active state with VCC rail ON * UniPro link in Active state * All the UFS/UniPro controller clocks are ON * * Returns 0 for success and non-zero for failure */ int ufshcd_runtime_resume(struct ufs_hba *hba) { int ret = 0; ktime_t start = ktime_get(); if (!hba) return -EINVAL; if (!hba->is_powered) goto out; else ret = ufshcd_resume(hba, UFS_RUNTIME_PM); out: trace_ufshcd_runtime_resume(dev_name(hba->dev), ret, ktime_to_us(ktime_sub(ktime_get(), start)), hba->curr_dev_pwr_mode, hba->uic_link_state); return ret; } EXPORT_SYMBOL(ufshcd_runtime_resume); int ufshcd_runtime_idle(struct ufs_hba *hba) { return 0; } EXPORT_SYMBOL(ufshcd_runtime_idle); static inline ssize_t ufshcd_pm_lvl_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count, bool rpm) { struct ufs_hba *hba = dev_get_drvdata(dev); unsigned long flags, value; if (kstrtoul(buf, 0, &value)) return -EINVAL; if (value >= UFS_PM_LVL_MAX) return -EINVAL; spin_lock_irqsave(hba->host->host_lock, flags); if (rpm) hba->rpm_lvl = value; else hba->spm_lvl = value; ufshcd_apply_pm_quirks(hba); spin_unlock_irqrestore(hba->host->host_lock, flags); return count; } static ssize_t ufshcd_rpm_lvl_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); int curr_len; u8 lvl; curr_len = snprintf(buf, PAGE_SIZE, "\nCurrent Runtime PM level [%d] => dev_state [%s] link_state [%s]\n", hba->rpm_lvl, ufschd_ufs_dev_pwr_mode_to_string( ufs_pm_lvl_states[hba->rpm_lvl].dev_state), ufschd_uic_link_state_to_string( ufs_pm_lvl_states[hba->rpm_lvl].link_state)); curr_len += snprintf((buf + curr_len), (PAGE_SIZE - curr_len), "\nAll available Runtime PM levels info:\n"); for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) curr_len += snprintf((buf + curr_len), (PAGE_SIZE - curr_len), "\tRuntime PM level [%d] => dev_state [%s] link_state [%s]\n", lvl, ufschd_ufs_dev_pwr_mode_to_string( ufs_pm_lvl_states[lvl].dev_state), ufschd_uic_link_state_to_string( ufs_pm_lvl_states[lvl].link_state)); return curr_len; } static ssize_t ufshcd_rpm_lvl_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return ufshcd_pm_lvl_store(dev, attr, buf, count, true); } static void ufshcd_add_rpm_lvl_sysfs_nodes(struct ufs_hba *hba) { hba->rpm_lvl_attr.show = ufshcd_rpm_lvl_show; hba->rpm_lvl_attr.store = ufshcd_rpm_lvl_store; sysfs_attr_init(&hba->rpm_lvl_attr.attr); hba->rpm_lvl_attr.attr.name = "rpm_lvl"; hba->rpm_lvl_attr.attr.mode = S_IRUGO | S_IWUSR; if (device_create_file(hba->dev, &hba->rpm_lvl_attr)) dev_err(hba->dev, "Failed to create sysfs for rpm_lvl\n"); } static ssize_t ufshcd_spm_lvl_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); int curr_len; u8 lvl; curr_len = snprintf(buf, PAGE_SIZE, "\nCurrent System PM level [%d] => dev_state [%s] link_state [%s]\n", hba->spm_lvl, ufschd_ufs_dev_pwr_mode_to_string( ufs_pm_lvl_states[hba->spm_lvl].dev_state), ufschd_uic_link_state_to_string( ufs_pm_lvl_states[hba->spm_lvl].link_state)); curr_len += snprintf((buf + curr_len), (PAGE_SIZE - curr_len), "\nAll available System PM levels info:\n"); for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) curr_len += snprintf((buf + curr_len), (PAGE_SIZE - curr_len), "\tSystem PM level [%d] => dev_state [%s] link_state [%s]\n", lvl, ufschd_ufs_dev_pwr_mode_to_string( ufs_pm_lvl_states[lvl].dev_state), ufschd_uic_link_state_to_string( ufs_pm_lvl_states[lvl].link_state)); return curr_len; } static ssize_t ufshcd_spm_lvl_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return ufshcd_pm_lvl_store(dev, attr, buf, count, false); } static void ufshcd_add_spm_lvl_sysfs_nodes(struct ufs_hba *hba) { hba->spm_lvl_attr.show = ufshcd_spm_lvl_show; hba->spm_lvl_attr.store = ufshcd_spm_lvl_store; sysfs_attr_init(&hba->spm_lvl_attr.attr); hba->spm_lvl_attr.attr.name = "spm_lvl"; hba->spm_lvl_attr.attr.mode = S_IRUGO | S_IWUSR; if (device_create_file(hba->dev, &hba->spm_lvl_attr)) dev_err(hba->dev, "Failed to create sysfs for spm_lvl\n"); } static inline void ufshcd_add_sysfs_nodes(struct ufs_hba *hba) { ufshcd_add_rpm_lvl_sysfs_nodes(hba); ufshcd_add_spm_lvl_sysfs_nodes(hba); } static void ufshcd_shutdown_clkscaling(struct ufs_hba *hba) { bool suspend = false; unsigned long flags; spin_lock_irqsave(hba->host->host_lock, flags); if (hba->clk_scaling.is_allowed) { hba->clk_scaling.is_allowed = false; suspend = true; } spin_unlock_irqrestore(hba->host->host_lock, flags); /** * Scaling may be scheduled before, hence make sure it * doesn't race with shutdown */ if (ufshcd_is_clkscaling_supported(hba)) { device_remove_file(hba->dev, &hba->clk_scaling.enable_attr); cancel_work_sync(&hba->clk_scaling.suspend_work); cancel_work_sync(&hba->clk_scaling.resume_work); if (suspend) ufshcd_suspend_clkscaling(hba); } /* Unregister so that devfreq_monitor can't race with shutdown */ if (hba->devfreq) devfreq_remove_device(hba->devfreq); } /** * ufshcd_shutdown - shutdown routine * @hba: per adapter instance * * This function would power off both UFS device and UFS link. * * Returns 0 always to allow force shutdown even in case of errors. */ int ufshcd_shutdown(struct ufs_hba *hba) { int ret = 0; if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba)) goto out; pm_runtime_get_sync(hba->dev); ufshcd_hold_all(hba); ufshcd_mark_shutdown_ongoing(hba); ufshcd_shutdown_clkscaling(hba); /** * (1) Acquire the lock to stop any more requests * (2) Wait for all issued requests to complete */ ufshcd_get_write_lock(hba); ufshcd_scsi_block_requests(hba); ret = ufshcd_wait_for_doorbell_clr(hba, U64_MAX); if (ret) dev_err(hba->dev, "%s: waiting for DB clear: failed: %d\n", __func__, ret); /* Requests may have errored out above, let it be handled */ flush_work(&hba->eh_work); /* reqs issued from contexts other than shutdown will fail from now */ ufshcd_scsi_unblock_requests(hba); ufshcd_release_all(hba); ret = ufshcd_suspend(hba, UFS_SHUTDOWN_PM); out: if (ret) dev_err(hba->dev, "%s failed, err %d\n", __func__, ret); /* allow force shutdown even in case of errors */ return 0; } EXPORT_SYMBOL(ufshcd_shutdown); /* * Values permitted 0, 1, 2. * 0 -> Disable IO latency histograms (default) * 1 -> Enable IO latency histograms * 2 -> Zero out IO latency histograms */ static ssize_t latency_hist_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); long value; if (kstrtol(buf, 0, &value)) return -EINVAL; if (value == BLK_IO_LAT_HIST_ZERO) blk_zero_latency_hist(&hba->io_lat_s); else if (value == BLK_IO_LAT_HIST_ENABLE || value == BLK_IO_LAT_HIST_DISABLE) hba->latency_hist_enabled = value; return count; } ssize_t latency_hist_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return blk_latency_hist_show(&hba->io_lat_s, buf); } static DEVICE_ATTR(latency_hist, S_IRUGO | S_IWUSR, latency_hist_show, latency_hist_store); static void ufshcd_init_latency_hist(struct ufs_hba *hba) { if (device_create_file(hba->dev, &dev_attr_latency_hist)) dev_err(hba->dev, "Failed to create latency_hist sysfs entry\n"); } static void ufshcd_exit_latency_hist(struct ufs_hba *hba) { device_create_file(hba->dev, &dev_attr_latency_hist); } /** * ufshcd_remove - de-allocate SCSI host and host memory space * data structure memory * @hba - per adapter instance */ void ufshcd_remove(struct ufs_hba *hba) { scsi_remove_host(hba->host); /* disable interrupts */ ufshcd_disable_intr(hba, hba->intr_mask); ufshcd_hba_stop(hba, true); ufshcd_exit_clk_gating(hba); ufshcd_exit_hibern8_on_idle(hba); if (ufshcd_is_clkscaling_supported(hba)) { device_remove_file(hba->dev, &hba->clk_scaling.enable_attr); ufshcd_exit_latency_hist(hba); devfreq_remove_device(hba->devfreq); } ufshcd_hba_exit(hba); ufsdbg_remove_debugfs(hba); } EXPORT_SYMBOL_GPL(ufshcd_remove); /** * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA) * @hba: pointer to Host Bus Adapter (HBA) */ void ufshcd_dealloc_host(struct ufs_hba *hba) { scsi_host_put(hba->host); } EXPORT_SYMBOL_GPL(ufshcd_dealloc_host); /** * ufshcd_set_dma_mask - Set dma mask based on the controller * addressing capability * @hba: per adapter instance * * Returns 0 for success, non-zero for failure */ static int ufshcd_set_dma_mask(struct ufs_hba *hba) { if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) { if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64))) return 0; } return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32)); } /** * ufshcd_alloc_host - allocate Host Bus Adapter (HBA) * @dev: pointer to device handle * @hba_handle: driver private handle * Returns 0 on success, non-zero value on failure */ int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle) { struct Scsi_Host *host; struct ufs_hba *hba; int err = 0; if (!dev) { dev_err(dev, "Invalid memory reference for dev is NULL\n"); err = -ENODEV; goto out_error; } host = scsi_host_alloc(&ufshcd_driver_template, sizeof(struct ufs_hba)); if (!host) { dev_err(dev, "scsi_host_alloc failed\n"); err = -ENOMEM; goto out_error; } hba = shost_priv(host); hba->host = host; hba->dev = dev; *hba_handle = hba; out_error: return err; } EXPORT_SYMBOL(ufshcd_alloc_host); /** * ufshcd_is_devfreq_scaling_required - check if scaling is required or not * @hba: per adapter instance * @scale_up: True if scaling up and false if scaling down * * Returns true if scaling is required, false otherwise. */ static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba, bool scale_up) { struct ufs_clk_info *clki; struct list_head *head = &hba->clk_list_head; if (!head || list_empty(head)) return false; list_for_each_entry(clki, head, list) { if (!IS_ERR_OR_NULL(clki->clk)) { if (scale_up && clki->max_freq) { if (clki->curr_freq == clki->max_freq) continue; return true; } else if (!scale_up && clki->min_freq) { if (clki->curr_freq == clki->min_freq) continue; return true; } } } return false; } /** * ufshcd_scale_gear - scale up/down UFS gear * @hba: per adapter instance * @scale_up: True for scaling up gear and false for scaling down * * Returns 0 for success, * Returns -EBUSY if scaling can't happen at this time * Returns non-zero for any other errors */ static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up) { int ret = 0; struct ufs_pa_layer_attr new_pwr_info; u32 scale_down_gear = ufshcd_vops_get_scale_down_gear(hba); BUG_ON(!hba->clk_scaling.saved_pwr_info.is_valid); if (scale_up) { memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info, sizeof(struct ufs_pa_layer_attr)); /* * Some UFS devices may stop responding after switching from * HS-G1 to HS-G3. Also, it is found that these devices work * fine if we do 2 steps switch: HS-G1 to HS-G2 followed by * HS-G2 to HS-G3. If UFS_DEVICE_QUIRK_HS_G1_TO_HS_G3_SWITCH * quirk is enabled for such devices, this 2 steps gear switch * workaround will be applied. */ if ((hba->dev_quirks & UFS_DEVICE_QUIRK_HS_G1_TO_HS_G3_SWITCH) && (hba->pwr_info.gear_tx == UFS_HS_G1) && (new_pwr_info.gear_tx == UFS_HS_G3)) { /* scale up to G2 first */ new_pwr_info.gear_tx = UFS_HS_G2; new_pwr_info.gear_rx = UFS_HS_G2; ret = ufshcd_change_power_mode(hba, &new_pwr_info); if (ret) goto out; /* scale up to G3 now */ new_pwr_info.gear_tx = UFS_HS_G3; new_pwr_info.gear_rx = UFS_HS_G3; /* now, fall through to set the HS-G3 */ } ret = ufshcd_change_power_mode(hba, &new_pwr_info); if (ret) goto out; } else { memcpy(&new_pwr_info, &hba->pwr_info, sizeof(struct ufs_pa_layer_attr)); if (hba->pwr_info.gear_tx > scale_down_gear || hba->pwr_info.gear_rx > scale_down_gear) { /* save the current power mode */ memcpy(&hba->clk_scaling.saved_pwr_info.info, &hba->pwr_info, sizeof(struct ufs_pa_layer_attr)); /* scale down gear */ new_pwr_info.gear_tx = scale_down_gear; new_pwr_info.gear_rx = scale_down_gear; if (!(hba->dev_quirks & UFS_DEVICE_NO_FASTAUTO)) { new_pwr_info.pwr_tx = FASTAUTO_MODE; new_pwr_info.pwr_rx = FASTAUTO_MODE; } } ret = ufshcd_change_power_mode(hba, &new_pwr_info); } out: if (ret) dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d), scale_up = %d", __func__, ret, hba->pwr_info.gear_tx, hba->pwr_info.gear_rx, new_pwr_info.gear_tx, new_pwr_info.gear_rx, scale_up); return ret; } static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba) { #define DOORBELL_CLR_TOUT_US (1000 * 1000) /* 1 sec */ int ret = 0; /* * make sure that there are no outstanding requests when * clock scaling is in progress */ ufshcd_scsi_block_requests(hba); down_write(&hba->lock); if (ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) { ret = -EBUSY; up_write(&hba->lock); ufshcd_scsi_unblock_requests(hba); } return ret; } static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba) { up_write(&hba->lock); ufshcd_scsi_unblock_requests(hba); } /** * ufshcd_devfreq_scale - scale up/down UFS clocks and gear * @hba: per adapter instance * @scale_up: True for scaling up and false for scalin down * * Returns 0 for success, * Returns -EBUSY if scaling can't happen at this time * Returns non-zero for any other errors */ static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up) { int ret = 0; /* let's not get into low power until clock scaling is completed */ hba->ufs_stats.clk_hold.ctx = CLK_SCALE_WORK; ufshcd_hold_all(hba); ret = ufshcd_clock_scaling_prepare(hba); if (ret) goto out; /* scale down the gear before scaling down clocks */ if (!scale_up) { ret = ufshcd_scale_gear(hba, false); if (ret) goto clk_scaling_unprepare; } /* * If auto hibern8 is supported then put the link in * hibern8 manually, this is to avoid auto hibern8 * racing during clock frequency scaling sequence. */ if (ufshcd_is_auto_hibern8_supported(hba)) { ret = ufshcd_uic_hibern8_enter(hba); if (ret) /* link will be bad state so no need to scale_up_gear */ return ret; } ret = ufshcd_scale_clks(hba, scale_up); if (ret) goto scale_up_gear; if (ufshcd_is_auto_hibern8_supported(hba)) { ret = ufshcd_uic_hibern8_exit(hba); if (ret) /* link will be bad state so no need to scale_up_gear */ return ret; } /* scale up the gear after scaling up clocks */ if (scale_up) { ret = ufshcd_scale_gear(hba, true); if (ret) { ufshcd_scale_clks(hba, false); goto clk_scaling_unprepare; } } if (!ret) { hba->clk_scaling.is_scaled_up = scale_up; if (scale_up) hba->clk_gating.delay_ms = hba->clk_gating.delay_ms_perf; else hba->clk_gating.delay_ms = hba->clk_gating.delay_ms_pwr_save; } goto clk_scaling_unprepare; scale_up_gear: if (!scale_up) ufshcd_scale_gear(hba, true); clk_scaling_unprepare: ufshcd_clock_scaling_unprepare(hba); out: hba->ufs_stats.clk_rel.ctx = CLK_SCALE_WORK; ufshcd_release_all(hba); return ret; } static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba) { unsigned long flags; devfreq_suspend_device(hba->devfreq); spin_lock_irqsave(hba->host->host_lock, flags); hba->clk_scaling.window_start_t = 0; spin_unlock_irqrestore(hba->host->host_lock, flags); } static void ufshcd_suspend_clkscaling(struct ufs_hba *hba) { unsigned long flags; bool suspend = false; if (!ufshcd_is_clkscaling_supported(hba)) return; spin_lock_irqsave(hba->host->host_lock, flags); if (!hba->clk_scaling.is_suspended) { suspend = true; hba->clk_scaling.is_suspended = true; } spin_unlock_irqrestore(hba->host->host_lock, flags); if (suspend) __ufshcd_suspend_clkscaling(hba); } static void ufshcd_resume_clkscaling(struct ufs_hba *hba) { unsigned long flags; bool resume = false; if (!ufshcd_is_clkscaling_supported(hba)) return; spin_lock_irqsave(hba->host->host_lock, flags); if (hba->clk_scaling.is_suspended) { resume = true; hba->clk_scaling.is_suspended = false; } spin_unlock_irqrestore(hba->host->host_lock, flags); if (resume) devfreq_resume_device(hba->devfreq); } static ssize_t ufshcd_clkscale_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_scaling.is_allowed); } static ssize_t ufshcd_clkscale_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); u32 value; int err; if (kstrtou32(buf, 0, &value)) return -EINVAL; value = !!value; if (value == hba->clk_scaling.is_allowed) goto out; pm_runtime_get_sync(hba->dev); ufshcd_hold(hba, false); cancel_work_sync(&hba->clk_scaling.suspend_work); cancel_work_sync(&hba->clk_scaling.resume_work); hba->clk_scaling.is_allowed = value; if (value) { ufshcd_resume_clkscaling(hba); } else { ufshcd_suspend_clkscaling(hba); err = ufshcd_devfreq_scale(hba, true); if (err) dev_err(hba->dev, "%s: failed to scale clocks up %d\n", __func__, err); } ufshcd_release(hba, false); pm_runtime_put_sync(hba->dev); out: return count; } static void ufshcd_clk_scaling_suspend_work(struct work_struct *work) { struct ufs_hba *hba = container_of(work, struct ufs_hba, clk_scaling.suspend_work); unsigned long irq_flags; spin_lock_irqsave(hba->host->host_lock, irq_flags); if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) { spin_unlock_irqrestore(hba->host->host_lock, irq_flags); return; } hba->clk_scaling.is_suspended = true; spin_unlock_irqrestore(hba->host->host_lock, irq_flags); __ufshcd_suspend_clkscaling(hba); } static void ufshcd_clk_scaling_resume_work(struct work_struct *work) { struct ufs_hba *hba = container_of(work, struct ufs_hba, clk_scaling.resume_work); unsigned long irq_flags; spin_lock_irqsave(hba->host->host_lock, irq_flags); if (!hba->clk_scaling.is_suspended) { spin_unlock_irqrestore(hba->host->host_lock, irq_flags); return; } hba->clk_scaling.is_suspended = false; spin_unlock_irqrestore(hba->host->host_lock, irq_flags); devfreq_resume_device(hba->devfreq); } static int ufshcd_devfreq_target(struct device *dev, unsigned long *freq, u32 flags) { int ret = 0; struct ufs_hba *hba = dev_get_drvdata(dev); unsigned long irq_flags; ktime_t start; bool scale_up, sched_clk_scaling_suspend_work = false; if (!ufshcd_is_clkscaling_supported(hba)) return -EINVAL; if ((*freq > 0) && (*freq < UINT_MAX)) { dev_err(hba->dev, "%s: invalid freq = %lu\n", __func__, *freq); return -EINVAL; } spin_lock_irqsave(hba->host->host_lock, irq_flags); if (ufshcd_eh_in_progress(hba)) { spin_unlock_irqrestore(hba->host->host_lock, irq_flags); return 0; } if (!hba->clk_scaling.active_reqs) sched_clk_scaling_suspend_work = true; scale_up = (*freq == UINT_MAX) ? true : false; if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) { spin_unlock_irqrestore(hba->host->host_lock, irq_flags); ret = 0; goto out; /* no state change required */ } spin_unlock_irqrestore(hba->host->host_lock, irq_flags); start = ktime_get(); ret = ufshcd_devfreq_scale(hba, scale_up); trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), (scale_up ? "up" : "down"), ktime_to_us(ktime_sub(ktime_get(), start)), ret); out: if (sched_clk_scaling_suspend_work) queue_work(hba->clk_scaling.workq, &hba->clk_scaling.suspend_work); return ret; } static int ufshcd_devfreq_get_dev_status(struct device *dev, struct devfreq_dev_status *stat) { struct ufs_hba *hba = dev_get_drvdata(dev); struct ufs_clk_scaling *scaling = &hba->clk_scaling; unsigned long flags; if (!ufshcd_is_clkscaling_supported(hba)) return -EINVAL; memset(stat, 0, sizeof(*stat)); spin_lock_irqsave(hba->host->host_lock, flags); if (!scaling->window_start_t) goto start_window; if (scaling->is_busy_started) scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(), scaling->busy_start_t)); stat->total_time = jiffies_to_usecs((long)jiffies - (long)scaling->window_start_t); stat->busy_time = scaling->tot_busy_t; start_window: scaling->window_start_t = jiffies; scaling->tot_busy_t = 0; if (hba->outstanding_reqs) { scaling->busy_start_t = ktime_get(); scaling->is_busy_started = true; } else { scaling->busy_start_t = ktime_set(0, 0); scaling->is_busy_started = false; } spin_unlock_irqrestore(hba->host->host_lock, flags); return 0; } static void ufshcd_clkscaling_init_sysfs(struct ufs_hba *hba) { hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show; hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store; sysfs_attr_init(&hba->clk_scaling.enable_attr.attr); hba->clk_scaling.enable_attr.attr.name = "clkscale_enable"; hba->clk_scaling.enable_attr.attr.mode = S_IRUGO | S_IWUSR; if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr)) dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n"); } static void ufshcd_init_lanes_per_dir(struct ufs_hba *hba) { struct device *dev = hba->dev; int ret; ret = of_property_read_u32(dev->of_node, "lanes-per-direction", &hba->lanes_per_direction); if (ret) { dev_dbg(hba->dev, "%s: failed to read lanes-per-direction, ret=%d\n", __func__, ret); hba->lanes_per_direction = UFSHCD_DEFAULT_LANES_PER_DIRECTION; } } /** * ufshcd_init - Driver initialization routine * @hba: per-adapter instance * @mmio_base: base register address * @irq: Interrupt line of device * Returns 0 on success, non-zero value on failure */ int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq) { int err; struct Scsi_Host *host = hba->host; struct device *dev = hba->dev; if (!mmio_base) { dev_err(hba->dev, "Invalid memory reference for mmio_base is NULL\n"); err = -ENODEV; goto out_error; } hba->mmio_base = mmio_base; hba->irq = irq; ufshcd_init_lanes_per_dir(hba); err = ufshcd_hba_init(hba); if (err) goto out_error; /* Read capabilities registers */ ufshcd_hba_capabilities(hba); /* Get UFS version supported by the controller */ hba->ufs_version = ufshcd_get_ufs_version(hba); /* print error message if ufs_version is not valid */ if ((hba->ufs_version != UFSHCI_VERSION_10) && (hba->ufs_version != UFSHCI_VERSION_11) && (hba->ufs_version != UFSHCI_VERSION_20) && (hba->ufs_version != UFSHCI_VERSION_21)) dev_err(hba->dev, "invalid UFS version 0x%x\n", hba->ufs_version); /* Get Interrupt bit mask per version */ hba->intr_mask = ufshcd_get_intr_mask(hba); /* Enable debug prints */ hba->ufshcd_dbg_print = DEFAULT_UFSHCD_DBG_PRINT_EN; err = ufshcd_set_dma_mask(hba); if (err) { dev_err(hba->dev, "set dma mask failed\n"); goto out_disable; } /* Allocate memory for host memory space */ err = ufshcd_memory_alloc(hba); if (err) { dev_err(hba->dev, "Memory allocation failed\n"); goto out_disable; } /* Configure LRB */ ufshcd_host_memory_configure(hba); host->can_queue = hba->nutrs; host->cmd_per_lun = hba->nutrs; host->max_id = UFSHCD_MAX_ID; host->max_lun = UFS_MAX_LUNS; host->max_channel = UFSHCD_MAX_CHANNEL; host->unique_id = host->host_no; host->max_cmd_len = MAX_CDB_SIZE; host->set_dbd_for_caching = 1; hba->max_pwr_info.is_valid = false; /* Initailize wait queue for task management */ init_waitqueue_head(&hba->tm_wq); init_waitqueue_head(&hba->tm_tag_wq); /* Initialize work queues */ INIT_WORK(&hba->eh_work, ufshcd_err_handler); INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler); INIT_WORK(&hba->rls_work, ufshcd_rls_handler); /* Initialize UIC command mutex */ mutex_init(&hba->uic_cmd_mutex); /* Initialize mutex for device management commands */ mutex_init(&hba->dev_cmd.lock); init_rwsem(&hba->lock); /* Initialize device management tag acquire wait queue */ init_waitqueue_head(&hba->dev_cmd.tag_wq); ufshcd_init_clk_gating(hba); ufshcd_init_hibern8_on_idle(hba); /* * In order to avoid any spurious interrupt immediately after * registering UFS controller interrupt handler, clear any pending UFS * interrupt status and disable all the UFS interrupts. */ ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS), REG_INTERRUPT_STATUS); ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE); /* * Make sure that UFS interrupts are disabled and any pending interrupt * status is cleared before registering UFS interrupt handler. */ mb(); /* IRQ registration */ err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba); if (err) { dev_err(hba->dev, "request irq failed\n"); goto exit_gating; } else { hba->is_irq_enabled = true; } err = scsi_add_host(host, hba->dev); if (err) { dev_err(hba->dev, "scsi_add_host failed\n"); goto exit_gating; } /* Reset controller to power on reset (POR) state */ ufshcd_vops_full_reset(hba); /* reset connected UFS device */ err = ufshcd_reset_device(hba); if (err) dev_warn(hba->dev, "%s: device reset failed. err %d\n", __func__, err); /* Host controller enable */ err = ufshcd_hba_enable(hba); if (err) { dev_err(hba->dev, "Host controller enable failed\n"); ufshcd_print_host_regs(hba); ufshcd_print_host_state(hba); goto out_remove_scsi_host; } if (ufshcd_is_clkscaling_supported(hba)) { char wq_name[sizeof("ufs_clkscaling_00")]; INIT_WORK(&hba->clk_scaling.suspend_work, ufshcd_clk_scaling_suspend_work); INIT_WORK(&hba->clk_scaling.resume_work, ufshcd_clk_scaling_resume_work); snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clkscaling_%d", host->host_no); hba->clk_scaling.workq = create_singlethread_workqueue(wq_name); ufshcd_clkscaling_init_sysfs(hba); } /* * If rpm_lvl and and spm_lvl are not already set to valid levels, * set the default power management level for UFS runtime and system * suspend. Default power saving mode selected is keeping UFS link in * Hibern8 state and UFS device in sleep. */ if (!ufshcd_is_valid_pm_lvl(hba->rpm_lvl)) hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE); if (!ufshcd_is_valid_pm_lvl(hba->spm_lvl)) hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE); /* Hold auto suspend until async scan completes */ pm_runtime_get_sync(dev); ufshcd_init_latency_hist(hba); /* * We are assuming that device wasn't put in sleep/power-down * state exclusively during the boot stage before kernel. * This assumption helps avoid doing link startup twice during * ufshcd_probe_hba(). */ ufshcd_set_ufs_dev_active(hba); ufshcd_cmd_log_init(hba); async_schedule(ufshcd_async_scan, hba); ufsdbg_add_debugfs(hba); ufshcd_add_sysfs_nodes(hba); return 0; out_remove_scsi_host: scsi_remove_host(hba->host); exit_gating: ufshcd_exit_clk_gating(hba); ufshcd_exit_latency_hist(hba); out_disable: hba->is_irq_enabled = false; ufshcd_hba_exit(hba); out_error: return err; } EXPORT_SYMBOL_GPL(ufshcd_init); MODULE_AUTHOR("Santosh Yaragnavi "); MODULE_AUTHOR("Vinayak Holikatti "); MODULE_DESCRIPTION("Generic UFS host controller driver Core"); MODULE_LICENSE("GPL"); MODULE_VERSION(UFSHCD_DRIVER_VERSION);