/* * Universal Flash Storage Host controller driver * * This code is based on drivers/scsi/ufs/ufshcd.h * Copyright (C) 2011-2013 Samsung India Software Operations * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved. * * Authors: * Santosh Yaraganavi * Vinayak Holikatti * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * See the COPYING file in the top-level directory or visit * * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * This program is provided "AS IS" and "WITH ALL FAULTS" and * without warranty of any kind. You are solely responsible for * determining the appropriateness of using and distributing * the program and assume all risks associated with your exercise * of rights with respect to the program, including but not limited * to infringement of third party rights, the risks and costs of * program errors, damage to or loss of data, programs or equipment, * and unavailability or interruption of operations. Under no * circumstances will the contributor of this Program be liable for * any damages of any kind arising from your use or distribution of * this program. */ #ifndef _UFSHCD_H #define _UFSHCD_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "unipro.h" #include #include #include #include #include #include #include #include #include #include "ufs.h" #include "ufshci.h" #define UFSHCD "ufshcd" #define UFSHCD_DRIVER_VERSION "0.3" #define UFS_BIT(x) BIT(x) #define UFS_MASK(x, y) (x << ((y) % BITS_PER_LONG)) struct ufs_hba; enum dev_cmd_type { DEV_CMD_TYPE_NOP = 0x0, DEV_CMD_TYPE_QUERY = 0x1, }; /** * struct uic_command - UIC command structure * @command: UIC command * @argument1: UIC command argument 1 * @argument2: UIC command argument 2 * @argument3: UIC command argument 3 * @cmd_active: Indicate if UIC command is outstanding * @result: UIC command result * @done: UIC command completion */ struct uic_command { u32 command; u32 argument1; u32 argument2; u32 argument3; int cmd_active; int result; struct completion done; }; /* Used to differentiate the power management options */ enum ufs_pm_op { UFS_RUNTIME_PM, UFS_SYSTEM_PM, UFS_SHUTDOWN_PM, }; #define ufshcd_is_runtime_pm(op) ((op) == UFS_RUNTIME_PM) #define ufshcd_is_system_pm(op) ((op) == UFS_SYSTEM_PM) #define ufshcd_is_shutdown_pm(op) ((op) == UFS_SHUTDOWN_PM) /* Host <-> Device UniPro Link state */ enum uic_link_state { UIC_LINK_OFF_STATE = 0, /* Link powered down or disabled */ UIC_LINK_ACTIVE_STATE = 1, /* Link is in Fast/Slow/Sleep state */ UIC_LINK_HIBERN8_STATE = 2, /* Link is in Hibernate state */ }; #define ufshcd_is_link_off(hba) ((hba)->uic_link_state == UIC_LINK_OFF_STATE) #define ufshcd_is_link_active(hba) ((hba)->uic_link_state == \ UIC_LINK_ACTIVE_STATE) #define ufshcd_is_link_hibern8(hba) ((hba)->uic_link_state == \ UIC_LINK_HIBERN8_STATE) #define ufshcd_set_link_off(hba) ((hba)->uic_link_state = UIC_LINK_OFF_STATE) #define ufshcd_set_link_active(hba) ((hba)->uic_link_state = \ UIC_LINK_ACTIVE_STATE) #define ufshcd_set_link_hibern8(hba) ((hba)->uic_link_state = \ UIC_LINK_HIBERN8_STATE) enum { /* errors which require the host controller reset for recovery */ UFS_ERR_HIBERN8_EXIT, UFS_ERR_VOPS_SUSPEND, UFS_ERR_EH, UFS_ERR_CLEAR_PEND_XFER_TM, UFS_ERR_INT_FATAL_ERRORS, UFS_ERR_INT_UIC_ERROR, UFS_ERR_CRYPTO_ENGINE, /* other errors */ UFS_ERR_HIBERN8_ENTER, UFS_ERR_RESUME, UFS_ERR_SUSPEND, UFS_ERR_LINKSTARTUP, UFS_ERR_POWER_MODE_CHANGE, UFS_ERR_TASK_ABORT, UFS_ERR_MAX, }; /* * UFS Power management levels. * Each level is in increasing order of power savings. */ enum ufs_pm_level { UFS_PM_LVL_0, /* UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE */ UFS_PM_LVL_1, /* UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE */ UFS_PM_LVL_2, /* UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE */ UFS_PM_LVL_3, /* UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE */ UFS_PM_LVL_4, /* UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE */ UFS_PM_LVL_5, /* UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE */ UFS_PM_LVL_MAX }; struct ufs_pm_lvl_states { enum ufs_dev_pwr_mode dev_state; enum uic_link_state link_state; }; /** * struct ufshcd_lrb - local reference block * @utr_descriptor_ptr: UTRD address of the command * @ucd_req_ptr: UCD address of the command * @ucd_rsp_ptr: Response UPIU address for this command * @ucd_prdt_ptr: PRDT address of the command * @utrd_dma_addr: UTRD dma address for debug * @ucd_prdt_dma_addr: PRDT dma address for debug * @ucd_rsp_dma_addr: UPIU response dma address for debug * @ucd_req_dma_addr: UPIU request dma address for debug * @cmd: pointer to SCSI command * @sense_buffer: pointer to sense buffer address of the SCSI command * @sense_bufflen: Length of the sense buffer * @scsi_status: SCSI status of the command * @command_type: SCSI, UFS, Query. * @task_tag: Task tag of the command * @lun: LUN of the command * @intr_cmd: Interrupt command (doesn't participate in interrupt aggregation) * @issue_time_stamp: time stamp for debug purposes * @complete_time_stamp: time stamp for statistics * @req_abort_skip: skip request abort task flag */ struct ufshcd_lrb { struct utp_transfer_req_desc *utr_descriptor_ptr; struct utp_upiu_req *ucd_req_ptr; struct utp_upiu_rsp *ucd_rsp_ptr; struct ufshcd_sg_entry *ucd_prdt_ptr; dma_addr_t utrd_dma_addr; dma_addr_t ucd_req_dma_addr; dma_addr_t ucd_rsp_dma_addr; dma_addr_t ucd_prdt_dma_addr; struct scsi_cmnd *cmd; u8 *sense_buffer; unsigned int sense_bufflen; int scsi_status; int command_type; int task_tag; u8 lun; /* UPIU LUN id field is only 8-bit wide */ bool intr_cmd; ktime_t issue_time_stamp; ktime_t complete_time_stamp; bool req_abort_skip; }; /** * struct ufs_query - holds relevent data structures for query request * @request: request upiu and function * @descriptor: buffer for sending/receiving descriptor * @response: response upiu and response */ struct ufs_query { struct ufs_query_req request; u8 *descriptor; struct ufs_query_res response; }; /** * struct ufs_dev_cmd - all assosiated fields with device management commands * @type: device management command type - Query, NOP OUT * @lock: lock to allow one command at a time * @complete: internal commands completion * @tag_wq: wait queue until free command slot is available */ struct ufs_dev_cmd { enum dev_cmd_type type; struct mutex lock; struct completion *complete; wait_queue_head_t tag_wq; struct ufs_query query; }; /** * struct ufs_clk_info - UFS clock related info * @list: list headed by hba->clk_list_head * @clk: clock node * @name: clock name * @max_freq: maximum frequency supported by the clock * @min_freq: min frequency that can be used for clock scaling * @curr_freq: indicates the current frequency that it is set to * @enabled: variable to check against multiple enable/disable */ struct ufs_clk_info { struct list_head list; struct clk *clk; const char *name; u32 max_freq; u32 min_freq; u32 curr_freq; bool enabled; }; enum ufs_notify_change_status { PRE_CHANGE, POST_CHANGE, }; struct ufs_pa_layer_attr { u32 gear_rx; u32 gear_tx; u32 lane_rx; u32 lane_tx; u32 pwr_rx; u32 pwr_tx; u32 hs_rate; }; struct ufs_pwr_mode_info { bool is_valid; struct ufs_pa_layer_attr info; }; /** * struct ufs_hba_variant_ops - variant specific callbacks * @init: called when the driver is initialized * @exit: called to cleanup everything done in init * @get_ufs_hci_version: called to get UFS HCI version * @clk_scale_notify: notifies that clks are scaled up/down * @setup_clocks: called before touching any of the controller registers * @setup_regulators: called before accessing the host controller * @hce_enable_notify: called before and after HCE enable bit is set to allow * variant specific Uni-Pro initialization. * @link_startup_notify: called before and after Link startup is carried out * to allow variant specific Uni-Pro initialization. * @pwr_change_notify: called before and after a power mode change * is carried out to allow vendor spesific capabilities * to be set. * @suspend: called during host controller PM callback * @resume: called during host controller PM callback * @full_reset: called during link recovery for handling variant specific * implementations of resetting the hci * @dbg_register_dump: used to dump controller debug information * @update_sec_cfg: called to restore host controller secure configuration * @get_scale_down_gear: called to get the minimum supported gear to * scale down * @set_bus_vote: called to vote for the required bus bandwidth * @add_debugfs: used to add debugfs entries * @remove_debugfs: used to remove debugfs entries */ struct ufs_hba_variant_ops { int (*init)(struct ufs_hba *); void (*exit)(struct ufs_hba *); u32 (*get_ufs_hci_version)(struct ufs_hba *); int (*clk_scale_notify)(struct ufs_hba *, bool, enum ufs_notify_change_status); int (*setup_clocks)(struct ufs_hba *, bool, bool); int (*setup_regulators)(struct ufs_hba *, bool); int (*hce_enable_notify)(struct ufs_hba *, enum ufs_notify_change_status); int (*link_startup_notify)(struct ufs_hba *, enum ufs_notify_change_status); int (*pwr_change_notify)(struct ufs_hba *, enum ufs_notify_change_status status, struct ufs_pa_layer_attr *, struct ufs_pa_layer_attr *); int (*apply_dev_quirks)(struct ufs_hba *); int (*suspend)(struct ufs_hba *, enum ufs_pm_op); int (*resume)(struct ufs_hba *, enum ufs_pm_op); int (*full_reset)(struct ufs_hba *); void (*dbg_register_dump)(struct ufs_hba *hba); int (*update_sec_cfg)(struct ufs_hba *hba, bool restore_sec_cfg); u32 (*get_scale_down_gear)(struct ufs_hba *); int (*set_bus_vote)(struct ufs_hba *, bool); #ifdef CONFIG_DEBUG_FS void (*add_debugfs)(struct ufs_hba *hba, struct dentry *root); void (*remove_debugfs)(struct ufs_hba *hba); #endif }; /** * struct ufs_hba_crypto_variant_ops - variant specific crypto callbacks * @crypto_req_setup: retreieve the necessary cryptographic arguments to setup a requests's transfer descriptor. * @crypto_engine_cfg_start: start configuring cryptographic engine * according to tag * parameter * @crypto_engine_cfg_end: end configuring cryptographic engine * according to tag parameter * @crypto_engine_reset: perform reset to the cryptographic engine * @crypto_engine_get_status: get errors status of the cryptographic engine */ struct ufs_hba_crypto_variant_ops { int (*crypto_req_setup)(struct ufs_hba *, struct ufshcd_lrb *lrbp, u8 *cc_index, bool *enable, u64 *dun); int (*crypto_engine_cfg_start)(struct ufs_hba *, unsigned int); int (*crypto_engine_cfg_end)(struct ufs_hba *, struct ufshcd_lrb *, struct request *); int (*crypto_engine_reset)(struct ufs_hba *); int (*crypto_engine_get_status)(struct ufs_hba *, u32 *); }; /** * struct ufs_hba_pm_qos_variant_ops - variant specific PM QoS callbacks */ struct ufs_hba_pm_qos_variant_ops { void (*req_start)(struct ufs_hba *, struct request *); void (*req_end)(struct ufs_hba *, struct request *, bool); }; /** * struct ufs_hba_variant - variant specific parameters * @name: variant name */ struct ufs_hba_variant { struct device *dev; const char *name; struct ufs_hba_variant_ops *vops; struct ufs_hba_crypto_variant_ops *crypto_vops; struct ufs_hba_pm_qos_variant_ops *pm_qos_vops; }; /* clock gating state */ enum clk_gating_state { CLKS_OFF, CLKS_ON, REQ_CLKS_OFF, REQ_CLKS_ON, }; /** * struct ufs_clk_gating - UFS clock gating related info * @gate_work: worker to turn off clocks after some delay as specified in * delay_ms * @ungate_work: worker to turn on clocks that will be used in case of * interrupt context * @state: the current clocks state * @delay_ms: current gating delay in ms * @delay_ms_pwr_save: gating delay (in ms) in power save mode * @delay_ms_perf: gating delay (in ms) in performance mode * @is_suspended: clk gating is suspended when set to 1 which can be used * during suspend/resume * @delay_attr: sysfs attribute to control delay_ms if clock scaling is disabled * @delay_pwr_save_attr: sysfs attribute to control delay_ms_pwr_save * @delay_perf_attr: sysfs attribute to control delay_ms_perf * @enable_attr: sysfs attribute to enable/disable clock gating * @is_enabled: Indicates the current status of clock gating * @active_reqs: number of requests that are pending and should be waited for * completion before gating clocks. */ struct ufs_clk_gating { struct delayed_work gate_work; struct work_struct ungate_work; enum clk_gating_state state; unsigned long delay_ms; unsigned long delay_ms_pwr_save; unsigned long delay_ms_perf; bool is_suspended; struct device_attribute delay_attr; struct device_attribute delay_pwr_save_attr; struct device_attribute delay_perf_attr; struct device_attribute enable_attr; bool is_enabled; int active_reqs; }; /* Hibern8 state */ enum ufshcd_hibern8_on_idle_state { HIBERN8_ENTERED, HIBERN8_EXITED, REQ_HIBERN8_ENTER, REQ_HIBERN8_EXIT, AUTO_HIBERN8, }; /** * struct ufs_hibern8_on_idle - UFS Hibern8 on idle related data * @enter_work: worker to put UFS link in hibern8 after some delay as * specified in delay_ms * @exit_work: worker to bring UFS link out of hibern8 * @state: the current hibern8 state * @delay_ms: hibern8 enter delay in ms * @is_suspended: hibern8 enter is suspended when set to 1 which can be used * during suspend/resume * @active_reqs: number of requests that are pending and should be waited for * completion before scheduling delayed "enter_work". * @delay_attr: sysfs attribute to control delay_attr * @enable_attr: sysfs attribute to enable/disable hibern8 on idle * @is_enabled: Indicates the current status of hibern8 */ struct ufs_hibern8_on_idle { struct delayed_work enter_work; struct work_struct exit_work; enum ufshcd_hibern8_on_idle_state state; unsigned long delay_ms; bool is_suspended; int active_reqs; struct device_attribute delay_attr; struct device_attribute enable_attr; bool is_enabled; }; struct ufs_saved_pwr_info { struct ufs_pa_layer_attr info; bool is_valid; }; /** * struct ufs_clk_scaling - UFS clock scaling related data * @active_reqs: number of requests that are pending. If this is zero when * devfreq ->target() function is called then schedule "suspend_work" to * suspend devfreq. * @tot_busy_t: Total busy time in current polling window * @window_start_t: Start time (in jiffies) of the current polling window * @busy_start_t: Start time of current busy period * @enable_attr: sysfs attribute to enable/disable clock scaling * @saved_pwr_info: UFS power mode may also be changed during scaling and this * one keeps track of previous power mode. * @workq: workqueue to schedule devfreq suspend/resume work * @suspend_work: worker to suspend devfreq * @resume_work: worker to resume devfreq * @is_allowed: tracks if scaling is currently allowed or not * @is_busy_started: tracks if busy period has started or not * @is_suspended: tracks if devfreq is suspended or not * @is_scaled_up: tracks if we are currently scaled up or scaled down */ struct ufs_clk_scaling { int active_reqs; unsigned long tot_busy_t; unsigned long window_start_t; ktime_t busy_start_t; struct device_attribute enable_attr; struct ufs_saved_pwr_info saved_pwr_info; struct workqueue_struct *workq; struct work_struct suspend_work; struct work_struct resume_work; bool is_allowed; bool is_busy_started; bool is_suspended; bool is_scaled_up; }; /** * struct ufs_init_prefetch - contains data that is pre-fetched once during * initialization * @icc_level: icc level which was read during initialization */ struct ufs_init_prefetch { u32 icc_level; }; #define UIC_ERR_REG_HIST_LENGTH 8 /** * struct ufs_uic_err_reg_hist - keeps history of uic errors * @pos: index to indicate cyclic buffer position * @reg: cyclic buffer for registers value * @tstamp: cyclic buffer for time stamp */ struct ufs_uic_err_reg_hist { int pos; u32 reg[UIC_ERR_REG_HIST_LENGTH]; ktime_t tstamp[UIC_ERR_REG_HIST_LENGTH]; }; #ifdef CONFIG_DEBUG_FS struct debugfs_files { struct dentry *debugfs_root; struct dentry *stats_folder; struct dentry *tag_stats; struct dentry *err_stats; struct dentry *show_hba; struct dentry *host_regs; struct dentry *dump_dev_desc; struct dentry *power_mode; struct dentry *dme_local_read; struct dentry *dme_peer_read; struct dentry *dbg_print_en; struct dentry *req_stats; struct dentry *query_stats; u32 dme_local_attr_id; u32 dme_peer_attr_id; struct dentry *reset_controller; struct dentry *err_state; bool err_occurred; #ifdef CONFIG_UFS_FAULT_INJECTION struct dentry *err_inj_scenario; struct dentry *err_inj_stats; u32 err_inj_scenario_mask; struct fault_attr fail_attr; #endif bool is_sys_suspended; }; /* tag stats statistics types */ enum ts_types { TS_NOT_SUPPORTED = -1, TS_TAG = 0, TS_READ = 1, TS_WRITE = 2, TS_URGENT_READ = 3, TS_URGENT_WRITE = 4, TS_FLUSH = 5, TS_NUM_STATS = 6, }; /** * struct ufshcd_req_stat - statistics for request handling times (in usec) * @min: shortest time measured * @max: longest time measured * @sum: sum of all the handling times measured (used for average calculation) * @count: number of measurements taken */ struct ufshcd_req_stat { u64 min; u64 max; u64 sum; u64 count; }; #endif /** * struct ufs_stats - keeps usage/err statistics * @enabled: enable tag stats for debugfs * @tag_stats: pointer to tag statistic counters * @q_depth: current amount of busy slots * @err_stats: counters to keep track of various errors * @req_stats: request handling time statistics per request type * @query_stats_arr: array that holds query statistics * @hibern8_exit_cnt: Counter to keep track of number of exits, * reset this after link-startup. * @last_hibern8_exit_tstamp: Set time after the hibern8 exit. * Clear after the first successful command completion. * @pa_err: tracks pa-uic errors * @dl_err: tracks dl-uic errors * @nl_err: tracks nl-uic errors * @tl_err: tracks tl-uic errors * @dme_err: tracks dme errors */ struct ufs_stats { #ifdef CONFIG_DEBUG_FS bool enabled; u64 **tag_stats; int q_depth; int err_stats[UFS_ERR_MAX]; struct ufshcd_req_stat req_stats[TS_NUM_STATS]; int query_stats_arr[UPIU_QUERY_OPCODE_MAX][MAX_QUERY_IDN]; #endif u32 hibern8_exit_cnt; ktime_t last_hibern8_exit_tstamp; struct ufs_uic_err_reg_hist pa_err; struct ufs_uic_err_reg_hist dl_err; struct ufs_uic_err_reg_hist nl_err; struct ufs_uic_err_reg_hist tl_err; struct ufs_uic_err_reg_hist dme_err; }; /* UFS Host Controller debug print bitmask */ #define UFSHCD_DBG_PRINT_CLK_FREQ_EN UFS_BIT(0) #define UFSHCD_DBG_PRINT_UIC_ERR_HIST_EN UFS_BIT(1) #define UFSHCD_DBG_PRINT_HOST_REGS_EN UFS_BIT(2) #define UFSHCD_DBG_PRINT_TRS_EN UFS_BIT(3) #define UFSHCD_DBG_PRINT_TMRS_EN UFS_BIT(4) #define UFSHCD_DBG_PRINT_PWR_EN UFS_BIT(5) #define UFSHCD_DBG_PRINT_HOST_STATE_EN UFS_BIT(6) #define UFSHCD_DBG_PRINT_ALL \ (UFSHCD_DBG_PRINT_CLK_FREQ_EN | \ UFSHCD_DBG_PRINT_UIC_ERR_HIST_EN | \ UFSHCD_DBG_PRINT_HOST_REGS_EN | UFSHCD_DBG_PRINT_TRS_EN | \ UFSHCD_DBG_PRINT_TMRS_EN | UFSHCD_DBG_PRINT_PWR_EN | \ UFSHCD_DBG_PRINT_HOST_STATE_EN) /** * struct ufs_hba - per adapter private structure * @mmio_base: UFSHCI base register address * @ucdl_base_addr: UFS Command Descriptor base address * @utrdl_base_addr: UTP Transfer Request Descriptor base address * @utmrdl_base_addr: UTP Task Management Descriptor base address * @ucdl_dma_addr: UFS Command Descriptor DMA address * @utrdl_dma_addr: UTRDL DMA address * @utmrdl_dma_addr: UTMRDL DMA address * @host: Scsi_Host instance of the driver * @dev: device handle * @lrb: local reference block * @lrb_in_use: lrb in use * @outstanding_tasks: Bits representing outstanding task requests * @outstanding_reqs: Bits representing outstanding transfer requests * @capabilities: UFS Controller Capabilities * @nutrs: Transfer Request Queue depth supported by controller * @nutmrs: Task Management Queue depth supported by controller * @ufs_version: UFS Version to which controller complies * @var: pointer to variant specific data * @priv: pointer to variant specific private data * @irq: Irq number of the controller * @active_uic_cmd: handle of active UIC command * @uic_cmd_mutex: mutex for uic command * @tm_wq: wait queue for task management * @tm_tag_wq: wait queue for free task management slots * @tm_slots_in_use: bit map of task management request slots in use * @pwr_done: completion for power mode change * @tm_condition: condition variable for task management * @ufshcd_state: UFSHCD states * @eh_flags: Error handling flags * @intr_mask: Interrupt Mask Bits * @ee_ctrl_mask: Exception event control mask * @is_powered: flag to check if HBA is powered * @is_init_prefetch: flag to check if data was pre-fetched in initialization * @init_prefetch_data: data pre-fetched during initialization * @eh_work: Worker to handle UFS errors that require s/w attention * @eeh_work: Worker to handle exception events * @errors: HBA errors * @uic_error: UFS interconnect layer error status * @saved_err: sticky error mask * @saved_uic_err: sticky UIC error mask * @dev_cmd: ufs device management command information * @last_dme_cmd_tstamp: time stamp of the last completed DME command * @auto_bkops_enabled: to track whether bkops is enabled in device * @ufs_stats: ufshcd statistics to be used via debugfs * @debugfs_files: debugfs files associated with the ufs stats * @ufshcd_dbg_print: Bitmask for enabling debug prints * @vreg_info: UFS device voltage regulator information * @clk_list_head: UFS host controller clocks list node head * @pwr_info: holds current power mode * @max_pwr_info: keeps the device max valid pwm * @hibern8_on_idle: UFS Hibern8 on idle related data * @urgent_bkops_lvl: keeps track of urgent bkops level for device * @is_urgent_bkops_lvl_checked: keeps track if the urgent bkops level for * device is known or not. * @scsi_block_reqs_cnt: reference counting for scsi block requests */ struct ufs_hba { void __iomem *mmio_base; /* Virtual memory reference */ struct utp_transfer_cmd_desc *ucdl_base_addr; struct utp_transfer_req_desc *utrdl_base_addr; struct utp_task_req_desc *utmrdl_base_addr; /* DMA memory reference */ dma_addr_t ucdl_dma_addr; dma_addr_t utrdl_dma_addr; dma_addr_t utmrdl_dma_addr; struct Scsi_Host *host; struct device *dev; /* * This field is to keep a reference to "scsi_device" corresponding to * "UFS device" W-LU. */ struct scsi_device *sdev_ufs_device; enum ufs_dev_pwr_mode curr_dev_pwr_mode; enum uic_link_state uic_link_state; /* Desired UFS power management level during runtime PM */ int rpm_lvl; /* Desired UFS power management level during system PM */ int spm_lvl; struct device_attribute rpm_lvl_attr; struct device_attribute spm_lvl_attr; int pm_op_in_progress; struct ufshcd_lrb *lrb; unsigned long lrb_in_use; unsigned long outstanding_tasks; unsigned long outstanding_reqs; u32 capabilities; int nutrs; int nutmrs; u32 ufs_version; struct ufs_hba_variant *var; void *priv; unsigned int irq; bool is_irq_enabled; /* Interrupt aggregation support is broken */ #define UFSHCD_QUIRK_BROKEN_INTR_AGGR UFS_BIT(0) /* * delay before each dme command is required as the unipro * layer has shown instabilities */ #define UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS UFS_BIT(1) /* * If UFS host controller is having issue in processing LCC (Line * Control Command) coming from device then enable this quirk. * When this quirk is enabled, host controller driver should disable * the LCC transmission on UFS device (by clearing TX_LCC_ENABLE * attribute of device to 0). */ #define UFSHCD_QUIRK_BROKEN_LCC UFS_BIT(2) /* * The attribute PA_RXHSUNTERMCAP specifies whether or not the * inbound Link supports unterminated line in HS mode. Setting this * attribute to 1 fixes moving to HS gear. */ #define UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP UFS_BIT(3) /* * This quirk needs to be enabled if the host contoller only allows * accessing the peer dme attributes in AUTO mode (FAST AUTO or * SLOW AUTO). */ #define UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE UFS_BIT(4) /* * This quirk needs to be enabled if the host contoller doesn't * advertise the correct version in UFS_VER register. If this quirk * is enabled, standard UFS host driver will call the vendor specific * ops (get_ufs_hci_version) to get the correct version. */ #define UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION UFS_BIT(5) /* Auto hibern8 support is broken */ #define UFSHCD_QUIRK_BROKEN_AUTO_HIBERN8 UFS_BIT(6) unsigned int quirks; /* Deviations from standard UFSHCI spec. */ /* Device deviations from standard UFS device spec. */ unsigned int dev_quirks; wait_queue_head_t tm_wq; wait_queue_head_t tm_tag_wq; unsigned long tm_condition; unsigned long tm_slots_in_use; struct uic_command *active_uic_cmd; struct mutex uic_cmd_mutex; struct completion *uic_async_done; u32 ufshcd_state; u32 eh_flags; u32 intr_mask; u16 ee_ctrl_mask; bool is_powered; bool is_init_prefetch; struct ufs_init_prefetch init_prefetch_data; /* Work Queues */ struct work_struct eh_work; struct work_struct eeh_work; /* HBA Errors */ u32 errors; u32 uic_error; u32 ce_error; /* crypto engine errors */ u32 saved_err; u32 saved_uic_err; u32 saved_ce_err; bool silence_err_logs; bool force_host_reset; /* Device management request data */ struct ufs_dev_cmd dev_cmd; ktime_t last_dme_cmd_tstamp; /* Keeps information of the UFS device connected to this host */ struct ufs_dev_info dev_info; bool auto_bkops_enabled; struct ufs_stats ufs_stats; #ifdef CONFIG_DEBUG_FS struct debugfs_files debugfs_files; #endif struct ufs_vreg_info vreg_info; struct list_head clk_list_head; bool wlun_dev_clr_ua; /* Number of requests aborts */ int req_abort_count; /* Number of lanes available (1 or 2) for Rx/Tx */ u32 lanes_per_direction; /* Bitmask for enabling debug prints */ u32 ufshcd_dbg_print; struct ufs_pa_layer_attr pwr_info; struct ufs_pwr_mode_info max_pwr_info; struct ufs_clk_gating clk_gating; struct ufs_hibern8_on_idle hibern8_on_idle; /* Control to enable/disable host capabilities */ u32 caps; /* Allow dynamic clk gating */ #define UFSHCD_CAP_CLK_GATING (1 << 0) /* Allow hiberb8 with clk gating */ #define UFSHCD_CAP_HIBERN8_WITH_CLK_GATING (1 << 1) /* Allow dynamic clk scaling */ #define UFSHCD_CAP_CLK_SCALING (1 << 2) /* Allow auto bkops to enabled during runtime suspend */ #define UFSHCD_CAP_AUTO_BKOPS_SUSPEND (1 << 3) /* * This capability allows host controller driver to use the UFS HCI's * interrupt aggregation capability. * CAUTION: Enabling this might reduce overall UFS throughput. */ #define UFSHCD_CAP_INTR_AGGR (1 << 4) /* Allow standalone Hibern8 enter on idle */ #define UFSHCD_CAP_HIBERN8_ENTER_ON_IDLE (1 << 5) /* * This capability allows the device auto-bkops to be always enabled * except during suspend (both runtime and suspend). * Enabling this capability means that device will always be allowed * to do background operation when it's active but it might degrade * the performance of ongoing read/write operations. */ #define UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND (1 << 6) /* * If host controller hardware can be power collapsed when UFS link is * in hibern8 then enable this cap. */ #define UFSHCD_CAP_POWER_COLLAPSE_DURING_HIBERN8 (1 << 7) struct devfreq *devfreq; struct ufs_clk_scaling clk_scaling; bool is_sys_suspended; enum bkops_status urgent_bkops_lvl; bool is_urgent_bkops_lvl_checked; struct rw_semaphore clk_scaling_lock; /* If set, don't gate device ref_clk during clock gating */ bool no_ref_clk_gating; int scsi_block_reqs_cnt; }; /* Returns true if clocks can be gated. Otherwise false */ static inline bool ufshcd_is_clkgating_allowed(struct ufs_hba *hba) { return hba->caps & UFSHCD_CAP_CLK_GATING; } static inline bool ufshcd_can_hibern8_during_gating(struct ufs_hba *hba) { return hba->caps & UFSHCD_CAP_HIBERN8_WITH_CLK_GATING; } static inline int ufshcd_is_clkscaling_supported(struct ufs_hba *hba) { return hba->caps & UFSHCD_CAP_CLK_SCALING; } static inline bool ufshcd_can_autobkops_during_suspend(struct ufs_hba *hba) { return hba->caps & UFSHCD_CAP_AUTO_BKOPS_SUSPEND; } static inline bool ufshcd_is_hibern8_on_idle_allowed(struct ufs_hba *hba) { return hba->caps & UFSHCD_CAP_HIBERN8_ENTER_ON_IDLE; } static inline bool ufshcd_is_power_collapse_during_hibern8_allowed( struct ufs_hba *hba) { return !!(hba->caps & UFSHCD_CAP_POWER_COLLAPSE_DURING_HIBERN8); } static inline bool ufshcd_keep_autobkops_enabled_except_suspend( struct ufs_hba *hba) { return hba->caps & UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND; } static inline bool ufshcd_is_intr_aggr_allowed(struct ufs_hba *hba) { if ((hba->caps & UFSHCD_CAP_INTR_AGGR) && !(hba->quirks & UFSHCD_QUIRK_BROKEN_INTR_AGGR)) return true; else return false; } static inline bool ufshcd_is_auto_hibern8_supported(struct ufs_hba *hba) { return !!((hba->capabilities & MASK_AUTO_HIBERN8_SUPPORT) && !(hba->quirks & UFSHCD_QUIRK_BROKEN_AUTO_HIBERN8)); } static inline bool ufshcd_is_crypto_supported(struct ufs_hba *hba) { return !!(hba->capabilities & MASK_CRYPTO_SUPPORT); } #define ufshcd_writel(hba, val, reg) \ writel_relaxed((val), (hba)->mmio_base + (reg)) #define ufshcd_readl(hba, reg) \ readl_relaxed((hba)->mmio_base + (reg)) /** * ufshcd_rmwl - read modify write into a register * @hba - per adapter instance * @mask - mask to apply on read value * @val - actual value to write * @reg - register address */ static inline void ufshcd_rmwl(struct ufs_hba *hba, u32 mask, u32 val, u32 reg) { u32 tmp; tmp = ufshcd_readl(hba, reg); tmp &= ~mask; tmp |= (val & mask); ufshcd_writel(hba, tmp, reg); } int ufshcd_alloc_host(struct device *, struct ufs_hba **); void ufshcd_dealloc_host(struct ufs_hba *); int ufshcd_init(struct ufs_hba * , void __iomem * , unsigned int); void ufshcd_remove(struct ufs_hba *); int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask, u32 val, unsigned long interval_us, unsigned long timeout_ms, bool can_sleep); int ufshcd_uic_hibern8_enter(struct ufs_hba *hba); int ufshcd_uic_hibern8_exit(struct ufs_hba *hba); /** * ufshcd_set_variant - set variant specific data to the hba * @hba - per adapter instance * @variant - pointer to variant specific data */ static inline void ufshcd_set_variant(struct ufs_hba *hba, void *variant) { BUG_ON(!hba); hba->priv = variant; } /** * ufshcd_get_variant - get variant specific data from the hba * @hba - per adapter instance */ static inline void *ufshcd_get_variant(struct ufs_hba *hba) { BUG_ON(!hba); return hba->priv; } extern int ufshcd_runtime_suspend(struct ufs_hba *hba); extern int ufshcd_runtime_resume(struct ufs_hba *hba); extern int ufshcd_runtime_idle(struct ufs_hba *hba); extern int ufshcd_system_suspend(struct ufs_hba *hba); extern int ufshcd_system_resume(struct ufs_hba *hba); extern int ufshcd_shutdown(struct ufs_hba *hba); extern int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, u8 attr_set, u32 mib_val, u8 peer); extern int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel, u32 *mib_val, u8 peer); /* UIC command interfaces for DME primitives */ #define DME_LOCAL 0 #define DME_PEER 1 #define ATTR_SET_NOR 0 /* NORMAL */ #define ATTR_SET_ST 1 /* STATIC */ static inline int ufshcd_dme_set(struct ufs_hba *hba, u32 attr_sel, u32 mib_val) { return ufshcd_dme_set_attr(hba, attr_sel, ATTR_SET_NOR, mib_val, DME_LOCAL); } static inline int ufshcd_dme_st_set(struct ufs_hba *hba, u32 attr_sel, u32 mib_val) { return ufshcd_dme_set_attr(hba, attr_sel, ATTR_SET_ST, mib_val, DME_LOCAL); } static inline int ufshcd_dme_peer_set(struct ufs_hba *hba, u32 attr_sel, u32 mib_val) { return ufshcd_dme_set_attr(hba, attr_sel, ATTR_SET_NOR, mib_val, DME_PEER); } static inline int ufshcd_dme_peer_st_set(struct ufs_hba *hba, u32 attr_sel, u32 mib_val) { return ufshcd_dme_set_attr(hba, attr_sel, ATTR_SET_ST, mib_val, DME_PEER); } static inline int ufshcd_dme_get(struct ufs_hba *hba, u32 attr_sel, u32 *mib_val) { return ufshcd_dme_get_attr(hba, attr_sel, mib_val, DME_LOCAL); } static inline int ufshcd_dme_peer_get(struct ufs_hba *hba, u32 attr_sel, u32 *mib_val) { return ufshcd_dme_get_attr(hba, attr_sel, mib_val, DME_PEER); } /** * ufshcd_dme_rmw - get modify set a dme attribute * @hba - per adapter instance * @mask - mask to apply on read value * @val - actual value to write * @attr - dme attribute */ static inline int ufshcd_dme_rmw(struct ufs_hba *hba, u32 mask, u32 val, u32 attr) { u32 cfg = 0; int err = 0; err = ufshcd_dme_get(hba, UIC_ARG_MIB(attr), &cfg); if (err) goto out; cfg &= ~mask; cfg |= (val & mask); err = ufshcd_dme_set(hba, UIC_ARG_MIB(attr), cfg); out: return err; } int ufshcd_read_device_desc(struct ufs_hba *hba, u8 *buf, u32 size); static inline bool ufshcd_is_hs_mode(struct ufs_pa_layer_attr *pwr_info) { return (pwr_info->pwr_rx == FAST_MODE || pwr_info->pwr_rx == FASTAUTO_MODE) && (pwr_info->pwr_tx == FAST_MODE || pwr_info->pwr_tx == FASTAUTO_MODE); } #ifdef CONFIG_DEBUG_FS static inline void ufshcd_init_req_stats(struct ufs_hba *hba) { memset(hba->ufs_stats.req_stats, 0, sizeof(hba->ufs_stats.req_stats)); } #else static inline void ufshcd_init_req_stats(struct ufs_hba *hba) {} #endif #define ASCII_STD true #define UTF16_STD false int ufshcd_read_string_desc(struct ufs_hba *hba, int desc_index, u8 *buf, u32 size, bool ascii); /* Expose Query-Request API */ int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode, enum flag_idn idn, bool *flag_res); int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector, u32 *attr_val); int ufshcd_query_descriptor(struct ufs_hba *hba, enum query_opcode opcode, enum desc_idn idn, u8 index, u8 selector, u8 *desc_buf, int *buf_len); int ufshcd_hold(struct ufs_hba *hba, bool async); void ufshcd_release(struct ufs_hba *hba, bool no_sched); int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba, u64 wait_timeout_us); int ufshcd_change_power_mode(struct ufs_hba *hba, struct ufs_pa_layer_attr *pwr_mode); void ufshcd_abort_outstanding_transfer_requests(struct ufs_hba *hba, int result); u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba); void ufshcd_scsi_block_requests(struct ufs_hba *hba); void ufshcd_scsi_unblock_requests(struct ufs_hba *hba); /* Wrapper functions for safely calling variant operations */ static inline const char *ufshcd_get_var_name(struct ufs_hba *hba) { if (hba->var && hba->var->name) return hba->var->name; return ""; } static inline int ufshcd_vops_init(struct ufs_hba *hba) { if (hba->var && hba->var->vops && hba->var->vops->init) return hba->var->vops->init(hba); return 0; } static inline void ufshcd_vops_exit(struct ufs_hba *hba) { if (hba->var && hba->var->vops && hba->var->vops->exit) hba->var->vops->exit(hba); } static inline u32 ufshcd_vops_get_ufs_hci_version(struct ufs_hba *hba) { if (hba->var && hba->var->vops && hba->var->vops->get_ufs_hci_version) return hba->var->vops->get_ufs_hci_version(hba); return ufshcd_readl(hba, REG_UFS_VERSION); } static inline int ufshcd_vops_clk_scale_notify(struct ufs_hba *hba, bool up, enum ufs_notify_change_status status) { if (hba->var && hba->var->vops && hba->var->vops->clk_scale_notify) return hba->var->vops->clk_scale_notify(hba, up, status); return 0; } static inline int ufshcd_vops_setup_clocks(struct ufs_hba *hba, bool on, bool is_gating_context) { if (hba->var && hba->var->vops && hba->var->vops->setup_clocks) return hba->var->vops->setup_clocks(hba, on, is_gating_context); return 0; } static inline int ufshcd_vops_setup_regulators(struct ufs_hba *hba, bool status) { if (hba->var && hba->var->vops && hba->var->vops->setup_regulators) return hba->var->vops->setup_regulators(hba, status); return 0; } static inline int ufshcd_vops_hce_enable_notify(struct ufs_hba *hba, bool status) { if (hba->var && hba->var->vops && hba->var->vops->hce_enable_notify) hba->var->vops->hce_enable_notify(hba, status); return 0; } static inline int ufshcd_vops_link_startup_notify(struct ufs_hba *hba, bool status) { if (hba->var && hba->var->vops && hba->var->vops->link_startup_notify) return hba->var->vops->link_startup_notify(hba, status); return 0; } static inline int ufshcd_vops_pwr_change_notify(struct ufs_hba *hba, bool status, struct ufs_pa_layer_attr *dev_max_params, struct ufs_pa_layer_attr *dev_req_params) { if (hba->var && hba->var->vops && hba->var->vops->pwr_change_notify) return hba->var->vops->pwr_change_notify(hba, status, dev_max_params, dev_req_params); return -ENOTSUPP; } static inline int ufshcd_vops_apply_dev_quirks(struct ufs_hba *hba) { if (hba->var && hba->var->vops && hba->var->vops->apply_dev_quirks) return hba->var->vops->apply_dev_quirks(hba); return 0; } static inline int ufshcd_vops_suspend(struct ufs_hba *hba, enum ufs_pm_op op) { if (hba->var && hba->var->vops && hba->var->vops->suspend) return hba->var->vops->suspend(hba, op); return 0; } static inline int ufshcd_vops_resume(struct ufs_hba *hba, enum ufs_pm_op op) { if (hba->var && hba->var->vops && hba->var->vops->resume) return hba->var->vops->resume(hba, op); return 0; } static inline int ufshcd_vops_full_reset(struct ufs_hba *hba) { if (hba->var && hba->var->vops && hba->var->vops->full_reset) return hba->var->vops->full_reset(hba); return 0; } static inline void ufshcd_vops_dbg_register_dump(struct ufs_hba *hba) { if (hba->var && hba->var->vops && hba->var->vops->dbg_register_dump) hba->var->vops->dbg_register_dump(hba); } static inline int ufshcd_vops_update_sec_cfg(struct ufs_hba *hba, bool restore_sec_cfg) { if (hba->var && hba->var->vops && hba->var->vops->update_sec_cfg) return hba->var->vops->update_sec_cfg(hba, restore_sec_cfg); return 0; } static inline u32 ufshcd_vops_get_scale_down_gear(struct ufs_hba *hba) { if (hba->var && hba->var->vops && hba->var->vops->get_scale_down_gear) return hba->var->vops->get_scale_down_gear(hba); /* Default to lowest high speed gear */ return UFS_HS_G1; } static inline int ufshcd_vops_set_bus_vote(struct ufs_hba *hba, bool on) { if (hba->var && hba->var->vops && hba->var->vops->set_bus_vote) return hba->var->vops->set_bus_vote(hba, on); return 0; } #ifdef CONFIG_DEBUG_FS static inline void ufshcd_vops_add_debugfs(struct ufs_hba *hba, struct dentry *root) { if (hba->var && hba->var->vops && hba->var->vops->add_debugfs) hba->var->vops->add_debugfs(hba, root); } static inline void ufshcd_vops_remove_debugfs(struct ufs_hba *hba) { if (hba->var && hba->var->vops && hba->var->vops->remove_debugfs) hba->var->vops->remove_debugfs(hba); } #else static inline void ufshcd_vops_add_debugfs(struct ufs_hba *hba, struct dentry *) { } static inline void ufshcd_vops_remove_debugfs(struct ufs_hba *hba) { } #endif static inline int ufshcd_vops_crypto_req_setup(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, u8 *cc_index, bool *enable, u64 *dun) { if (hba->var && hba->var->crypto_vops && hba->var->crypto_vops->crypto_req_setup) return hba->var->crypto_vops->crypto_req_setup(hba, lrbp, cc_index, enable, dun); return 0; } static inline int ufshcd_vops_crypto_engine_cfg_start(struct ufs_hba *hba, unsigned int task_tag) { if (hba->var && hba->var->crypto_vops && hba->var->crypto_vops->crypto_engine_cfg_start) return hba->var->crypto_vops->crypto_engine_cfg_start (hba, task_tag); return 0; } static inline int ufshcd_vops_crypto_engine_cfg_end(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, struct request *req) { if (hba->var && hba->var->crypto_vops && hba->var->crypto_vops->crypto_engine_cfg_end) return hba->var->crypto_vops->crypto_engine_cfg_end (hba, lrbp, req); return 0; } static inline int ufshcd_vops_crypto_engine_reset(struct ufs_hba *hba) { if (hba->var && hba->var->crypto_vops && hba->var->crypto_vops->crypto_engine_reset) return hba->var->crypto_vops->crypto_engine_reset(hba); return 0; } static inline int ufshcd_vops_crypto_engine_get_status(struct ufs_hba *hba, u32 *status) { if (hba->var && hba->var->crypto_vops && hba->var->crypto_vops->crypto_engine_get_status) return hba->var->crypto_vops->crypto_engine_get_status(hba, status); return 0; } static inline void ufshcd_vops_pm_qos_req_start(struct ufs_hba *hba, struct request *req) { if (hba->var && hba->var->pm_qos_vops && hba->var->pm_qos_vops->req_start) hba->var->pm_qos_vops->req_start(hba, req); } static inline void ufshcd_vops_pm_qos_req_end(struct ufs_hba *hba, struct request *req, bool lock) { if (hba->var && hba->var->pm_qos_vops && hba->var->pm_qos_vops->req_end) hba->var->pm_qos_vops->req_end(hba, req, lock); } #endif /* End of Header */