/* * Copyright (c) 2012-2017, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* PMIC Arbiter configuration registers */ #define PMIC_ARB_VERSION 0x0000 #define PMIC_ARB_VERSION_V2_MIN 0x20010000 #define PMIC_ARB_VERSION_V3_MIN 0x30000000 #define PMIC_ARB_VERSION_V5_MIN 0x50000000 #define PMIC_ARB_INT_EN 0x0004 /* PMIC Arbiter channel registers offsets */ #define PMIC_ARB_CMD 0x00 #define PMIC_ARB_CONFIG 0x04 #define PMIC_ARB_STATUS 0x08 #define PMIC_ARB_WDATA0 0x10 #define PMIC_ARB_WDATA1 0x14 #define PMIC_ARB_RDATA0 0x18 #define PMIC_ARB_RDATA1 0x1C /* Mapping Table */ #define SPMI_MAPPING_TABLE_REG(N) (0x0B00 + (4 * (N))) #define SPMI_MAPPING_BIT_INDEX(X) (((X) >> 18) & 0xF) #define SPMI_MAPPING_BIT_IS_0_FLAG(X) (((X) >> 17) & 0x1) #define SPMI_MAPPING_BIT_IS_0_RESULT(X) (((X) >> 9) & 0xFF) #define SPMI_MAPPING_BIT_IS_1_FLAG(X) (((X) >> 8) & 0x1) #define SPMI_MAPPING_BIT_IS_1_RESULT(X) (((X) >> 0) & 0xFF) #define SPMI_MAPPING_TABLE_TREE_DEPTH 16 /* Maximum of 16-bits */ #define PMIC_ARB_MAX_PPID BIT(12) /* PPID is 12bit */ #define PMIC_ARB_CHAN_VALID BIT(15) #define PMIC_ARB_CHAN_IS_IRQ_OWNER(reg) ((reg) & BIT(24)) #define INVALID_EE (-1) /* Ownership Table */ #define SPMI_OWNERSHIP_TABLE_REG(N) (0x0700 + (4 * (N))) #define SPMI_OWNERSHIP_PERIPH2OWNER(X) ((X) & 0x7) /* Channel Status fields */ enum pmic_arb_chnl_status { PMIC_ARB_STATUS_DONE = BIT(0), PMIC_ARB_STATUS_FAILURE = BIT(1), PMIC_ARB_STATUS_DENIED = BIT(2), PMIC_ARB_STATUS_DROPPED = BIT(3), }; /* Command register fields */ #define PMIC_ARB_CMD_MAX_BYTE_COUNT 8 /* Command Opcodes */ enum pmic_arb_cmd_op_code { PMIC_ARB_OP_EXT_WRITEL = 0, PMIC_ARB_OP_EXT_READL = 1, PMIC_ARB_OP_EXT_WRITE = 2, PMIC_ARB_OP_RESET = 3, PMIC_ARB_OP_SLEEP = 4, PMIC_ARB_OP_SHUTDOWN = 5, PMIC_ARB_OP_WAKEUP = 6, PMIC_ARB_OP_AUTHENTICATE = 7, PMIC_ARB_OP_MSTR_READ = 8, PMIC_ARB_OP_MSTR_WRITE = 9, PMIC_ARB_OP_EXT_READ = 13, PMIC_ARB_OP_WRITE = 14, PMIC_ARB_OP_READ = 15, PMIC_ARB_OP_ZERO_WRITE = 16, }; /* * PMIC arbiter version 5 uses different register offsets for read/write vs * observer channels. */ enum pmic_arb_channel { PMIC_ARB_CHANNEL_RW, PMIC_ARB_CHANNEL_OBS, }; /* Maximum number of support PMIC peripherals */ #define PMIC_ARB_MAX_PERIPHS 512 #define PMIC_ARB_TIMEOUT_US 100 #define PMIC_ARB_MAX_TRANS_BYTES (8) #define PMIC_ARB_APID_MASK 0xFF #define PMIC_ARB_PPID_MASK 0xFFF /* interrupt enable bit */ #define SPMI_PIC_ACC_ENABLE_BIT BIT(0) #define HWIRQ(slave_id, periph_id, irq_id, apid) \ ((((slave_id) & 0xF) << 28) | \ (((periph_id) & 0xFF) << 20) | \ (((irq_id) & 0x7) << 16) | \ (((apid) & 0x1FF) << 0)) #define HWIRQ_SID(hwirq) (((hwirq) >> 28) & 0xF) #define HWIRQ_PER(hwirq) (((hwirq) >> 20) & 0xFF) #define HWIRQ_IRQ(hwirq) (((hwirq) >> 16) & 0x7) #define HWIRQ_APID(hwirq) (((hwirq) >> 0) & 0x1FF) struct pmic_arb_ver_ops; struct apid_data { u16 ppid; u8 write_owner; u8 irq_owner; }; /** * spmi_pmic_arb - SPMI PMIC Arbiter object * * @rd_base: on v1 "core", on v2 "observer" register base off DT. * @wr_base: on v1 "core", on v2 "chnls" register base off DT. * @intr: address of the SPMI interrupt control registers. * @acc_status: address of SPMI ACC interrupt status registers. * @cnfg: address of the PMIC Arbiter configuration registers. * @lock: lock to synchronize accesses. * @channel: execution environment channel to use for accesses. * @irq: PMIC ARB interrupt. * @ee: the current Execution Environment * @min_apid: minimum APID (used for bounding IRQ search) * @max_apid: maximum APID * @max_periph: maximum number of PMIC peripherals supported by HW. * @mapping_table: in-memory copy of PPID -> APID mapping table. * @domain: irq domain object for PMIC IRQ domain * @spmic: SPMI controller object * @ver_ops: version dependent operations. * @ppid_to_apid in-memory copy of PPID -> channel (APID) mapping table. * v2 only. */ struct spmi_pmic_arb { void __iomem *rd_base; void __iomem *wr_base; void __iomem *intr; void __iomem *acc_status; void __iomem *cnfg; void __iomem *core; resource_size_t core_size; raw_spinlock_t lock; u8 channel; int irq; u8 ee; u16 min_apid; u16 max_apid; u16 max_periph; u32 *mapping_table; int reserved_chan; DECLARE_BITMAP(mapping_table_valid, PMIC_ARB_MAX_PERIPHS); struct irq_domain *domain; struct spmi_controller *spmic; const struct pmic_arb_ver_ops *ver_ops; u16 *ppid_to_apid; u16 last_apid; struct apid_data apid_data[PMIC_ARB_MAX_PERIPHS]; }; static struct spmi_pmic_arb *the_pa; /** * pmic_arb_ver: version dependent functionality. * * @ver_str: version string. * @ppid_to_apid: finds the apid for a given ppid. * @mode: access rights to specified pmic peripheral. * @non_data_cmd: on v1 issues an spmi non-data command. * on v2 no HW support, returns -EOPNOTSUPP. * @offset: on v1 offset of per-ee channel. * on v2 offset of per-ee and per-ppid channel. * @fmt_cmd: formats a GENI/SPMI command. * @owner_acc_status: on v1 offset of PMIC_ARB_SPMI_PIC_OWNERm_ACC_STATUSn * on v2 offset of SPMI_PIC_OWNERm_ACC_STATUSn. * @acc_enable: on v1 offset of PMIC_ARB_SPMI_PIC_ACC_ENABLEn * on v2 offset of SPMI_PIC_ACC_ENABLEn. * @irq_status: on v1 offset of PMIC_ARB_SPMI_PIC_IRQ_STATUSn * on v2 offset of SPMI_PIC_IRQ_STATUSn. * @irq_clear: on v1 offset of PMIC_ARB_SPMI_PIC_IRQ_CLEARn * on v2 offset of SPMI_PIC_IRQ_CLEARn. * @channel_map_offset: offset of PMIC_ARB_REG_CHNLn */ struct pmic_arb_ver_ops { const char *ver_str; int (*ppid_to_apid)(struct spmi_pmic_arb *pa, u8 sid, u16 addr, u16 *apid); int (*mode)(struct spmi_pmic_arb *dev, u8 sid, u16 addr, mode_t *mode); /* spmi commands (read_cmd, write_cmd, cmd) functionality */ int (*offset)(struct spmi_pmic_arb *dev, u8 sid, u16 addr, enum pmic_arb_channel ch_type, u32 *offset); u32 (*fmt_cmd)(u8 opc, u8 sid, u16 addr, u8 bc); int (*non_data_cmd)(struct spmi_controller *ctrl, u8 opc, u8 sid); /* Interrupts controller functionality (offset of PIC registers) */ u32 (*owner_acc_status)(u8 m, u16 n); u32 (*acc_enable)(u16 n); u32 (*irq_status)(u16 n); u32 (*irq_clear)(u16 n); u32 (*channel_map_offset)(u16 n); }; static inline void pmic_arb_base_write(struct spmi_pmic_arb *pa, u32 offset, u32 val) { writel_relaxed(val, pa->wr_base + offset); } static inline void pmic_arb_set_rd_cmd(struct spmi_pmic_arb *pa, u32 offset, u32 val) { writel_relaxed(val, pa->rd_base + offset); } /** * pa_read_data: reads pmic-arb's register and copy 1..4 bytes to buf * @bc: byte count -1. range: 0..3 * @reg: register's address * @buf: output parameter, length must be bc + 1 */ static void pa_read_data(struct spmi_pmic_arb *pa, u8 *buf, u32 reg, u8 bc) { u32 data = __raw_readl(pa->rd_base + reg); memcpy(buf, &data, (bc & 3) + 1); } /** * pa_write_data: write 1..4 bytes from buf to pmic-arb's register * @bc: byte-count -1. range: 0..3. * @reg: register's address. * @buf: buffer to write. length must be bc + 1. */ static void pa_write_data(struct spmi_pmic_arb *pa, const u8 *buf, u32 reg, u8 bc) { u32 data = 0; memcpy(&data, buf, (bc & 3) + 1); pmic_arb_base_write(pa, reg, data); } static int pmic_arb_wait_for_done(struct spmi_controller *ctrl, void __iomem *base, u8 sid, u16 addr, enum pmic_arb_channel ch_type) { struct spmi_pmic_arb *pa = spmi_controller_get_drvdata(ctrl); u32 status = 0; u32 timeout = PMIC_ARB_TIMEOUT_US; u32 offset; int rc; rc = pa->ver_ops->offset(pa, sid, addr, ch_type, &offset); if (rc) return rc; offset += PMIC_ARB_STATUS; while (timeout--) { status = readl_relaxed(base + offset); if (status & PMIC_ARB_STATUS_DONE) { if (status & PMIC_ARB_STATUS_DENIED) { dev_err(&ctrl->dev, "%s: transaction denied (0x%x)\n", __func__, status); return -EPERM; } if (status & PMIC_ARB_STATUS_FAILURE) { dev_err(&ctrl->dev, "%s: transaction failed (0x%x)\n", __func__, status); return -EIO; } if (status & PMIC_ARB_STATUS_DROPPED) { dev_err(&ctrl->dev, "%s: transaction dropped (0x%x)\n", __func__, status); return -EIO; } return 0; } udelay(1); } dev_err(&ctrl->dev, "%s: timeout, status 0x%x\n", __func__, status); return -ETIMEDOUT; } static int pmic_arb_non_data_cmd_v1(struct spmi_controller *ctrl, u8 opc, u8 sid) { struct spmi_pmic_arb *pa = spmi_controller_get_drvdata(ctrl); unsigned long flags; u32 cmd; int rc; u32 offset; rc = pa->ver_ops->offset(pa, sid, 0, PMIC_ARB_CHANNEL_RW, &offset); if (rc) return rc; cmd = ((opc | 0x40) << 27) | ((sid & 0xf) << 20); raw_spin_lock_irqsave(&pa->lock, flags); pmic_arb_base_write(pa, offset + PMIC_ARB_CMD, cmd); rc = pmic_arb_wait_for_done(ctrl, pa->wr_base, sid, 0, PMIC_ARB_CHANNEL_RW); raw_spin_unlock_irqrestore(&pa->lock, flags); return rc; } static int pmic_arb_non_data_cmd_v2(struct spmi_controller *ctrl, u8 opc, u8 sid) { return -EOPNOTSUPP; } /* Non-data command */ static int pmic_arb_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid) { struct spmi_pmic_arb *pa = spmi_controller_get_drvdata(ctrl); dev_dbg(&ctrl->dev, "cmd op:0x%x sid:%d\n", opc, sid); /* Check for valid non-data command */ if (opc < SPMI_CMD_RESET || opc > SPMI_CMD_WAKEUP) return -EINVAL; return pa->ver_ops->non_data_cmd(ctrl, opc, sid); } static int pmic_arb_read_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid, u16 addr, u8 *buf, size_t len) { struct spmi_pmic_arb *pa = spmi_controller_get_drvdata(ctrl); unsigned long flags; u8 bc = len - 1; u32 cmd; int rc; u32 offset; mode_t mode; rc = pa->ver_ops->offset(pa, sid, addr, PMIC_ARB_CHANNEL_OBS, &offset); if (rc) return rc; rc = pa->ver_ops->mode(pa, sid, addr, &mode); if (rc) return rc; if (!(mode & 0400)) { dev_err(&pa->spmic->dev, "error: impermissible read from peripheral sid:%d addr:0x%x\n", sid, addr); return -ENODEV; } if (bc >= PMIC_ARB_MAX_TRANS_BYTES) { dev_err(&ctrl->dev, "pmic-arb supports 1..%d bytes per trans, but:%zu requested", PMIC_ARB_MAX_TRANS_BYTES, len); return -EINVAL; } /* Check the opcode */ if (opc >= 0x60 && opc <= 0x7F) opc = PMIC_ARB_OP_READ; else if (opc >= 0x20 && opc <= 0x2F) opc = PMIC_ARB_OP_EXT_READ; else if (opc >= 0x38 && opc <= 0x3F) opc = PMIC_ARB_OP_EXT_READL; else return -EINVAL; cmd = pa->ver_ops->fmt_cmd(opc, sid, addr, bc); raw_spin_lock_irqsave(&pa->lock, flags); pmic_arb_set_rd_cmd(pa, offset + PMIC_ARB_CMD, cmd); rc = pmic_arb_wait_for_done(ctrl, pa->rd_base, sid, addr, PMIC_ARB_CHANNEL_OBS); if (rc) goto done; pa_read_data(pa, buf, offset + PMIC_ARB_RDATA0, min_t(u8, bc, 3)); if (bc > 3) pa_read_data(pa, buf + 4, offset + PMIC_ARB_RDATA1, bc - 4); done: raw_spin_unlock_irqrestore(&pa->lock, flags); return rc; } static int pmic_arb_write_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid, u16 addr, const u8 *buf, size_t len) { struct spmi_pmic_arb *pa = spmi_controller_get_drvdata(ctrl); unsigned long flags; u8 bc = len - 1; u32 cmd; int rc; u32 offset; mode_t mode; rc = pa->ver_ops->offset(pa, sid, addr, PMIC_ARB_CHANNEL_RW, &offset); if (rc) return rc; rc = pa->ver_ops->mode(pa, sid, addr, &mode); if (rc) return rc; if (!(mode & 0200)) { dev_err(&pa->spmic->dev, "error: impermissible write to peripheral sid:%d addr:0x%x\n", sid, addr); return -ENODEV; } if (bc >= PMIC_ARB_MAX_TRANS_BYTES) { dev_err(&ctrl->dev, "pmic-arb supports 1..%d bytes per trans, but:%zu requested", PMIC_ARB_MAX_TRANS_BYTES, len); return -EINVAL; } /* Check the opcode */ if (opc >= 0x40 && opc <= 0x5F) opc = PMIC_ARB_OP_WRITE; else if (opc >= 0x00 && opc <= 0x0F) opc = PMIC_ARB_OP_EXT_WRITE; else if (opc >= 0x30 && opc <= 0x37) opc = PMIC_ARB_OP_EXT_WRITEL; else if (opc >= 0x80) opc = PMIC_ARB_OP_ZERO_WRITE; else return -EINVAL; cmd = pa->ver_ops->fmt_cmd(opc, sid, addr, bc); /* Write data to FIFOs */ raw_spin_lock_irqsave(&pa->lock, flags); pa_write_data(pa, buf, offset + PMIC_ARB_WDATA0, min_t(u8, bc, 3)); if (bc > 3) pa_write_data(pa, buf + 4, offset + PMIC_ARB_WDATA1, bc - 4); /* Start the transaction */ pmic_arb_base_write(pa, offset + PMIC_ARB_CMD, cmd); rc = pmic_arb_wait_for_done(ctrl, pa->wr_base, sid, addr, PMIC_ARB_CHANNEL_RW); raw_spin_unlock_irqrestore(&pa->lock, flags); return rc; } enum qpnpint_regs { QPNPINT_REG_RT_STS = 0x10, QPNPINT_REG_SET_TYPE = 0x11, QPNPINT_REG_POLARITY_HIGH = 0x12, QPNPINT_REG_POLARITY_LOW = 0x13, QPNPINT_REG_LATCHED_CLR = 0x14, QPNPINT_REG_EN_SET = 0x15, QPNPINT_REG_EN_CLR = 0x16, QPNPINT_REG_LATCHED_STS = 0x18, }; struct spmi_pmic_arb_qpnpint_type { u8 type; /* 1 -> edge */ u8 polarity_high; u8 polarity_low; } __packed; /* Simplified accessor functions for irqchip callbacks */ static void qpnpint_spmi_write(struct irq_data *d, u8 reg, void *buf, size_t len) { struct spmi_pmic_arb *pa = irq_data_get_irq_chip_data(d); u8 sid = HWIRQ_SID(d->hwirq); u8 per = HWIRQ_PER(d->hwirq); if (pmic_arb_write_cmd(pa->spmic, SPMI_CMD_EXT_WRITEL, sid, (per << 8) + reg, buf, len)) dev_err_ratelimited(&pa->spmic->dev, "failed irqchip transaction on %x\n", d->irq); } static void qpnpint_spmi_read(struct irq_data *d, u8 reg, void *buf, size_t len) { struct spmi_pmic_arb *pa = irq_data_get_irq_chip_data(d); u8 sid = HWIRQ_SID(d->hwirq); u8 per = HWIRQ_PER(d->hwirq); if (pmic_arb_read_cmd(pa->spmic, SPMI_CMD_EXT_READL, sid, (per << 8) + reg, buf, len)) dev_err_ratelimited(&pa->spmic->dev, "failed irqchip transaction on %x\n", d->irq); } static void cleanup_irq(struct spmi_pmic_arb *pa, u16 apid, int id) { u16 ppid = pa->apid_data[apid].ppid; u8 sid = ppid >> 8; u8 per = ppid & 0xFF; u8 irq_mask = BIT(id); dev_err_ratelimited(&pa->spmic->dev, "cleanup_irq apid=%d sid=0x%x per=0x%x irq=%d\n", apid, sid, per, id); writel_relaxed(irq_mask, pa->intr + pa->ver_ops->irq_clear(apid)); } static void periph_interrupt(struct spmi_pmic_arb *pa, u16 apid, bool show) { unsigned int irq; u32 status; int id; u8 sid = (pa->apid_data[apid].ppid >> 8) & 0xF; u8 per = pa->apid_data[apid].ppid & 0xFF; status = readl_relaxed(pa->intr + pa->ver_ops->irq_status(apid)); while (status) { id = ffs(status) - 1; status &= ~BIT(id); irq = irq_find_mapping(pa->domain, HWIRQ(sid, per, id, apid)); if (irq == 0) { cleanup_irq(pa, apid, id); continue; } if (show) { struct irq_desc *desc; const char *name = "null"; desc = irq_to_desc(irq); if (desc == NULL) name = "stray irq"; else if (desc->action && desc->action->name) name = desc->action->name; pr_warn("spmi_show_resume_irq: %d triggered [0x%01x, 0x%02x, 0x%01x] %s\n", irq, sid, per, id, name); } else { generic_handle_irq(irq); } } } static void __pmic_arb_chained_irq(struct spmi_pmic_arb *pa, bool show) { int first = pa->min_apid >> 5; int last = pa->max_apid >> 5; u32 status, enable; int i, id, apid; /* status based dispatch */ bool acc_valid = false; u32 irq_status = 0; for (i = first; i <= last; ++i) { status = readl_relaxed(pa->acc_status + pa->ver_ops->owner_acc_status(pa->ee, i)); if (status) acc_valid = true; while (status) { id = ffs(status) - 1; status &= ~BIT(id); apid = id + i * 32; if (apid < pa->min_apid || apid > pa->max_apid) { WARN_ONCE(true, "spurious spmi irq received for apid=%d\n", apid); continue; } enable = readl_relaxed(pa->intr + pa->ver_ops->acc_enable(apid)); if (enable & SPMI_PIC_ACC_ENABLE_BIT) periph_interrupt(pa, apid, show); } } /* ACC_STATUS is empty but IRQ fired check IRQ_STATUS */ if (!acc_valid) { for (i = pa->min_apid; i <= pa->max_apid; i++) { /* skip if APPS is not irq owner */ if (pa->apid_data[i].irq_owner != pa->ee) continue; irq_status = readl_relaxed(pa->intr + pa->ver_ops->irq_status(i)); if (irq_status) { enable = readl_relaxed(pa->intr + pa->ver_ops->acc_enable(i)); if (enable & SPMI_PIC_ACC_ENABLE_BIT) { dev_dbg(&pa->spmic->dev, "Dispatching IRQ for apid=%d status=%x\n", i, irq_status); periph_interrupt(pa, i, show); } } } } } static void pmic_arb_chained_irq(struct irq_desc *desc) { struct spmi_pmic_arb *pa = irq_desc_get_handler_data(desc); struct irq_chip *chip = irq_desc_get_chip(desc); chained_irq_enter(chip, desc); __pmic_arb_chained_irq(pa, false); chained_irq_exit(chip, desc); } static void qpnpint_irq_ack(struct irq_data *d) { struct spmi_pmic_arb *pa = irq_data_get_irq_chip_data(d); u8 irq = HWIRQ_IRQ(d->hwirq); u16 apid = HWIRQ_APID(d->hwirq); u8 data; writel_relaxed(BIT(irq), pa->intr + pa->ver_ops->irq_clear(apid)); data = BIT(irq); qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &data, 1); } static void qpnpint_irq_mask(struct irq_data *d) { u8 irq = HWIRQ_IRQ(d->hwirq); u8 data = BIT(irq); qpnpint_spmi_write(d, QPNPINT_REG_EN_CLR, &data, 1); } static void qpnpint_irq_unmask(struct irq_data *d) { struct spmi_pmic_arb *pa = irq_data_get_irq_chip_data(d); u8 irq = HWIRQ_IRQ(d->hwirq); u16 apid = HWIRQ_APID(d->hwirq); u8 buf[2]; writel_relaxed(SPMI_PIC_ACC_ENABLE_BIT, pa->intr + pa->ver_ops->acc_enable(apid)); qpnpint_spmi_read(d, QPNPINT_REG_EN_SET, &buf[0], 1); if (!(buf[0] & BIT(irq))) { /* * Since the interrupt is currently disabled, write to both the * LATCHED_CLR and EN_SET registers so that a spurious interrupt * cannot be triggered when the interrupt is enabled */ buf[0] = BIT(irq); buf[1] = BIT(irq); qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &buf, 2); } } static int qpnpint_irq_set_type(struct irq_data *d, unsigned int flow_type) { struct spmi_pmic_arb_qpnpint_type type; u8 irq = HWIRQ_IRQ(d->hwirq); u8 bit_mask_irq = BIT(irq); qpnpint_spmi_read(d, QPNPINT_REG_SET_TYPE, &type, sizeof(type)); if (flow_type & (IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING)) { type.type |= bit_mask_irq; if (flow_type & IRQF_TRIGGER_RISING) type.polarity_high |= bit_mask_irq; if (flow_type & IRQF_TRIGGER_FALLING) type.polarity_low |= bit_mask_irq; } else { if ((flow_type & (IRQF_TRIGGER_HIGH)) && (flow_type & (IRQF_TRIGGER_LOW))) return -EINVAL; type.type &= ~bit_mask_irq; /* level trig */ if (flow_type & IRQF_TRIGGER_HIGH) type.polarity_high |= bit_mask_irq; else type.polarity_low |= bit_mask_irq; } qpnpint_spmi_write(d, QPNPINT_REG_SET_TYPE, &type, sizeof(type)); if (flow_type & IRQ_TYPE_EDGE_BOTH) irq_set_handler_locked(d, handle_edge_irq); else irq_set_handler_locked(d, handle_level_irq); return 0; } static int qpnpint_get_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool *state) { u8 irq = HWIRQ_IRQ(d->hwirq); u8 status = 0; if (which != IRQCHIP_STATE_LINE_LEVEL) return -EINVAL; qpnpint_spmi_read(d, QPNPINT_REG_RT_STS, &status, 1); *state = !!(status & BIT(irq)); return 0; } static struct irq_chip pmic_arb_irqchip = { .name = "pmic_arb", .irq_ack = qpnpint_irq_ack, .irq_mask = qpnpint_irq_mask, .irq_unmask = qpnpint_irq_unmask, .irq_set_type = qpnpint_irq_set_type, .irq_get_irqchip_state = qpnpint_get_irqchip_state, .flags = IRQCHIP_MASK_ON_SUSPEND | IRQCHIP_SKIP_SET_WAKE, }; static void qpnpint_irq_domain_activate(struct irq_domain *domain, struct irq_data *d) { u8 irq = HWIRQ_IRQ(d->hwirq); u8 buf; buf = BIT(irq); qpnpint_spmi_write(d, QPNPINT_REG_EN_CLR, &buf, 1); qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &buf, 1); } static int qpnpint_irq_domain_dt_translate(struct irq_domain *d, struct device_node *controller, const u32 *intspec, unsigned int intsize, unsigned long *out_hwirq, unsigned int *out_type) { struct spmi_pmic_arb *pa = d->host_data; int rc; u16 apid; dev_dbg(&pa->spmic->dev, "intspec[0] 0x%1x intspec[1] 0x%02x intspec[2] 0x%02x\n", intspec[0], intspec[1], intspec[2]); if (irq_domain_get_of_node(d) != controller) return -EINVAL; if (intsize != 4) return -EINVAL; if (intspec[0] > 0xF || intspec[1] > 0xFF || intspec[2] > 0x7) return -EINVAL; rc = pa->ver_ops->ppid_to_apid(pa, intspec[0], (intspec[1] << 8), &apid); if (rc < 0) { dev_err(&pa->spmic->dev, "failed to xlate sid = 0x%x, periph = 0x%x, irq = %u rc = %d\n", intspec[0], intspec[1], intspec[2], rc); return rc; } if (pa->apid_data[apid].irq_owner != pa->ee) { dev_err(&pa->spmic->dev, "failed to xlate sid = 0x%x, periph = 0x%x, irq = %u: ee=%u but owner=%u\n", intspec[0], intspec[1], intspec[2], pa->ee, pa->apid_data[apid].irq_owner); return -ENODEV; } /* Keep track of {max,min}_apid for bounding search during interrupt */ if (apid > pa->max_apid) pa->max_apid = apid; if (apid < pa->min_apid) pa->min_apid = apid; *out_hwirq = HWIRQ(intspec[0], intspec[1], intspec[2], apid); *out_type = intspec[3] & IRQ_TYPE_SENSE_MASK; dev_dbg(&pa->spmic->dev, "out_hwirq = %lu\n", *out_hwirq); return 0; } static int qpnpint_irq_domain_map(struct irq_domain *d, unsigned int virq, irq_hw_number_t hwirq) { struct spmi_pmic_arb *pa = d->host_data; dev_dbg(&pa->spmic->dev, "virq = %u, hwirq = %lu\n", virq, hwirq); irq_set_chip_and_handler(virq, &pmic_arb_irqchip, handle_level_irq); irq_set_chip_data(virq, d->host_data); irq_set_noprobe(virq); return 0; } static int pmic_arb_ppid_to_apid_v1(struct spmi_pmic_arb *pa, u8 sid, u16 addr, u16 *apid) { u16 ppid = sid << 8 | ((addr >> 8) & 0xFF); u32 *mapping_table = pa->mapping_table; int index = 0, i; u16 apid_valid; u32 data; apid_valid = pa->ppid_to_apid[ppid]; if (apid_valid & PMIC_ARB_CHAN_VALID) { *apid = (apid_valid & ~PMIC_ARB_CHAN_VALID); return 0; } for (i = 0; i < SPMI_MAPPING_TABLE_TREE_DEPTH; ++i) { if (!test_and_set_bit(index, pa->mapping_table_valid)) mapping_table[index] = readl_relaxed(pa->cnfg + SPMI_MAPPING_TABLE_REG(index)); data = mapping_table[index]; if (ppid & BIT(SPMI_MAPPING_BIT_INDEX(data))) { if (SPMI_MAPPING_BIT_IS_1_FLAG(data)) { index = SPMI_MAPPING_BIT_IS_1_RESULT(data); } else { *apid = SPMI_MAPPING_BIT_IS_1_RESULT(data); pa->ppid_to_apid[ppid] = *apid | PMIC_ARB_CHAN_VALID; pa->apid_data[*apid].ppid = ppid; return 0; } } else { if (SPMI_MAPPING_BIT_IS_0_FLAG(data)) { index = SPMI_MAPPING_BIT_IS_0_RESULT(data); } else { *apid = SPMI_MAPPING_BIT_IS_0_RESULT(data); pa->ppid_to_apid[ppid] = *apid | PMIC_ARB_CHAN_VALID; pa->apid_data[*apid].ppid = ppid; return 0; } } } return -ENODEV; } static int pmic_arb_mode_v1_v3(struct spmi_pmic_arb *pa, u8 sid, u16 addr, mode_t *mode) { *mode = 0600; return 0; } /* v1 offset per ee */ static int pmic_arb_offset_v1(struct spmi_pmic_arb *pa, u8 sid, u16 addr, enum pmic_arb_channel ch_type, u32 *offset) { *offset = 0x800 + 0x80 * pa->channel; return 0; } static u16 pmic_arb_find_apid(struct spmi_pmic_arb *pa, u16 ppid) { u32 regval, offset; u16 apid; u16 id; /* * PMIC_ARB_REG_CHNL is a table in HW mapping channel to ppid. * ppid_to_apid is an in-memory invert of that table. */ for (apid = pa->last_apid; apid < pa->max_periph; apid++) { /* Do not keep the reserved channel in the mapping table */ if (pa->reserved_chan >= 0 && apid == pa->reserved_chan) continue; regval = readl_relaxed(pa->cnfg + SPMI_OWNERSHIP_TABLE_REG(apid)); pa->apid_data[apid].irq_owner = SPMI_OWNERSHIP_PERIPH2OWNER(regval); pa->apid_data[apid].write_owner = pa->apid_data[apid].irq_owner; offset = pa->ver_ops->channel_map_offset(apid); if (offset >= pa->core_size) break; regval = readl_relaxed(pa->core + offset); if (!regval) continue; id = (regval >> 8) & PMIC_ARB_PPID_MASK; pa->ppid_to_apid[id] = apid | PMIC_ARB_CHAN_VALID; pa->apid_data[apid].ppid = id; if (id == ppid) { apid |= PMIC_ARB_CHAN_VALID; break; } } pa->last_apid = apid & ~PMIC_ARB_CHAN_VALID; return apid; } static int pmic_arb_ppid_to_apid_v2(struct spmi_pmic_arb *pa, u8 sid, u16 addr, u16 *apid) { u16 ppid = (sid << 8) | (addr >> 8); u16 apid_valid; apid_valid = pa->ppid_to_apid[ppid]; if (!(apid_valid & PMIC_ARB_CHAN_VALID)) apid_valid = pmic_arb_find_apid(pa, ppid); if (!(apid_valid & PMIC_ARB_CHAN_VALID)) return -ENODEV; *apid = (apid_valid & ~PMIC_ARB_CHAN_VALID); return 0; } static int pmic_arb_read_apid_map_v5(struct spmi_pmic_arb *pa) { u32 regval, offset; u16 apid, prev_apid, ppid; bool valid, is_irq_owner; /* * PMIC_ARB_REG_CHNL is a table in HW mapping APID (channel) to PPID. * ppid_to_apid is an in-memory invert of that table. In order to allow * multiple EE's to write to a single PPID in arbiter version 5, there * is more than one APID mapped to each PPID. The owner field for each * of these mappings specifies the EE which is allowed to write to the * APID. The owner of the last (highest) APID for a given PPID will * receive interrupts from the PPID. */ for (apid = 0; apid < pa->max_periph; apid++) { /* Do not keep the reserved channel in the mapping table */ if (pa->reserved_chan >= 0 && apid == pa->reserved_chan) continue; offset = pa->ver_ops->channel_map_offset(apid); if (offset >= pa->core_size) break; regval = readl_relaxed(pa->core + offset); if (!regval) continue; ppid = (regval >> 8) & PMIC_ARB_PPID_MASK; is_irq_owner = PMIC_ARB_CHAN_IS_IRQ_OWNER(regval); regval = readl_relaxed(pa->cnfg + SPMI_OWNERSHIP_TABLE_REG(apid)); pa->apid_data[apid].write_owner = SPMI_OWNERSHIP_PERIPH2OWNER(regval); pa->apid_data[apid].irq_owner = is_irq_owner ? pa->apid_data[apid].write_owner : INVALID_EE; valid = pa->ppid_to_apid[ppid] & PMIC_ARB_CHAN_VALID; prev_apid = pa->ppid_to_apid[ppid] & ~PMIC_ARB_CHAN_VALID; if (valid && is_irq_owner && pa->apid_data[prev_apid].write_owner == pa->ee) { /* * Duplicate PPID mapping after the one for this EE; * override the irq owner */ pa->apid_data[prev_apid].irq_owner = pa->apid_data[apid].irq_owner; } else if (!valid || is_irq_owner) { /* First PPID mapping or duplicate for another EE */ pa->ppid_to_apid[ppid] = apid | PMIC_ARB_CHAN_VALID; } pa->apid_data[apid].ppid = ppid; pa->last_apid = apid; } /* Dump the mapping table for debug purposes. */ dev_dbg(&pa->spmic->dev, "PPID APID Write-EE IRQ-EE\n"); for (ppid = 0; ppid < PMIC_ARB_MAX_PPID; ppid++) { valid = pa->ppid_to_apid[ppid] & PMIC_ARB_CHAN_VALID; apid = pa->ppid_to_apid[ppid] & ~PMIC_ARB_CHAN_VALID; if (valid) dev_dbg(&pa->spmic->dev, "0x%03X %3u %2u %2u\n", ppid, apid, pa->apid_data[apid].write_owner, pa->apid_data[apid].irq_owner); } return 0; } static int pmic_arb_ppid_to_apid_v5(struct spmi_pmic_arb *pa, u8 sid, u16 addr, u16 *apid) { u16 ppid = (sid << 8) | (addr >> 8); if (!(pa->ppid_to_apid[ppid] & PMIC_ARB_CHAN_VALID)) return -ENODEV; *apid = pa->ppid_to_apid[ppid] & ~PMIC_ARB_CHAN_VALID; return 0; } static int pmic_arb_mode_v2(struct spmi_pmic_arb *pa, u8 sid, u16 addr, mode_t *mode) { u16 apid; int rc; rc = pa->ver_ops->ppid_to_apid(pa, sid, addr, &apid); if (rc < 0) return rc; *mode = 0; *mode |= 0400; if (pa->ee == pa->apid_data[apid].write_owner) *mode |= 0200; return 0; } /* v2 offset per ppid and per ee */ static int pmic_arb_offset_v2(struct spmi_pmic_arb *pa, u8 sid, u16 addr, enum pmic_arb_channel ch_type, u32 *offset) { u16 apid; int rc; rc = pmic_arb_ppid_to_apid_v2(pa, sid, addr, &apid); if (rc < 0) return rc; *offset = 0x1000 * pa->ee + 0x8000 * apid; return 0; } /* * v5 offset per ee and per apid for observer channels and per apid for * read/write channels. */ static int pmic_arb_offset_v5(struct spmi_pmic_arb *pa, u8 sid, u16 addr, enum pmic_arb_channel ch_type, u32 *offset) { u16 apid; int rc; rc = pmic_arb_ppid_to_apid_v5(pa, sid, addr, &apid); if (rc < 0) return rc; *offset = (ch_type == PMIC_ARB_CHANNEL_OBS) ? 0x10000 * pa->ee + 0x80 * apid : 0x10000 * apid; return 0; } static u32 pmic_arb_fmt_cmd_v1(u8 opc, u8 sid, u16 addr, u8 bc) { return (opc << 27) | ((sid & 0xf) << 20) | (addr << 4) | (bc & 0x7); } static u32 pmic_arb_fmt_cmd_v2(u8 opc, u8 sid, u16 addr, u8 bc) { return (opc << 27) | ((addr & 0xff) << 4) | (bc & 0x7); } static u32 pmic_arb_owner_acc_status_v1(u8 m, u16 n) { return 0x20 * m + 0x4 * n; } static u32 pmic_arb_owner_acc_status_v2(u8 m, u16 n) { return 0x100000 + 0x1000 * m + 0x4 * n; } static u32 pmic_arb_owner_acc_status_v3(u8 m, u16 n) { return 0x200000 + 0x1000 * m + 0x4 * n; } static u32 pmic_arb_owner_acc_status_v5(u8 m, u16 n) { return 0x10000 * m + 0x4 * n; } static u32 pmic_arb_acc_enable_v1(u16 n) { return 0x200 + 0x4 * n; } static u32 pmic_arb_acc_enable_v2(u16 n) { return 0x1000 * n; } static u32 pmic_arb_acc_enable_v5(u16 n) { return 0x100 + 0x10000 * n; } static u32 pmic_arb_irq_status_v1(u16 n) { return 0x600 + 0x4 * n; } static u32 pmic_arb_irq_status_v2(u16 n) { return 0x4 + 0x1000 * n; } static u32 pmic_arb_irq_status_v5(u16 n) { return 0x104 + 0x10000 * n; } static u32 pmic_arb_irq_clear_v1(u16 n) { return 0xA00 + 0x4 * n; } static u32 pmic_arb_irq_clear_v2(u16 n) { return 0x8 + 0x1000 * n; } static u32 pmic_arb_irq_clear_v5(u16 n) { return 0x108 + 0x10000 * n; } static u32 pmic_arb_channel_map_offset_v2(u16 n) { return 0x800 + 0x4 * n; } static u32 pmic_arb_channel_map_offset_v5(u16 n) { return 0x900 + 0x4 * n; } static const struct pmic_arb_ver_ops pmic_arb_v1 = { .ver_str = "v1", .ppid_to_apid = pmic_arb_ppid_to_apid_v1, .mode = pmic_arb_mode_v1_v3, .non_data_cmd = pmic_arb_non_data_cmd_v1, .offset = pmic_arb_offset_v1, .fmt_cmd = pmic_arb_fmt_cmd_v1, .owner_acc_status = pmic_arb_owner_acc_status_v1, .acc_enable = pmic_arb_acc_enable_v1, .irq_status = pmic_arb_irq_status_v1, .irq_clear = pmic_arb_irq_clear_v1, .channel_map_offset = pmic_arb_channel_map_offset_v2, }; static const struct pmic_arb_ver_ops pmic_arb_v2 = { .ver_str = "v2", .ppid_to_apid = pmic_arb_ppid_to_apid_v2, .mode = pmic_arb_mode_v2, .non_data_cmd = pmic_arb_non_data_cmd_v2, .offset = pmic_arb_offset_v2, .fmt_cmd = pmic_arb_fmt_cmd_v2, .owner_acc_status = pmic_arb_owner_acc_status_v2, .acc_enable = pmic_arb_acc_enable_v2, .irq_status = pmic_arb_irq_status_v2, .irq_clear = pmic_arb_irq_clear_v2, .channel_map_offset = pmic_arb_channel_map_offset_v2, }; static const struct pmic_arb_ver_ops pmic_arb_v3 = { .ver_str = "v3", .ppid_to_apid = pmic_arb_ppid_to_apid_v2, .mode = pmic_arb_mode_v1_v3, .non_data_cmd = pmic_arb_non_data_cmd_v2, .offset = pmic_arb_offset_v2, .fmt_cmd = pmic_arb_fmt_cmd_v2, .owner_acc_status = pmic_arb_owner_acc_status_v3, .acc_enable = pmic_arb_acc_enable_v2, .irq_status = pmic_arb_irq_status_v2, .irq_clear = pmic_arb_irq_clear_v2, .channel_map_offset = pmic_arb_channel_map_offset_v2, }; static const struct pmic_arb_ver_ops pmic_arb_v5 = { .ver_str = "v5", .ppid_to_apid = pmic_arb_ppid_to_apid_v5, .mode = pmic_arb_mode_v2, .non_data_cmd = pmic_arb_non_data_cmd_v2, .offset = pmic_arb_offset_v5, .fmt_cmd = pmic_arb_fmt_cmd_v2, .owner_acc_status = pmic_arb_owner_acc_status_v5, .acc_enable = pmic_arb_acc_enable_v5, .irq_status = pmic_arb_irq_status_v5, .irq_clear = pmic_arb_irq_clear_v5, .channel_map_offset = pmic_arb_channel_map_offset_v5, }; static const struct irq_domain_ops pmic_arb_irq_domain_ops = { .map = qpnpint_irq_domain_map, .xlate = qpnpint_irq_domain_dt_translate, .activate = qpnpint_irq_domain_activate, }; static void spmi_pmic_arb_resume(void) { if (spmi_show_resume_irq()) __pmic_arb_chained_irq(the_pa, true); } static struct syscore_ops spmi_pmic_arb_syscore_ops = { .resume = spmi_pmic_arb_resume, }; static int spmi_pmic_arb_probe(struct platform_device *pdev) { struct spmi_pmic_arb *pa; struct spmi_controller *ctrl; struct resource *res; void __iomem *core; u32 channel, ee, hw_ver; int err; ctrl = spmi_controller_alloc(&pdev->dev, sizeof(*pa)); if (!ctrl) return -ENOMEM; pa = spmi_controller_get_drvdata(ctrl); pa->spmic = ctrl; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "core"); if (!res) { dev_err(&pdev->dev, "core resource not specified\n"); err = -EINVAL; goto err_put_ctrl; } pa->core_size = resource_size(res); if (pa->core_size <= 0x800) { dev_err(&pdev->dev, "core_size is smaller than 0x800. Failing Probe\n"); err = -EINVAL; goto err_put_ctrl; } core = devm_ioremap_resource(&ctrl->dev, res); if (IS_ERR(core)) { err = PTR_ERR(core); goto err_put_ctrl; } hw_ver = readl_relaxed(core + PMIC_ARB_VERSION); if (hw_ver < PMIC_ARB_VERSION_V2_MIN) { pa->ver_ops = &pmic_arb_v1; pa->wr_base = core; pa->rd_base = core; } else { pa->core = core; if (hw_ver < PMIC_ARB_VERSION_V3_MIN) pa->ver_ops = &pmic_arb_v2; else if (hw_ver < PMIC_ARB_VERSION_V5_MIN) pa->ver_ops = &pmic_arb_v3; else pa->ver_ops = &pmic_arb_v5; /* the apid to ppid table starts at PMIC_ARB_REG_CHNL0 */ pa->max_periph = (pa->core_size - pa->ver_ops->channel_map_offset(0)) / 4; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "obsrvr"); pa->rd_base = devm_ioremap_resource(&ctrl->dev, res); if (IS_ERR(pa->rd_base)) { err = PTR_ERR(pa->rd_base); goto err_put_ctrl; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "chnls"); pa->wr_base = devm_ioremap_resource(&ctrl->dev, res); if (IS_ERR(pa->wr_base)) { err = PTR_ERR(pa->wr_base); goto err_put_ctrl; } pa->ppid_to_apid = devm_kcalloc(&ctrl->dev, PMIC_ARB_MAX_PPID, sizeof(*pa->ppid_to_apid), GFP_KERNEL); if (!pa->ppid_to_apid) { err = -ENOMEM; goto err_put_ctrl; } } dev_info(&ctrl->dev, "PMIC arbiter version %s (0x%x)\n", pa->ver_ops->ver_str, hw_ver); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "intr"); pa->intr = devm_ioremap_resource(&ctrl->dev, res); if (IS_ERR(pa->intr)) { err = PTR_ERR(pa->intr); goto err_put_ctrl; } pa->acc_status = pa->intr; /* * PMIC arbiter v5 groups the IRQ control registers in the same hardware * module as the read/write channels. */ if (hw_ver >= PMIC_ARB_VERSION_V5_MIN) pa->intr = pa->wr_base; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cnfg"); pa->cnfg = devm_ioremap_resource(&ctrl->dev, res); if (IS_ERR(pa->cnfg)) { err = PTR_ERR(pa->cnfg); goto err_put_ctrl; } pa->irq = platform_get_irq_byname(pdev, "periph_irq"); if (pa->irq < 0) { err = pa->irq; goto err_put_ctrl; } err = of_property_read_u32(pdev->dev.of_node, "qcom,channel", &channel); if (err) { dev_err(&pdev->dev, "channel unspecified.\n"); goto err_put_ctrl; } if (channel > 5) { dev_err(&pdev->dev, "invalid channel (%u) specified.\n", channel); err = -EINVAL; goto err_put_ctrl; } pa->channel = channel; err = of_property_read_u32(pdev->dev.of_node, "qcom,ee", &ee); if (err) { dev_err(&pdev->dev, "EE unspecified.\n"); goto err_put_ctrl; } if (ee > 5) { dev_err(&pdev->dev, "invalid EE (%u) specified\n", ee); err = -EINVAL; goto err_put_ctrl; } pa->ee = ee; pa->reserved_chan = -EINVAL; of_property_read_u32(pdev->dev.of_node, "qcom,reserved-chan", &pa->reserved_chan); pa->mapping_table = devm_kcalloc(&ctrl->dev, PMIC_ARB_MAX_PERIPHS - 1, sizeof(*pa->mapping_table), GFP_KERNEL); if (!pa->mapping_table) { err = -ENOMEM; goto err_put_ctrl; } /* Initialize max_apid/min_apid to the opposite bounds, during * the irq domain translation, we are sure to update these */ pa->max_apid = 0; pa->min_apid = PMIC_ARB_MAX_PERIPHS - 1; platform_set_drvdata(pdev, ctrl); raw_spin_lock_init(&pa->lock); ctrl->cmd = pmic_arb_cmd; ctrl->read_cmd = pmic_arb_read_cmd; ctrl->write_cmd = pmic_arb_write_cmd; if (hw_ver >= PMIC_ARB_VERSION_V5_MIN) { err = pmic_arb_read_apid_map_v5(pa); if (err) { dev_err(&pdev->dev, "could not read APID->PPID mapping table, rc= %d\n", err); goto err_put_ctrl; } } dev_dbg(&pdev->dev, "adding irq domain\n"); pa->domain = irq_domain_add_tree(pdev->dev.of_node, &pmic_arb_irq_domain_ops, pa); if (!pa->domain) { dev_err(&pdev->dev, "unable to create irq_domain\n"); err = -ENOMEM; goto err_put_ctrl; } irq_set_chained_handler_and_data(pa->irq, pmic_arb_chained_irq, pa); enable_irq_wake(pa->irq); err = spmi_controller_add(ctrl); if (err) goto err_domain_remove; the_pa = pa; register_syscore_ops(&spmi_pmic_arb_syscore_ops); return 0; err_domain_remove: irq_set_chained_handler_and_data(pa->irq, NULL, NULL); irq_domain_remove(pa->domain); err_put_ctrl: spmi_controller_put(ctrl); return err; } static int spmi_pmic_arb_remove(struct platform_device *pdev) { struct spmi_controller *ctrl = platform_get_drvdata(pdev); struct spmi_pmic_arb *pa = spmi_controller_get_drvdata(ctrl); spmi_controller_remove(ctrl); irq_set_chained_handler_and_data(pa->irq, NULL, NULL); unregister_syscore_ops(&spmi_pmic_arb_syscore_ops); the_pa = NULL; irq_domain_remove(pa->domain); spmi_controller_put(ctrl); return 0; } static const struct of_device_id spmi_pmic_arb_match_table[] = { { .compatible = "qcom,spmi-pmic-arb", }, {}, }; MODULE_DEVICE_TABLE(of, spmi_pmic_arb_match_table); static struct platform_driver spmi_pmic_arb_driver = { .probe = spmi_pmic_arb_probe, .remove = spmi_pmic_arb_remove, .driver = { .name = "spmi_pmic_arb", .of_match_table = spmi_pmic_arb_match_table, }, }; int __init spmi_pmic_arb_init(void) { return platform_driver_register(&spmi_pmic_arb_driver); } arch_initcall(spmi_pmic_arb_init); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:spmi_pmic_arb");