/* Copyright (c) 2012-2017, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* QPNP VADC TM register definition */ #define QPNP_REVISION3 0x2 #define QPNP_PERPH_SUBTYPE 0x5 #define QPNP_PERPH_TYPE2 0x2 #define QPNP_REVISION_EIGHT_CHANNEL_SUPPORT 2 #define QPNP_PERPH_SUBTYPE_TWO_CHANNEL_SUPPORT 0x22 #define QPNP_STATUS1 0x8 #define QPNP_STATUS1_OP_MODE 4 #define QPNP_STATUS1_MEAS_INTERVAL_EN_STS BIT(2) #define QPNP_STATUS1_REQ_STS BIT(1) #define QPNP_STATUS1_EOC BIT(0) #define QPNP_STATUS2 0x9 #define QPNP_STATUS2_CONV_SEQ_STATE 6 #define QPNP_STATUS2_FIFO_NOT_EMPTY_FLAG BIT(1) #define QPNP_STATUS2_CONV_SEQ_TIMEOUT_STS BIT(0) #define QPNP_CONV_TIMEOUT_ERR 2 #define QPNP_MODE_CTL 0x40 #define QPNP_OP_MODE_SHIFT 3 #define QPNP_VREF_XO_THM_FORCE BIT(2) #define QPNP_AMUX_TRIM_EN BIT(1) #define QPNP_ADC_TRIM_EN BIT(0) #define QPNP_EN_CTL1 0x46 #define QPNP_ADC_TM_EN BIT(7) #define QPNP_BTM_CONV_REQ 0x47 #define QPNP_ADC_CONV_REQ_EN BIT(7) #define QPNP_ADC_CH_SEL_CTL 0x48 #define QPNP_ADC_DIG_PARAM 0x50 #define QPNP_ADC_DIG_DEC_RATIO_SEL_SHIFT 3 #define QPNP_HW_SETTLE_DELAY 0x51 #define QPNP_CONV_REQ 0x52 #define QPNP_CONV_REQ_SET BIT(7) #define QPNP_CONV_SEQ_CTL 0x54 #define QPNP_CONV_SEQ_HOLDOFF_SHIFT 4 #define QPNP_CONV_SEQ_TRIG_CTL 0x55 #define QPNP_ADC_TM_MEAS_INTERVAL_CTL 0x57 #define QPNP_ADC_TM_MEAS_INTERVAL_TIME_SHIFT 0x3 #define QPNP_ADC_TM_MEAS_INTERVAL_CTL2 0x58 #define QPNP_ADC_TM_MEAS_INTERVAL_CTL2_SHIFT 0x4 #define QPNP_ADC_TM_MEAS_INTERVAL_CTL2_MASK 0xf0 #define QPNP_ADC_TM_MEAS_INTERVAL_CTL3_MASK 0xf #define QPNP_ADC_MEAS_INTERVAL_OP_CTL 0x59 #define QPNP_ADC_MEAS_INTERVAL_OP BIT(7) #define QPNP_FAST_AVG_CTL 0x5a #define QPNP_FAST_AVG_EN 0x5b #define QPNP_FAST_AVG_ENABLED BIT(7) #define QPNP_M0_LOW_THR_LSB 0x5c #define QPNP_M0_LOW_THR_MSB 0x5d #define QPNP_M0_HIGH_THR_LSB 0x5e #define QPNP_M0_HIGH_THR_MSB 0x5f #define QPNP_M1_ADC_CH_SEL_CTL 0x68 #define QPNP_M1_LOW_THR_LSB 0x69 #define QPNP_M1_LOW_THR_MSB 0x6a #define QPNP_M1_HIGH_THR_LSB 0x6b #define QPNP_M1_HIGH_THR_MSB 0x6c #define QPNP_M2_ADC_CH_SEL_CTL 0x70 #define QPNP_M2_LOW_THR_LSB 0x71 #define QPNP_M2_LOW_THR_MSB 0x72 #define QPNP_M2_HIGH_THR_LSB 0x73 #define QPNP_M2_HIGH_THR_MSB 0x74 #define QPNP_M3_ADC_CH_SEL_CTL 0x78 #define QPNP_M3_LOW_THR_LSB 0x79 #define QPNP_M3_LOW_THR_MSB 0x7a #define QPNP_M3_HIGH_THR_LSB 0x7b #define QPNP_M3_HIGH_THR_MSB 0x7c #define QPNP_M4_ADC_CH_SEL_CTL 0x80 #define QPNP_M4_LOW_THR_LSB 0x81 #define QPNP_M4_LOW_THR_MSB 0x82 #define QPNP_M4_HIGH_THR_LSB 0x83 #define QPNP_M4_HIGH_THR_MSB 0x84 #define QPNP_M5_ADC_CH_SEL_CTL 0x88 #define QPNP_M5_LOW_THR_LSB 0x89 #define QPNP_M5_LOW_THR_MSB 0x8a #define QPNP_M5_HIGH_THR_LSB 0x8b #define QPNP_M5_HIGH_THR_MSB 0x8c #define QPNP_M6_ADC_CH_SEL_CTL 0x90 #define QPNP_M6_LOW_THR_LSB 0x91 #define QPNP_M6_LOW_THR_MSB 0x92 #define QPNP_M6_HIGH_THR_LSB 0x93 #define QPNP_M6_HIGH_THR_MSB 0x94 #define QPNP_M7_ADC_CH_SEL_CTL 0x98 #define QPNP_M7_LOW_THR_LSB 0x99 #define QPNP_M7_LOW_THR_MSB 0x9a #define QPNP_M7_HIGH_THR_LSB 0x9b #define QPNP_M7_HIGH_THR_MSB 0x9c #define QPNP_ADC_TM_MULTI_MEAS_EN 0x41 #define QPNP_ADC_TM_MULTI_MEAS_EN_M0 BIT(0) #define QPNP_ADC_TM_MULTI_MEAS_EN_M1 BIT(1) #define QPNP_ADC_TM_MULTI_MEAS_EN_M2 BIT(2) #define QPNP_ADC_TM_MULTI_MEAS_EN_M3 BIT(3) #define QPNP_ADC_TM_MULTI_MEAS_EN_M4 BIT(4) #define QPNP_ADC_TM_MULTI_MEAS_EN_M5 BIT(5) #define QPNP_ADC_TM_MULTI_MEAS_EN_M6 BIT(6) #define QPNP_ADC_TM_MULTI_MEAS_EN_M7 BIT(7) #define QPNP_ADC_TM_LOW_THR_INT_EN 0x42 #define QPNP_ADC_TM_LOW_THR_INT_EN_M0 BIT(0) #define QPNP_ADC_TM_LOW_THR_INT_EN_M1 BIT(1) #define QPNP_ADC_TM_LOW_THR_INT_EN_M2 BIT(2) #define QPNP_ADC_TM_LOW_THR_INT_EN_M3 BIT(3) #define QPNP_ADC_TM_LOW_THR_INT_EN_M4 BIT(4) #define QPNP_ADC_TM_LOW_THR_INT_EN_M5 BIT(5) #define QPNP_ADC_TM_LOW_THR_INT_EN_M6 BIT(6) #define QPNP_ADC_TM_LOW_THR_INT_EN_M7 BIT(7) #define QPNP_ADC_TM_HIGH_THR_INT_EN 0x43 #define QPNP_ADC_TM_HIGH_THR_INT_EN_M0 BIT(0) #define QPNP_ADC_TM_HIGH_THR_INT_EN_M1 BIT(1) #define QPNP_ADC_TM_HIGH_THR_INT_EN_M2 BIT(2) #define QPNP_ADC_TM_HIGH_THR_INT_EN_M3 BIT(3) #define QPNP_ADC_TM_HIGH_THR_INT_EN_M4 BIT(4) #define QPNP_ADC_TM_HIGH_THR_INT_EN_M5 BIT(5) #define QPNP_ADC_TM_HIGH_THR_INT_EN_M6 BIT(6) #define QPNP_ADC_TM_HIGH_THR_INT_EN_M7 BIT(7) #define QPNP_ADC_TM_M0_MEAS_INTERVAL_CTL 0x59 #define QPNP_ADC_TM_M1_MEAS_INTERVAL_CTL 0x6d #define QPNP_ADC_TM_M2_MEAS_INTERVAL_CTL 0x75 #define QPNP_ADC_TM_M3_MEAS_INTERVAL_CTL 0x7d #define QPNP_ADC_TM_M4_MEAS_INTERVAL_CTL 0x85 #define QPNP_ADC_TM_M5_MEAS_INTERVAL_CTL 0x8d #define QPNP_ADC_TM_M6_MEAS_INTERVAL_CTL 0x95 #define QPNP_ADC_TM_M7_MEAS_INTERVAL_CTL 0x9d #define QPNP_ADC_TM_STATUS1 0x8 #define QPNP_ADC_TM_STATUS_LOW 0xa #define QPNP_ADC_TM_STATUS_HIGH 0xb #define QPNP_ADC_TM_M0_LOW_THR 0x5d5c #define QPNP_ADC_TM_M0_HIGH_THR 0x5f5e #define QPNP_ADC_TM_MEAS_INTERVAL 0x0 #define QPNP_ADC_TM_THR_LSB_MASK(val) (val & 0xff) #define QPNP_ADC_TM_THR_MSB_MASK(val) ((val & 0xff00) >> 8) #define QPNP_MIN_TIME 2000 #define QPNP_MAX_TIME 2100 #define QPNP_RETRY 1000 /* QPNP ADC TM HC start */ #define QPNP_BTM_HC_STATUS1 0x08 #define QPNP_BTM_HC_STATUS_LOW 0x0a #define QPNP_BTM_HC_STATUS_HIGH 0x0b #define QPNP_BTM_HC_ADC_DIG_PARAM 0x42 #define QPNP_BTM_HC_FAST_AVG_CTL 0x43 #define QPNP_BTM_EN_CTL1 0x46 #define QPNP_BTM_CONV_REQ 0x47 #define QPNP_BTM_MEAS_INTERVAL_CTL 0x50 #define QPNP_BTM_MEAS_INTERVAL_CTL2 0x51 #define QPNP_BTM_Mn_ADC_CH_SEL_CTL(n) ((n * 8) + 0x60) #define QPNP_BTM_Mn_LOW_THR0(n) ((n * 8) + 0x61) #define QPNP_BTM_Mn_LOW_THR1(n) ((n * 8) + 0x62) #define QPNP_BTM_Mn_HIGH_THR0(n) ((n * 8) + 0x63) #define QPNP_BTM_Mn_HIGH_THR1(n) ((n * 8) + 0x64) #define QPNP_BTM_Mn_MEAS_INTERVAL_CTL(n) ((n * 8) + 0x65) #define QPNP_BTM_Mn_CTL(n) ((n * 8) + 0x66) #define QPNP_BTM_CTL_HW_SETTLE_DELAY_MASK 0xf #define QPNP_BTM_CTL_CAL_SEL 0x30 #define QPNP_BTM_CTL_CAL_SEL_MASK_SHIFT 4 #define QPNP_BTM_CTL_CAL_VAL 0x40 #define QPNP_BTM_Mn_EN(n) ((n * 8) + 0x67) #define QPNP_BTM_Mn_MEAS_EN BIT(7) #define QPNP_BTM_Mn_HIGH_THR_INT_EN BIT(1) #define QPNP_BTM_Mn_LOW_THR_INT_EN BIT(0) #define QPNP_BTM_Mn_DATA0(n) ((n * 2) + 0xa0) #define QPNP_BTM_Mn_DATA1(n) ((n * 2) + 0xa1) /* QPNP ADC TM HC end */ struct qpnp_adc_thr_info { u8 status_low; u8 status_high; u8 qpnp_adc_tm_meas_en; u8 adc_tm_low_enable; u8 adc_tm_high_enable; u8 adc_tm_low_thr_set; u8 adc_tm_high_thr_set; }; struct qpnp_adc_thr_client_info { struct list_head list; struct qpnp_adc_tm_btm_param *btm_param; int32_t low_thr_requested; int32_t high_thr_requested; enum qpnp_state_request state_requested; enum qpnp_state_request state_req_copy; bool low_thr_set; bool high_thr_set; bool notify_low_thr; bool notify_high_thr; }; struct qpnp_adc_tm_sensor { struct thermal_zone_device *tz_dev; struct qpnp_adc_tm_chip *chip; enum thermal_device_mode mode; uint32_t sensor_num; enum qpnp_adc_meas_timer_select timer_select; uint32_t meas_interval; uint32_t low_thr; uint32_t high_thr; uint32_t btm_channel_num; uint32_t vadc_channel_num; struct workqueue_struct *req_wq; struct work_struct work; bool thermal_node; uint32_t scale_type; struct list_head thr_list; bool high_thr_triggered; bool low_thr_triggered; }; struct qpnp_adc_tm_chip { struct device *dev; struct qpnp_adc_drv *adc; struct list_head list; bool adc_tm_initialized; bool adc_tm_recalib_check; int max_channels_available; atomic_t wq_cnt; struct qpnp_vadc_chip *vadc_dev; struct workqueue_struct *high_thr_wq; struct workqueue_struct *low_thr_wq; struct workqueue_struct *thr_wq; struct work_struct trigger_high_thr_work; struct work_struct trigger_low_thr_work; struct work_struct trigger_thr_work; bool adc_vote_enable; struct qpnp_adc_thr_info th_info; bool adc_tm_hc; struct qpnp_adc_tm_sensor sensor[0]; }; LIST_HEAD(qpnp_adc_tm_device_list); struct qpnp_adc_tm_trip_reg_type { enum qpnp_adc_tm_channel_select btm_amux_chan; uint16_t low_thr_lsb_addr; uint16_t low_thr_msb_addr; uint16_t high_thr_lsb_addr; uint16_t high_thr_msb_addr; u8 multi_meas_en; u8 low_thr_int_chan_en; u8 high_thr_int_chan_en; u8 meas_interval_ctl; }; static struct qpnp_adc_tm_trip_reg_type adc_tm_data[] = { [QPNP_ADC_TM_CHAN0] = {QPNP_ADC_TM_M0_ADC_CH_SEL_CTL, QPNP_M0_LOW_THR_LSB, QPNP_M0_LOW_THR_MSB, QPNP_M0_HIGH_THR_LSB, QPNP_M0_HIGH_THR_MSB, QPNP_ADC_TM_MULTI_MEAS_EN_M0, QPNP_ADC_TM_LOW_THR_INT_EN_M0, QPNP_ADC_TM_HIGH_THR_INT_EN_M0, QPNP_ADC_TM_M0_MEAS_INTERVAL_CTL}, [QPNP_ADC_TM_CHAN1] = {QPNP_ADC_TM_M1_ADC_CH_SEL_CTL, QPNP_M1_LOW_THR_LSB, QPNP_M1_LOW_THR_MSB, QPNP_M1_HIGH_THR_LSB, QPNP_M1_HIGH_THR_MSB, QPNP_ADC_TM_MULTI_MEAS_EN_M1, QPNP_ADC_TM_LOW_THR_INT_EN_M1, QPNP_ADC_TM_HIGH_THR_INT_EN_M1, QPNP_ADC_TM_M1_MEAS_INTERVAL_CTL}, [QPNP_ADC_TM_CHAN2] = {QPNP_ADC_TM_M2_ADC_CH_SEL_CTL, QPNP_M2_LOW_THR_LSB, QPNP_M2_LOW_THR_MSB, QPNP_M2_HIGH_THR_LSB, QPNP_M2_HIGH_THR_MSB, QPNP_ADC_TM_MULTI_MEAS_EN_M2, QPNP_ADC_TM_LOW_THR_INT_EN_M2, QPNP_ADC_TM_HIGH_THR_INT_EN_M2, QPNP_ADC_TM_M2_MEAS_INTERVAL_CTL}, [QPNP_ADC_TM_CHAN3] = {QPNP_ADC_TM_M3_ADC_CH_SEL_CTL, QPNP_M3_LOW_THR_LSB, QPNP_M3_LOW_THR_MSB, QPNP_M3_HIGH_THR_LSB, QPNP_M3_HIGH_THR_MSB, QPNP_ADC_TM_MULTI_MEAS_EN_M3, QPNP_ADC_TM_LOW_THR_INT_EN_M3, QPNP_ADC_TM_HIGH_THR_INT_EN_M3, QPNP_ADC_TM_M3_MEAS_INTERVAL_CTL}, [QPNP_ADC_TM_CHAN4] = {QPNP_ADC_TM_M4_ADC_CH_SEL_CTL, QPNP_M4_LOW_THR_LSB, QPNP_M4_LOW_THR_MSB, QPNP_M4_HIGH_THR_LSB, QPNP_M4_HIGH_THR_MSB, QPNP_ADC_TM_MULTI_MEAS_EN_M4, QPNP_ADC_TM_LOW_THR_INT_EN_M4, QPNP_ADC_TM_HIGH_THR_INT_EN_M4, QPNP_ADC_TM_M4_MEAS_INTERVAL_CTL}, [QPNP_ADC_TM_CHAN5] = {QPNP_ADC_TM_M5_ADC_CH_SEL_CTL, QPNP_M5_LOW_THR_LSB, QPNP_M5_LOW_THR_MSB, QPNP_M5_HIGH_THR_LSB, QPNP_M5_HIGH_THR_MSB, QPNP_ADC_TM_MULTI_MEAS_EN_M5, QPNP_ADC_TM_LOW_THR_INT_EN_M5, QPNP_ADC_TM_HIGH_THR_INT_EN_M5, QPNP_ADC_TM_M5_MEAS_INTERVAL_CTL}, [QPNP_ADC_TM_CHAN6] = {QPNP_ADC_TM_M6_ADC_CH_SEL_CTL, QPNP_M6_LOW_THR_LSB, QPNP_M6_LOW_THR_MSB, QPNP_M6_HIGH_THR_LSB, QPNP_M6_HIGH_THR_MSB, QPNP_ADC_TM_MULTI_MEAS_EN_M6, QPNP_ADC_TM_LOW_THR_INT_EN_M6, QPNP_ADC_TM_HIGH_THR_INT_EN_M6, QPNP_ADC_TM_M6_MEAS_INTERVAL_CTL}, [QPNP_ADC_TM_CHAN7] = {QPNP_ADC_TM_M7_ADC_CH_SEL_CTL, QPNP_M7_LOW_THR_LSB, QPNP_M7_LOW_THR_MSB, QPNP_M7_HIGH_THR_LSB, QPNP_M7_HIGH_THR_MSB, QPNP_ADC_TM_MULTI_MEAS_EN_M7, QPNP_ADC_TM_LOW_THR_INT_EN_M7, QPNP_ADC_TM_HIGH_THR_INT_EN_M7, QPNP_ADC_TM_M7_MEAS_INTERVAL_CTL}, }; static struct qpnp_adc_tm_reverse_scale_fn adc_tm_rscale_fn[] = { [SCALE_R_VBATT] = {qpnp_adc_vbatt_rscaler}, [SCALE_RBATT_THERM] = {qpnp_adc_btm_scaler}, [SCALE_R_USB_ID] = {qpnp_adc_usb_scaler}, [SCALE_RPMIC_THERM] = {qpnp_adc_scale_millidegc_pmic_voltage_thr}, [SCALE_R_SMB_BATT_THERM] = {qpnp_adc_smb_btm_rscaler}, [SCALE_R_ABSOLUTE] = {qpnp_adc_absolute_rthr}, [SCALE_QRD_SKUH_RBATT_THERM] = {qpnp_adc_qrd_skuh_btm_scaler}, [SCALE_QRD_SKUT1_RBATT_THERM] = {qpnp_adc_qrd_skut1_btm_scaler}, }; static int32_t qpnp_adc_tm_read_reg(struct qpnp_adc_tm_chip *chip, int16_t reg, u8 *data, int len) { int rc = 0; rc = regmap_bulk_read(chip->adc->regmap, (chip->adc->offset + reg), data, len); if (rc < 0) pr_err("adc-tm read reg %d failed with %d\n", reg, rc); return rc; } static int32_t qpnp_adc_tm_write_reg(struct qpnp_adc_tm_chip *chip, int16_t reg, u8 data, int len) { int rc = 0; u8 *buf; buf = &data; rc = regmap_bulk_write(chip->adc->regmap, (chip->adc->offset + reg), buf, len); if (rc < 0) pr_err("adc-tm write reg %d failed with %d\n", reg, rc); return rc; } static int32_t qpnp_adc_tm_fast_avg_en(struct qpnp_adc_tm_chip *chip, uint32_t *fast_avg_sample) { int rc = 0, version = 0; u8 fast_avg_en = 0; version = qpnp_adc_get_revid_version(chip->dev); if (!((version == QPNP_REV_ID_8916_1_0) || (version == QPNP_REV_ID_8916_1_1) || (version == QPNP_REV_ID_8916_2_0))) { pr_debug("fast-avg-en not required for this version\n"); return rc; } fast_avg_en = QPNP_FAST_AVG_ENABLED; rc = qpnp_adc_tm_write_reg(chip, QPNP_FAST_AVG_EN, fast_avg_en, 1); if (rc < 0) { pr_err("adc-tm fast-avg enable err\n"); return rc; } if (*fast_avg_sample >= 3) *fast_avg_sample = 2; return rc; } static int qpnp_adc_tm_check_vreg_vote(struct qpnp_adc_tm_chip *chip) { int rc = 0; if (!chip->adc_vote_enable) { if (chip->adc->hkadc_ldo && chip->adc->hkadc_ldo_ok) { rc = qpnp_adc_enable_voltage(chip->adc); if (rc) { pr_err("failed enabling VADC LDO\n"); return rc; } chip->adc_vote_enable = true; } } return rc; } static int32_t qpnp_adc_tm_enable(struct qpnp_adc_tm_chip *chip) { int rc = 0; u8 data = 0; rc = qpnp_adc_tm_check_vreg_vote(chip); if (rc) { pr_err("ADC TM VREG enable failed:%d\n", rc); return rc; } data = QPNP_ADC_TM_EN; rc = qpnp_adc_tm_write_reg(chip, QPNP_EN_CTL1, data, 1); if (rc < 0) { pr_err("adc-tm enable failed\n"); return rc; } if (chip->adc_tm_hc) { data = QPNP_ADC_CONV_REQ_EN; rc = qpnp_adc_tm_write_reg(chip, QPNP_BTM_CONV_REQ, data, 1); if (rc < 0) { pr_err("adc-tm enable failed\n"); return rc; } } return rc; } static int32_t qpnp_adc_tm_disable(struct qpnp_adc_tm_chip *chip) { u8 data = 0; int rc = 0; if (chip->adc_tm_hc) { rc = qpnp_adc_tm_write_reg(chip, QPNP_BTM_CONV_REQ, data, 1); if (rc < 0) { pr_err("adc-tm enable failed\n"); return rc; } } rc = qpnp_adc_tm_write_reg(chip, QPNP_EN_CTL1, data, 1); if (rc < 0) { pr_err("adc-tm disable failed\n"); return rc; } return rc; } static int qpnp_adc_tm_is_valid(struct qpnp_adc_tm_chip *chip) { struct qpnp_adc_tm_chip *adc_tm_chip = NULL; list_for_each_entry(adc_tm_chip, &qpnp_adc_tm_device_list, list) if (chip == adc_tm_chip) return 0; return -EINVAL; } static int32_t qpnp_adc_tm_rc_check_channel_en(struct qpnp_adc_tm_chip *chip) { u8 adc_tm_ctl = 0, status_low = 0, status_high = 0; int rc = 0, i = 0; bool ldo_en = false; for (i = 0; i < chip->max_channels_available; i++) { rc = qpnp_adc_tm_read_reg(chip, QPNP_BTM_Mn_CTL(i), &adc_tm_ctl, 1); if (rc) { pr_err("adc-tm-tm read ctl failed with %d\n", rc); return rc; } adc_tm_ctl &= QPNP_BTM_Mn_MEAS_EN; status_low = adc_tm_ctl & QPNP_BTM_Mn_LOW_THR_INT_EN; status_high = adc_tm_ctl & QPNP_BTM_Mn_HIGH_THR_INT_EN; /* Enable only if there are pending measurement requests */ if ((adc_tm_ctl && status_high) || (adc_tm_ctl && status_low)) { qpnp_adc_tm_enable(chip); ldo_en = true; /* Request conversion */ rc = qpnp_adc_tm_write_reg(chip, QPNP_CONV_REQ, QPNP_CONV_REQ_SET, 1); if (rc < 0) { pr_err("adc-tm request conversion failed\n"); return rc; } } break; } if (!ldo_en) { /* disable the vote if applicable */ if (chip->adc_vote_enable && chip->adc->hkadc_ldo && chip->adc->hkadc_ldo_ok) { qpnp_adc_disable_voltage(chip->adc); chip->adc_vote_enable = false; } } return rc; } static int32_t qpnp_adc_tm_enable_if_channel_meas( struct qpnp_adc_tm_chip *chip) { u8 adc_tm_meas_en = 0, status_low = 0, status_high = 0; int rc = 0; if (chip->adc_tm_hc) { rc = qpnp_adc_tm_rc_check_channel_en(chip); if (rc) { pr_err("adc_tm channel check failed\n"); return rc; } } else { /* Check if a measurement request is still required */ rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_MULTI_MEAS_EN, &adc_tm_meas_en, 1); if (rc) { pr_err("read status high failed with %d\n", rc); return rc; } rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_LOW_THR_INT_EN, &status_low, 1); if (rc) { pr_err("read status low failed with %d\n", rc); return rc; } rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_HIGH_THR_INT_EN, &status_high, 1); if (rc) { pr_err("read status high failed with %d\n", rc); return rc; } /* Enable only if there are pending measurement requests */ if ((adc_tm_meas_en && status_high) || (adc_tm_meas_en && status_low)) { qpnp_adc_tm_enable(chip); /* Request conversion */ rc = qpnp_adc_tm_write_reg(chip, QPNP_CONV_REQ, QPNP_CONV_REQ_SET, 1); if (rc < 0) { pr_err("adc-tm request conversion failed\n"); return rc; } } else { /* disable the vote if applicable */ if (chip->adc_vote_enable && chip->adc->hkadc_ldo && chip->adc->hkadc_ldo_ok) { qpnp_adc_disable_voltage(chip->adc); chip->adc_vote_enable = false; } } } return rc; } static int32_t qpnp_adc_tm_mode_select(struct qpnp_adc_tm_chip *chip, u8 mode_ctl) { int rc; mode_ctl |= (QPNP_ADC_TRIM_EN | QPNP_AMUX_TRIM_EN); /* VADC_BTM current sets mode to recurring measurements */ rc = qpnp_adc_tm_write_reg(chip, QPNP_MODE_CTL, mode_ctl, 1); if (rc < 0) pr_err("adc-tm write mode selection err\n"); return rc; } static int32_t qpnp_adc_tm_req_sts_check(struct qpnp_adc_tm_chip *chip) { u8 status1 = 0, mode_ctl = 0; int rc, count = 0; /* Re-enable the peripheral */ rc = qpnp_adc_tm_enable(chip); if (rc) { pr_err("adc-tm re-enable peripheral failed\n"); return rc; } /* The VADC_TM bank needs to be disabled for new conversion request */ rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_STATUS1, &status1, 1); if (rc) { pr_err("adc-tm read status1 failed\n"); return rc; } /* Disable the bank if a conversion is occuring */ while (status1 & QPNP_STATUS1_REQ_STS) { if (count > QPNP_RETRY) { pr_err("retry error=%d with 0x%x\n", count, status1); break; } /* * Wait time is based on the optimum sampling rate * and adding enough time buffer to account for ADC conversions * occurring on different peripheral banks */ usleep_range(QPNP_MIN_TIME, QPNP_MAX_TIME); rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_STATUS1, &status1, 1); if (rc < 0) { pr_err("adc-tm disable failed\n"); return rc; } count++; } if (!chip->adc_tm_hc) { /* Change the mode back to recurring measurement mode */ mode_ctl = ADC_OP_MEASUREMENT_INTERVAL << QPNP_OP_MODE_SHIFT; rc = qpnp_adc_tm_mode_select(chip, mode_ctl); if (rc < 0) { pr_err("adc-tm mode change to recurring failed\n"); return rc; } } /* Disable the peripheral */ rc = qpnp_adc_tm_disable(chip); if (rc < 0) { pr_err("adc-tm peripheral disable failed\n"); return rc; } return rc; } static int32_t qpnp_adc_tm_get_btm_idx(struct qpnp_adc_tm_chip *chip, uint32_t btm_chan, uint32_t *btm_chan_idx) { int rc = 0, i; bool chan_found = false; if (!chip->adc_tm_hc) { for (i = 0; i < QPNP_ADC_TM_CHAN_NONE; i++) { if (adc_tm_data[i].btm_amux_chan == btm_chan) { *btm_chan_idx = i; chan_found = true; } } } else { for (i = 0; i < chip->max_channels_available; i++) { if (chip->sensor[i].btm_channel_num == btm_chan) { *btm_chan_idx = i; chan_found = true; break; } } } if (!chan_found) return -EINVAL; return rc; } static int32_t qpnp_adc_tm_check_revision(struct qpnp_adc_tm_chip *chip, uint32_t btm_chan_num) { u8 rev, perph_subtype; int rc = 0; rc = qpnp_adc_tm_read_reg(chip, QPNP_REVISION3, &rev, 1); if (rc) { pr_err("adc-tm revision read failed\n"); return rc; } rc = qpnp_adc_tm_read_reg(chip, QPNP_PERPH_SUBTYPE, &perph_subtype, 1); if (rc) { pr_err("adc-tm perph_subtype read failed\n"); return rc; } if (perph_subtype == QPNP_PERPH_TYPE2) { if ((rev < QPNP_REVISION_EIGHT_CHANNEL_SUPPORT) && (btm_chan_num > QPNP_ADC_TM_M4_ADC_CH_SEL_CTL)) { pr_debug("Version does not support more than 5 channels\n"); return -EINVAL; } } if (perph_subtype == QPNP_PERPH_SUBTYPE_TWO_CHANNEL_SUPPORT) { if (btm_chan_num > QPNP_ADC_TM_M1_ADC_CH_SEL_CTL) { pr_debug("Version does not support more than 2 channels\n"); return -EINVAL; } } return rc; } static int32_t qpnp_adc_tm_timer_interval_select( struct qpnp_adc_tm_chip *chip, uint32_t btm_chan, struct qpnp_vadc_chan_properties *chan_prop) { int rc, chan_idx = 0, i = 0; bool chan_found = false; u8 meas_interval_timer2 = 0, timer_interval_store = 0; uint32_t btm_chan_idx = 0; while (i < chip->max_channels_available) { if (chip->sensor[i].btm_channel_num == btm_chan) { chan_idx = i; chan_found = true; i++; } else i++; } if (!chan_found) { pr_err("Channel not found\n"); return -EINVAL; } switch (chip->sensor[chan_idx].timer_select) { case ADC_MEAS_TIMER_SELECT1: if (!chip->adc_tm_hc) rc = qpnp_adc_tm_write_reg(chip, QPNP_ADC_TM_MEAS_INTERVAL_CTL, chip->sensor[chan_idx].meas_interval, 1); else rc = qpnp_adc_tm_write_reg(chip, QPNP_BTM_MEAS_INTERVAL_CTL, chip->sensor[chan_idx].meas_interval, 1); if (rc < 0) { pr_err("timer1 configure failed\n"); return rc; } break; case ADC_MEAS_TIMER_SELECT2: /* Thermal channels uses timer2, default to 1 second */ if (!chip->adc_tm_hc) rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_MEAS_INTERVAL_CTL2, &meas_interval_timer2, 1); else rc = qpnp_adc_tm_read_reg(chip, QPNP_BTM_MEAS_INTERVAL_CTL2, &meas_interval_timer2, 1); if (rc < 0) { pr_err("timer2 configure read failed\n"); return rc; } timer_interval_store = chip->sensor[chan_idx].meas_interval; timer_interval_store <<= QPNP_ADC_TM_MEAS_INTERVAL_CTL2_SHIFT; timer_interval_store &= QPNP_ADC_TM_MEAS_INTERVAL_CTL2_MASK; meas_interval_timer2 |= timer_interval_store; if (!chip->adc_tm_hc) rc = qpnp_adc_tm_write_reg(chip, QPNP_ADC_TM_MEAS_INTERVAL_CTL2, meas_interval_timer2, 1); else rc = qpnp_adc_tm_write_reg(chip, QPNP_BTM_MEAS_INTERVAL_CTL2, meas_interval_timer2, 1); if (rc < 0) { pr_err("timer2 configure failed\n"); return rc; } break; case ADC_MEAS_TIMER_SELECT3: if (!chip->adc_tm_hc) rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_MEAS_INTERVAL_CTL2, &meas_interval_timer2, 1); else rc = qpnp_adc_tm_read_reg(chip, QPNP_BTM_MEAS_INTERVAL_CTL2, &meas_interval_timer2, 1); if (rc < 0) { pr_err("timer3 read failed\n"); return rc; } timer_interval_store = chip->sensor[chan_idx].meas_interval; timer_interval_store &= QPNP_ADC_TM_MEAS_INTERVAL_CTL3_MASK; meas_interval_timer2 |= timer_interval_store; if (!chip->adc_tm_hc) rc = qpnp_adc_tm_write_reg(chip, QPNP_ADC_TM_MEAS_INTERVAL_CTL2, meas_interval_timer2, 1); else rc = qpnp_adc_tm_write_reg(chip, QPNP_BTM_MEAS_INTERVAL_CTL2, meas_interval_timer2, 1); if (rc < 0) { pr_err("timer3 configure failed\n"); return rc; } break; default: pr_err("Invalid timer selection\n"); return -EINVAL; } /* Select the timer to use for the corresponding channel */ rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan, &btm_chan_idx); if (rc < 0) { pr_err("Invalid btm channel idx\n"); return rc; } if (!chip->adc_tm_hc) rc = qpnp_adc_tm_write_reg(chip, adc_tm_data[btm_chan_idx].meas_interval_ctl, chip->sensor[chan_idx].timer_select, 1); else rc = qpnp_adc_tm_write_reg(chip, QPNP_BTM_Mn_MEAS_INTERVAL_CTL(btm_chan_idx), chip->sensor[chan_idx].timer_select, 1); if (rc < 0) { pr_err("TM channel timer configure failed\n"); return rc; } pr_debug("timer select:%d, timer_value_within_select:%d, channel:%x\n", chip->sensor[chan_idx].timer_select, chip->sensor[chan_idx].meas_interval, btm_chan); return rc; } static int32_t qpnp_adc_tm_add_to_list(struct qpnp_adc_tm_chip *chip, uint32_t dt_index, struct qpnp_adc_tm_btm_param *param, struct qpnp_vadc_chan_properties *chan_prop) { struct qpnp_adc_thr_client_info *client_info = NULL; bool client_info_exists = false; list_for_each_entry(client_info, &chip->sensor[dt_index].thr_list, list) { if (client_info->btm_param == param) { client_info->low_thr_requested = chan_prop->low_thr; client_info->high_thr_requested = chan_prop->high_thr; client_info->state_requested = param->state_request; client_info->state_req_copy = param->state_request; client_info->notify_low_thr = false; client_info->notify_high_thr = false; client_info_exists = true; pr_debug("client found\n"); } } if (!client_info_exists) { client_info = devm_kzalloc(chip->dev, sizeof(struct qpnp_adc_thr_client_info), GFP_KERNEL); if (!client_info) { pr_err("%s: kzalloc() failed.\n", __func__); return -ENOMEM; } pr_debug("new client\n"); client_info->btm_param = param; client_info->low_thr_requested = chan_prop->low_thr; client_info->high_thr_requested = chan_prop->high_thr; client_info->state_requested = param->state_request; client_info->state_req_copy = param->state_request; list_add_tail(&client_info->list, &chip->sensor[dt_index].thr_list); } return 0; } static int32_t qpnp_adc_tm_reg_update(struct qpnp_adc_tm_chip *chip, uint16_t addr, u8 mask, bool state) { u8 reg_value = 0; int rc = 0; rc = qpnp_adc_tm_read_reg(chip, addr, ®_value, 1); if (rc < 0) { pr_err("read failed for addr:0x%x\n", addr); return rc; } reg_value = reg_value & ~mask; if (state) reg_value |= mask; pr_debug("state:%d, reg:0x%x with bits:0x%x and mask:0x%x\n", state, addr, reg_value, ~mask); rc = qpnp_adc_tm_write_reg(chip, addr, reg_value, 1); if (rc < 0) { pr_err("write failed for addr:%x\n", addr); return rc; } return rc; } static int32_t qpnp_adc_tm_read_thr_value(struct qpnp_adc_tm_chip *chip, uint32_t btm_chan) { int rc = 0; u8 data_lsb = 0, data_msb = 0; uint32_t btm_chan_idx = 0; int32_t low_thr = 0, high_thr = 0; if (!chip->adc_tm_hc) { pr_err("Not applicable for VADC HC peripheral\n"); return -EINVAL; } rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan, &btm_chan_idx); if (rc < 0) { pr_err("Invalid btm channel idx\n"); return rc; } rc = qpnp_adc_tm_read_reg(chip, adc_tm_data[btm_chan_idx].low_thr_lsb_addr, &data_lsb, 1); if (rc < 0) { pr_err("low threshold lsb setting failed\n"); return rc; } rc = qpnp_adc_tm_read_reg(chip, adc_tm_data[btm_chan_idx].low_thr_msb_addr, &data_msb, 1); if (rc < 0) { pr_err("low threshold msb setting failed\n"); return rc; } low_thr = (data_msb << 8) | data_lsb; rc = qpnp_adc_tm_read_reg(chip, adc_tm_data[btm_chan_idx].high_thr_lsb_addr, &data_lsb, 1); if (rc < 0) { pr_err("high threshold lsb setting failed\n"); return rc; } rc = qpnp_adc_tm_read_reg(chip, adc_tm_data[btm_chan_idx].high_thr_msb_addr, &data_msb, 1); if (rc < 0) { pr_err("high threshold msb setting failed\n"); return rc; } high_thr = (data_msb << 8) | data_lsb; pr_debug("configured thresholds high:0x%x and low:0x%x\n", high_thr, low_thr); return rc; } static int32_t qpnp_adc_tm_thr_update(struct qpnp_adc_tm_chip *chip, uint32_t btm_chan, int32_t high_thr, int32_t low_thr) { int rc = 0; uint32_t btm_chan_idx = 0; rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan, &btm_chan_idx); if (rc < 0) { pr_err("Invalid btm channel idx\n"); return rc; } if (!chip->adc_tm_hc) { rc = qpnp_adc_tm_write_reg(chip, adc_tm_data[btm_chan_idx].low_thr_lsb_addr, QPNP_ADC_TM_THR_LSB_MASK(low_thr), 1); if (rc < 0) { pr_err("low threshold lsb setting failed\n"); return rc; } rc = qpnp_adc_tm_write_reg(chip, adc_tm_data[btm_chan_idx].low_thr_msb_addr, QPNP_ADC_TM_THR_MSB_MASK(low_thr), 1); if (rc < 0) { pr_err("low threshold msb setting failed\n"); return rc; } rc = qpnp_adc_tm_write_reg(chip, adc_tm_data[btm_chan_idx].high_thr_lsb_addr, QPNP_ADC_TM_THR_LSB_MASK(high_thr), 1); if (rc < 0) { pr_err("high threshold lsb setting failed\n"); return rc; } rc = qpnp_adc_tm_write_reg(chip, adc_tm_data[btm_chan_idx].high_thr_msb_addr, QPNP_ADC_TM_THR_MSB_MASK(high_thr), 1); if (rc < 0) pr_err("high threshold msb setting failed\n"); } else { rc = qpnp_adc_tm_write_reg(chip, QPNP_BTM_Mn_LOW_THR0(btm_chan_idx), QPNP_ADC_TM_THR_LSB_MASK(low_thr), 1); if (rc < 0) { pr_err("low threshold lsb setting failed\n"); return rc; } rc = qpnp_adc_tm_write_reg(chip, QPNP_BTM_Mn_LOW_THR1(btm_chan_idx), QPNP_ADC_TM_THR_MSB_MASK(low_thr), 1); if (rc < 0) { pr_err("low threshold msb setting failed\n"); return rc; } rc = qpnp_adc_tm_write_reg(chip, QPNP_BTM_Mn_HIGH_THR0(btm_chan_idx), QPNP_ADC_TM_THR_LSB_MASK(high_thr), 1); if (rc < 0) { pr_err("high threshold lsb setting failed\n"); return rc; } rc = qpnp_adc_tm_write_reg(chip, QPNP_BTM_Mn_HIGH_THR1(btm_chan_idx), QPNP_ADC_TM_THR_MSB_MASK(high_thr), 1); if (rc < 0) pr_err("high threshold msb setting failed\n"); } pr_debug("client requested high:%d and low:%d\n", high_thr, low_thr); return rc; } static int32_t qpnp_adc_tm_manage_thresholds(struct qpnp_adc_tm_chip *chip, uint32_t dt_index, uint32_t btm_chan) { struct qpnp_adc_thr_client_info *client_info = NULL; struct list_head *thr_list; int high_thr = 0, low_thr = 0, rc = 0; /* * high_thr/low_thr starting point and reset the high_thr_set and * low_thr_set back to reset since the thresholds will be * recomputed. */ list_for_each(thr_list, &chip->sensor[dt_index].thr_list) { client_info = list_entry(thr_list, struct qpnp_adc_thr_client_info, list); high_thr = client_info->high_thr_requested; low_thr = client_info->low_thr_requested; client_info->high_thr_set = false; client_info->low_thr_set = false; } pr_debug("init threshold is high:%d and low:%d\n", high_thr, low_thr); /* Find the min of high_thr and max of low_thr */ list_for_each(thr_list, &chip->sensor[dt_index].thr_list) { client_info = list_entry(thr_list, struct qpnp_adc_thr_client_info, list); if ((client_info->state_req_copy == ADC_TM_HIGH_THR_ENABLE) || (client_info->state_req_copy == ADC_TM_HIGH_LOW_THR_ENABLE)) if (client_info->high_thr_requested < high_thr) high_thr = client_info->high_thr_requested; if ((client_info->state_req_copy == ADC_TM_LOW_THR_ENABLE) || (client_info->state_req_copy == ADC_TM_HIGH_LOW_THR_ENABLE)) if (client_info->low_thr_requested > low_thr) low_thr = client_info->low_thr_requested; pr_debug("threshold compared is high:%d and low:%d\n", client_info->high_thr_requested, client_info->low_thr_requested); pr_debug("current threshold is high:%d and low:%d\n", high_thr, low_thr); } /* Check which of the high_thr and low_thr got set */ list_for_each(thr_list, &chip->sensor[dt_index].thr_list) { client_info = list_entry(thr_list, struct qpnp_adc_thr_client_info, list); if ((client_info->state_req_copy == ADC_TM_HIGH_THR_ENABLE) || (client_info->state_req_copy == ADC_TM_HIGH_LOW_THR_ENABLE)) if (high_thr == client_info->high_thr_requested) client_info->high_thr_set = true; if ((client_info->state_req_copy == ADC_TM_LOW_THR_ENABLE) || (client_info->state_req_copy == ADC_TM_HIGH_LOW_THR_ENABLE)) if (low_thr == client_info->low_thr_requested) client_info->low_thr_set = true; } rc = qpnp_adc_tm_thr_update(chip, btm_chan, high_thr, low_thr); if (rc < 0) pr_err("setting chan:%d threshold failed\n", btm_chan); pr_debug("threshold written is high:%d and low:%d\n", high_thr, low_thr); return 0; } static int32_t qpnp_adc_tm_channel_configure(struct qpnp_adc_tm_chip *chip, uint32_t btm_chan, struct qpnp_vadc_chan_properties *chan_prop, uint32_t amux_channel) { int rc = 0, i = 0, chan_idx = 0; bool chan_found = false, high_thr_set = false, low_thr_set = false; u8 sensor_mask = 0; struct qpnp_adc_thr_client_info *client_info = NULL; uint32_t btm_chan_idx = 0; while (i < chip->max_channels_available) { if (chip->sensor[i].btm_channel_num == btm_chan) { chan_idx = i; chan_found = true; i++; } else i++; } if (!chan_found) { pr_err("Channel not found\n"); return -EINVAL; } rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan, &btm_chan_idx); if (rc < 0) { pr_err("Invalid btm channel idx\n"); return rc; } sensor_mask = 1 << chan_idx; if (!chip->sensor[chan_idx].thermal_node) { /* Update low and high notification thresholds */ rc = qpnp_adc_tm_manage_thresholds(chip, chan_idx, btm_chan); if (rc < 0) { pr_err("setting chan:%d threshold failed\n", btm_chan); return rc; } list_for_each_entry(client_info, &chip->sensor[chan_idx].thr_list, list) { if (client_info->high_thr_set == true) high_thr_set = true; if (client_info->low_thr_set == true) low_thr_set = true; } if (low_thr_set) { pr_debug("low sensor mask:%x with state:%d\n", sensor_mask, chan_prop->state_request); /* Enable low threshold's interrupt */ if (!chip->adc_tm_hc) rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_LOW_THR_INT_EN, sensor_mask, true); else rc = qpnp_adc_tm_reg_update(chip, QPNP_BTM_Mn_EN(btm_chan_idx), QPNP_BTM_Mn_LOW_THR_INT_EN, true); if (rc < 0) { pr_err("low thr enable err:%d\n", btm_chan); return rc; } } if (high_thr_set) { /* Enable high threshold's interrupt */ pr_debug("high sensor mask:%x\n", sensor_mask); if (!chip->adc_tm_hc) rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_HIGH_THR_INT_EN, sensor_mask, true); else rc = qpnp_adc_tm_reg_update(chip, QPNP_BTM_Mn_EN(btm_chan_idx), QPNP_BTM_Mn_HIGH_THR_INT_EN, true); if (rc < 0) { pr_err("high thr enable err:%d\n", btm_chan); return rc; } } } /* Enable corresponding BTM channel measurement */ if (!chip->adc_tm_hc) rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_MULTI_MEAS_EN, sensor_mask, true); else rc = qpnp_adc_tm_reg_update(chip, QPNP_BTM_Mn_EN(btm_chan_idx), QPNP_BTM_Mn_MEAS_EN, true); if (rc < 0) { pr_err("multi measurement en failed\n"); return rc; } return rc; } static int32_t qpnp_adc_tm_hc_configure(struct qpnp_adc_tm_chip *chip, struct qpnp_adc_amux_properties *chan_prop) { u8 decimation = 0, fast_avg_ctl = 0; u8 buf[8]; int rc = 0; uint32_t btm_chan = 0, cal_type = 0, btm_chan_idx = 0; /* Disable bank */ rc = qpnp_adc_tm_disable(chip); if (rc) return rc; /* Decimation setup */ decimation = chan_prop->decimation; rc = qpnp_adc_tm_write_reg(chip, QPNP_BTM_HC_ADC_DIG_PARAM, decimation, 1); if (rc < 0) { pr_err("adc-tm digital parameter setup err\n"); return rc; } /* Fast averaging setup/enable */ rc = qpnp_adc_tm_read_reg(chip, QPNP_BTM_HC_FAST_AVG_CTL, &fast_avg_ctl, 1); if (rc < 0) { pr_err("adc-tm fast-avg enable read err\n"); return rc; } fast_avg_ctl |= chan_prop->fast_avg_setup; rc = qpnp_adc_tm_write_reg(chip, QPNP_BTM_HC_FAST_AVG_CTL, fast_avg_ctl, 1); if (rc < 0) { pr_err("adc-tm fast-avg enable write err\n"); return rc; } /* Read block registers for respective BTM channel */ btm_chan = chan_prop->chan_prop->tm_channel_select; rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan, &btm_chan_idx); if (rc < 0) { pr_err("Invalid btm channel idx\n"); return rc; } rc = qpnp_adc_tm_read_reg(chip, QPNP_BTM_Mn_ADC_CH_SEL_CTL(btm_chan_idx), buf, 8); if (rc < 0) { pr_err("qpnp adc configure block read failed\n"); return rc; } /* Update ADC channel sel */ rc = qpnp_adc_tm_write_reg(chip, QPNP_BTM_Mn_ADC_CH_SEL_CTL(btm_chan_idx), chan_prop->amux_channel, 1); if (rc < 0) { pr_err("adc-tm channel amux select failed\n"); return rc; } /* Manage thresholds */ rc = qpnp_adc_tm_channel_configure(chip, btm_chan, chan_prop->chan_prop, chan_prop->amux_channel); if (rc < 0) { pr_err("adc-tm channel threshold configure failed\n"); return rc; } /* Measurement interval setup */ rc = qpnp_adc_tm_timer_interval_select(chip, btm_chan, chan_prop->chan_prop); if (rc < 0) { pr_err("adc-tm timer select failed\n"); return rc; } /* Set calibration select, hw_settle delay */ cal_type |= (chan_prop->calib_type << QPNP_BTM_CTL_CAL_SEL_MASK_SHIFT); buf[6] &= ~QPNP_BTM_CTL_HW_SETTLE_DELAY_MASK; buf[6] |= chan_prop->hw_settle_time; buf[6] &= ~QPNP_BTM_CTL_CAL_SEL; buf[6] |= cal_type; rc = qpnp_adc_tm_write_reg(chip, QPNP_BTM_Mn_CTL(btm_chan_idx), buf[6], 1); if (rc < 0) { pr_err("adc-tm hw-settle, calib sel failed\n"); return rc; } /* Enable bank */ rc = qpnp_adc_tm_enable(chip); if (rc) return rc; /* Request conversion */ rc = qpnp_adc_tm_write_reg(chip, QPNP_CONV_REQ, QPNP_CONV_REQ_SET, 1); if (rc < 0) { pr_err("adc-tm request conversion failed\n"); return rc; } return 0; } static int32_t qpnp_adc_tm_configure(struct qpnp_adc_tm_chip *chip, struct qpnp_adc_amux_properties *chan_prop) { u8 decimation = 0, op_cntrl = 0, mode_ctl = 0; int rc = 0; uint32_t btm_chan = 0; /* Set measurement in single measurement mode */ mode_ctl = ADC_OP_NORMAL_MODE << QPNP_OP_MODE_SHIFT; rc = qpnp_adc_tm_mode_select(chip, mode_ctl); if (rc < 0) { pr_err("adc-tm single mode select failed\n"); return rc; } /* Disable bank */ rc = qpnp_adc_tm_disable(chip); if (rc) return rc; /* Check if a conversion is in progress */ rc = qpnp_adc_tm_req_sts_check(chip); if (rc < 0) { pr_err("adc-tm req_sts check failed\n"); return rc; } /* Configure AMUX channel select for the corresponding BTM channel*/ btm_chan = chan_prop->chan_prop->tm_channel_select; rc = qpnp_adc_tm_write_reg(chip, btm_chan, chan_prop->amux_channel, 1); if (rc < 0) { pr_err("adc-tm channel selection err\n"); return rc; } /* Digital paramater setup */ decimation |= chan_prop->decimation << QPNP_ADC_DIG_DEC_RATIO_SEL_SHIFT; rc = qpnp_adc_tm_write_reg(chip, QPNP_ADC_DIG_PARAM, decimation, 1); if (rc < 0) { pr_err("adc-tm digital parameter setup err\n"); return rc; } /* Hardware setting time */ rc = qpnp_adc_tm_write_reg(chip, QPNP_HW_SETTLE_DELAY, chan_prop->hw_settle_time, 1); if (rc < 0) { pr_err("adc-tm hw settling time setup err\n"); return rc; } /* Fast averaging setup/enable */ rc = qpnp_adc_tm_fast_avg_en(chip, &chan_prop->fast_avg_setup); if (rc < 0) { pr_err("adc-tm fast-avg enable err\n"); return rc; } rc = qpnp_adc_tm_write_reg(chip, QPNP_FAST_AVG_CTL, chan_prop->fast_avg_setup, 1); if (rc < 0) { pr_err("adc-tm fast-avg setup err\n"); return rc; } /* Measurement interval setup */ rc = qpnp_adc_tm_timer_interval_select(chip, btm_chan, chan_prop->chan_prop); if (rc < 0) { pr_err("adc-tm timer select failed\n"); return rc; } /* Channel configuration setup */ rc = qpnp_adc_tm_channel_configure(chip, btm_chan, chan_prop->chan_prop, chan_prop->amux_channel); if (rc < 0) { pr_err("adc-tm channel configure failed\n"); return rc; } /* Recurring interval measurement enable */ rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_MEAS_INTERVAL_OP_CTL, &op_cntrl, 1); op_cntrl |= QPNP_ADC_MEAS_INTERVAL_OP; rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_MEAS_INTERVAL_OP_CTL, op_cntrl, true); if (rc < 0) { pr_err("adc-tm meas interval op configure failed\n"); return rc; } /* Enable bank */ rc = qpnp_adc_tm_enable(chip); if (rc) return rc; /* Request conversion */ rc = qpnp_adc_tm_write_reg(chip, QPNP_CONV_REQ, QPNP_CONV_REQ_SET, 1); if (rc < 0) { pr_err("adc-tm request conversion failed\n"); return rc; } return 0; } static int qpnp_adc_tm_get_mode(struct thermal_zone_device *thermal, enum thermal_device_mode *mode) { struct qpnp_adc_tm_sensor *adc_tm = thermal->devdata; if ((IS_ERR(adc_tm)) || qpnp_adc_tm_check_revision( adc_tm->chip, adc_tm->btm_channel_num)) return -EINVAL; *mode = adc_tm->mode; return 0; } static int qpnp_adc_tm_set_mode(struct thermal_zone_device *thermal, enum thermal_device_mode mode) { struct qpnp_adc_tm_sensor *adc_tm = thermal->devdata; struct qpnp_adc_tm_chip *chip = adc_tm->chip; int rc = 0, channel; u8 sensor_mask = 0, mode_ctl = 0; uint32_t btm_chan_idx = 0, btm_chan = 0; if (qpnp_adc_tm_is_valid(chip)) { pr_err("invalid device\n"); return -ENODEV; } if (qpnp_adc_tm_check_revision(chip, adc_tm->btm_channel_num)) return -EINVAL; mutex_lock(&chip->adc->adc_lock); btm_chan = adc_tm->btm_channel_num; rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan, &btm_chan_idx); if (rc < 0) { pr_err("Invalid btm channel idx\n"); goto fail; } if (mode == THERMAL_DEVICE_ENABLED) { chip->adc->amux_prop->amux_channel = adc_tm->vadc_channel_num; channel = adc_tm->sensor_num; chip->adc->amux_prop->decimation = chip->adc->adc_channels[channel].adc_decimation; chip->adc->amux_prop->hw_settle_time = chip->adc->adc_channels[channel].hw_settle_time; chip->adc->amux_prop->fast_avg_setup = chip->adc->adc_channels[channel].fast_avg_setup; chip->adc->amux_prop->mode_sel = ADC_OP_MEASUREMENT_INTERVAL << QPNP_OP_MODE_SHIFT; chip->adc->amux_prop->chan_prop->low_thr = adc_tm->low_thr; chip->adc->amux_prop->chan_prop->high_thr = adc_tm->high_thr; chip->adc->amux_prop->chan_prop->tm_channel_select = adc_tm->btm_channel_num; chip->adc->amux_prop->calib_type = chip->adc->adc_channels[channel].calib_type; if (!chip->adc_tm_hc) { rc = qpnp_adc_tm_configure(chip, chip->adc->amux_prop); if (rc) { pr_err("adc-tm configure failed with %d\n", rc); goto fail; } } else { rc = qpnp_adc_tm_hc_configure(chip, chip->adc->amux_prop); if (rc) { pr_err("hc configure failed with %d\n", rc); goto fail; } } } else if (mode == THERMAL_DEVICE_DISABLED) { sensor_mask = 1 << adc_tm->sensor_num; if (!chip->adc_tm_hc) { mode_ctl = ADC_OP_NORMAL_MODE << QPNP_OP_MODE_SHIFT; rc = qpnp_adc_tm_mode_select(chip, mode_ctl); if (rc < 0) { pr_err("adc-tm single mode select failed\n"); goto fail; } } /* Disable bank */ rc = qpnp_adc_tm_disable(chip); if (rc < 0) { pr_err("adc-tm disable failed\n"); goto fail; } if (!chip->adc_tm_hc) { /* Check if a conversion is in progress */ rc = qpnp_adc_tm_req_sts_check(chip); if (rc < 0) { pr_err("adc-tm req_sts check failed\n"); goto fail; } rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_MULTI_MEAS_EN, sensor_mask, false); if (rc < 0) { pr_err("multi measurement update failed\n"); goto fail; } } else { rc = qpnp_adc_tm_reg_update(chip, QPNP_BTM_Mn_EN(btm_chan_idx), QPNP_BTM_Mn_MEAS_EN, false); if (rc < 0) { pr_err("multi measurement disable failed\n"); goto fail; } } rc = qpnp_adc_tm_enable_if_channel_meas(chip); if (rc < 0) { pr_err("re-enabling measurement failed\n"); goto fail; } } adc_tm->mode = mode; fail: mutex_unlock(&chip->adc->adc_lock); return 0; } static int qpnp_adc_tm_get_trip_type(struct thermal_zone_device *thermal, int trip, enum thermal_trip_type *type) { struct qpnp_adc_tm_sensor *adc_tm = thermal->devdata; struct qpnp_adc_tm_chip *chip = adc_tm->chip; if (qpnp_adc_tm_is_valid(chip)) return -ENODEV; if (qpnp_adc_tm_check_revision(chip, adc_tm->btm_channel_num)) return -EINVAL; switch (trip) { case ADC_TM_TRIP_HIGH_WARM: *type = THERMAL_TRIP_CONFIGURABLE_HI; break; case ADC_TM_TRIP_LOW_COOL: *type = THERMAL_TRIP_CONFIGURABLE_LOW; break; default: return -EINVAL; } return 0; } static int qpnp_adc_tm_get_trip_temp(struct thermal_zone_device *thermal, int trip, int *temp) { struct qpnp_adc_tm_sensor *adc_tm_sensor = thermal->devdata; struct qpnp_adc_tm_chip *chip = adc_tm_sensor->chip; int64_t result = 0; u8 trip_cool_thr0, trip_cool_thr1, trip_warm_thr0, trip_warm_thr1; unsigned int reg, rc = 0; uint16_t reg_low_thr_lsb, reg_low_thr_msb; uint16_t reg_high_thr_lsb, reg_high_thr_msb; uint32_t btm_chan_idx = 0, btm_chan = 0; if (qpnp_adc_tm_is_valid(chip)) return -ENODEV; if (qpnp_adc_tm_check_revision(chip, adc_tm_sensor->btm_channel_num)) return -EINVAL; btm_chan = adc_tm_sensor->btm_channel_num; rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan, &btm_chan_idx); if (rc < 0) { pr_err("Invalid btm channel idx\n"); return rc; } if (!chip->adc_tm_hc) { reg_low_thr_lsb = adc_tm_data[btm_chan_idx].low_thr_lsb_addr; reg_low_thr_msb = adc_tm_data[btm_chan_idx].low_thr_msb_addr; reg_high_thr_lsb = adc_tm_data[btm_chan_idx].high_thr_lsb_addr; reg_high_thr_msb = adc_tm_data[btm_chan_idx].high_thr_msb_addr; } else { reg_low_thr_lsb = QPNP_BTM_Mn_LOW_THR0(btm_chan_idx); reg_low_thr_msb = QPNP_BTM_Mn_LOW_THR1(btm_chan_idx); reg_high_thr_lsb = QPNP_BTM_Mn_HIGH_THR0(btm_chan_idx); reg_high_thr_msb = QPNP_BTM_Mn_HIGH_THR1(btm_chan_idx); } switch (trip) { case ADC_TM_TRIP_HIGH_WARM: rc = qpnp_adc_tm_read_reg(chip, reg_low_thr_lsb, &trip_warm_thr0, 1); if (rc) { pr_err("adc-tm low_thr_lsb err\n"); return rc; } rc = qpnp_adc_tm_read_reg(chip, reg_low_thr_msb, &trip_warm_thr1, 1); if (rc) { pr_err("adc-tm low_thr_msb err\n"); return rc; } reg = (trip_warm_thr1 << 8) | trip_warm_thr0; break; case ADC_TM_TRIP_LOW_COOL: rc = qpnp_adc_tm_read_reg(chip, reg_high_thr_lsb, &trip_cool_thr0, 1); if (rc) { pr_err("adc-tm_tm high_thr_lsb err\n"); return rc; } rc = qpnp_adc_tm_read_reg(chip, reg_high_thr_msb, &trip_cool_thr1, 1); if (rc) { pr_err("adc-tm_tm high_thr_lsb err\n"); return rc; } reg = (trip_cool_thr1 << 8) | trip_cool_thr0; break; default: return -EINVAL; } rc = qpnp_adc_tm_scale_voltage_therm_pu2(chip->vadc_dev, chip->adc->adc_prop, reg, &result); if (rc < 0) { pr_err("Failed to lookup the therm thresholds\n"); return rc; } *temp = result; return 0; } static int qpnp_adc_tm_set_trip_temp(struct thermal_zone_device *thermal, int trip, int temp) { struct qpnp_adc_tm_sensor *adc_tm = thermal->devdata; struct qpnp_adc_tm_chip *chip = adc_tm->chip; struct qpnp_adc_tm_config tm_config; u8 trip_cool_thr0, trip_cool_thr1, trip_warm_thr0, trip_warm_thr1; uint16_t reg_low_thr_lsb, reg_low_thr_msb; uint16_t reg_high_thr_lsb, reg_high_thr_msb; int rc = 0; uint32_t btm_chan = 0, btm_chan_idx = 0; if (qpnp_adc_tm_is_valid(chip)) return -ENODEV; if (qpnp_adc_tm_check_revision(chip, adc_tm->btm_channel_num)) return -EINVAL; tm_config.channel = adc_tm->vadc_channel_num; tm_config.high_thr_temp = tm_config.low_thr_temp = 0; switch (trip) { case ADC_TM_TRIP_HIGH_WARM: tm_config.high_thr_temp = temp; break; case ADC_TM_TRIP_LOW_COOL: tm_config.low_thr_temp = temp; break; default: return -EINVAL; } pr_debug("requested a high - %d and low - %d with trip - %d\n", tm_config.high_thr_temp, tm_config.low_thr_temp, trip); rc = qpnp_adc_tm_scale_therm_voltage_pu2(chip->vadc_dev, chip->adc->adc_prop, &tm_config); if (rc < 0) { pr_err("Failed to lookup the adc-tm thresholds\n"); return rc; } trip_warm_thr0 = ((tm_config.low_thr_voltage << 24) >> 24); trip_warm_thr1 = ((tm_config.low_thr_voltage << 16) >> 24); trip_cool_thr0 = ((tm_config.high_thr_voltage << 24) >> 24); trip_cool_thr1 = ((tm_config.high_thr_voltage << 16) >> 24); pr_debug("low_thr:0x%llx, high_thr:0x%llx\n", tm_config.low_thr_voltage, tm_config.high_thr_voltage); btm_chan = adc_tm->btm_channel_num; rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan, &btm_chan_idx); if (rc < 0) { pr_err("Invalid btm channel idx\n"); return rc; } if (!chip->adc_tm_hc) { reg_low_thr_lsb = adc_tm_data[btm_chan_idx].low_thr_lsb_addr; reg_low_thr_msb = adc_tm_data[btm_chan_idx].low_thr_msb_addr; reg_high_thr_lsb = adc_tm_data[btm_chan_idx].high_thr_lsb_addr; reg_high_thr_msb = adc_tm_data[btm_chan_idx].high_thr_msb_addr; } else { reg_low_thr_lsb = QPNP_BTM_Mn_LOW_THR0(btm_chan_idx); reg_low_thr_msb = QPNP_BTM_Mn_LOW_THR1(btm_chan_idx); reg_high_thr_lsb = QPNP_BTM_Mn_HIGH_THR0(btm_chan_idx); reg_high_thr_msb = QPNP_BTM_Mn_HIGH_THR1(btm_chan_idx); } switch (trip) { case ADC_TM_TRIP_HIGH_WARM: rc = qpnp_adc_tm_write_reg(chip, reg_low_thr_lsb, trip_cool_thr0, 1); if (rc) { pr_err("adc-tm_tm read threshold err\n"); return rc; } rc = qpnp_adc_tm_write_reg(chip, reg_low_thr_msb, trip_cool_thr1, 1); if (rc) { pr_err("adc-tm_tm read threshold err\n"); return rc; } adc_tm->low_thr = tm_config.high_thr_voltage; break; case ADC_TM_TRIP_LOW_COOL: rc = qpnp_adc_tm_write_reg(chip, reg_high_thr_lsb, trip_warm_thr0, 1); if (rc) { pr_err("adc-tm_tm read threshold err\n"); return rc; } rc = qpnp_adc_tm_write_reg(chip, reg_high_thr_msb, trip_warm_thr1, 1); if (rc) { pr_err("adc-tm_tm read threshold err\n"); return rc; } adc_tm->high_thr = tm_config.low_thr_voltage; break; default: return -EINVAL; } return 0; } static void notify_battery_therm(struct qpnp_adc_tm_sensor *adc_tm) { struct qpnp_adc_thr_client_info *client_info = NULL; list_for_each_entry(client_info, &adc_tm->thr_list, list) { /* Batt therm's warm temperature translates to low voltage */ if (client_info->notify_low_thr) { /* HIGH_STATE = WARM_TEMP for battery client */ client_info->btm_param->threshold_notification( ADC_TM_WARM_STATE, client_info->btm_param->btm_ctx); client_info->notify_low_thr = false; } /* Batt therm's cool temperature translates to high voltage */ if (client_info->notify_high_thr) { /* LOW_STATE = COOL_TEMP for battery client */ client_info->btm_param->threshold_notification( ADC_TM_COOL_STATE, client_info->btm_param->btm_ctx); client_info->notify_high_thr = false; } } return; } static void notify_clients(struct qpnp_adc_tm_sensor *adc_tm) { struct qpnp_adc_thr_client_info *client_info = NULL; list_for_each_entry(client_info, &adc_tm->thr_list, list) { /* For non batt therm clients */ if (client_info->notify_low_thr) { if (client_info->btm_param->threshold_notification != NULL) { pr_debug("notify kernel with low state\n"); client_info->btm_param->threshold_notification( ADC_TM_LOW_STATE, client_info->btm_param->btm_ctx); client_info->notify_low_thr = false; } } if (client_info->notify_high_thr) { if (client_info->btm_param->threshold_notification != NULL) { pr_debug("notify kernel with high state\n"); client_info->btm_param->threshold_notification( ADC_TM_HIGH_STATE, client_info->btm_param->btm_ctx); client_info->notify_high_thr = false; } } } return; } static void notify_adc_tm_fn(struct work_struct *work) { struct qpnp_adc_tm_sensor *adc_tm = container_of(work, struct qpnp_adc_tm_sensor, work); struct qpnp_adc_tm_chip *chip = adc_tm->chip; if (adc_tm->thermal_node) { sysfs_notify(&adc_tm->tz_dev->device.kobj, NULL, "type"); pr_debug("notifying uspace client\n"); } else { if (adc_tm->scale_type == SCALE_RBATT_THERM) notify_battery_therm(adc_tm); else notify_clients(adc_tm); } atomic_dec(&chip->wq_cnt); return; } static int qpnp_adc_tm_activate_trip_type(struct thermal_zone_device *thermal, int trip, enum thermal_trip_activation_mode mode) { struct qpnp_adc_tm_sensor *adc_tm = thermal->devdata; struct qpnp_adc_tm_chip *chip = adc_tm->chip; int rc = 0, sensor_mask = 0; u8 thr_int_en = 0; bool state = false; uint32_t btm_chan_idx = 0, btm_chan = 0; if (qpnp_adc_tm_is_valid(chip)) return -ENODEV; if (qpnp_adc_tm_check_revision(chip, adc_tm->btm_channel_num)) return -EINVAL; if (mode == THERMAL_TRIP_ACTIVATION_ENABLED) state = true; sensor_mask = 1 << adc_tm->sensor_num; pr_debug("Sensor number:%x with state:%d\n", adc_tm->sensor_num, state); btm_chan = adc_tm->btm_channel_num; rc = qpnp_adc_tm_get_btm_idx(chip, btm_chan, &btm_chan_idx); if (rc < 0) { pr_err("Invalid btm channel idx\n"); return rc; } switch (trip) { case ADC_TM_TRIP_HIGH_WARM: /* low_thr (lower voltage) for higher temp */ thr_int_en = adc_tm_data[btm_chan_idx].low_thr_int_chan_en; if (!chip->adc_tm_hc) rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_LOW_THR_INT_EN, sensor_mask, state); else rc = qpnp_adc_tm_reg_update(chip, QPNP_BTM_Mn_EN(btm_chan_idx), QPNP_BTM_Mn_LOW_THR_INT_EN, state); if (rc) pr_err("channel:%x failed\n", btm_chan); break; case ADC_TM_TRIP_LOW_COOL: /* high_thr (higher voltage) for cooler temp */ thr_int_en = adc_tm_data[btm_chan_idx].high_thr_int_chan_en; if (!chip->adc_tm_hc) rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_HIGH_THR_INT_EN, sensor_mask, state); else rc = qpnp_adc_tm_reg_update(chip, QPNP_BTM_Mn_EN(btm_chan_idx), QPNP_BTM_Mn_HIGH_THR_INT_EN, state); if (rc) pr_err("channel:%x failed\n", btm_chan); break; default: return -EINVAL; } return rc; } static int qpnp_adc_tm_recalib_request_check(struct qpnp_adc_tm_chip *chip, int sensor_num, u8 status_high, u8 *notify_check) { int rc = 0; u8 sensor_mask = 0, mode_ctl = 0; int32_t old_thr = 0, new_thr = 0; uint32_t channel, btm_chan_num, scale_type; struct qpnp_vadc_result result; struct qpnp_adc_thr_client_info *client_info = NULL; struct list_head *thr_list; bool status = false; if (!chip->adc_tm_recalib_check) { *notify_check = 1; return rc; } list_for_each(thr_list, &chip->sensor[sensor_num].thr_list) { client_info = list_entry(thr_list, struct qpnp_adc_thr_client_info, list); channel = client_info->btm_param->channel; btm_chan_num = chip->sensor[sensor_num].btm_channel_num; sensor_mask = 1 << sensor_num; rc = qpnp_vadc_read(chip->vadc_dev, channel, &result); if (rc < 0) { pr_err("failure to read vadc channel=%d\n", client_info->btm_param->channel); goto fail; } new_thr = result.physical; if (status_high) old_thr = client_info->btm_param->high_thr; else old_thr = client_info->btm_param->low_thr; if (new_thr > old_thr) status = (status_high) ? true : false; else status = (status_high) ? false : true; pr_debug( "recalib:sen=%d, new_thr=%d, new_thr_adc_code=0x%x, old_thr=%d status=%d valid_status=%d\n", sensor_num, new_thr, result.adc_code, old_thr, status_high, status); rc = qpnp_adc_tm_read_thr_value(chip, btm_chan_num); if (rc < 0) { pr_err("adc-tm thresholds read failed\n"); goto fail; } if (status) { *notify_check = 1; pr_debug("Client can be notify\n"); return rc; } pr_debug("Client can not be notify, restart measurement\n"); /* Set measurement in single measurement mode */ mode_ctl = ADC_OP_NORMAL_MODE << QPNP_OP_MODE_SHIFT; rc = qpnp_adc_tm_mode_select(chip, mode_ctl); if (rc < 0) { pr_err("adc-tm single mode select failed\n"); goto fail; } /* Disable bank */ rc = qpnp_adc_tm_disable(chip); if (rc < 0) { pr_err("adc-tm disable failed\n"); goto fail; } /* Check if a conversion is in progress */ rc = qpnp_adc_tm_req_sts_check(chip); if (rc < 0) { pr_err("adc-tm req_sts check failed\n"); goto fail; } rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_LOW_THR_INT_EN, sensor_mask, false); if (rc < 0) { pr_err("low threshold int write failed\n"); goto fail; } rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_HIGH_THR_INT_EN, sensor_mask, false); if (rc < 0) { pr_err("high threshold int enable failed\n"); goto fail; } rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_MULTI_MEAS_EN, sensor_mask, false); if (rc < 0) { pr_err("multi measurement en failed\n"); goto fail; } /* restart measurement */ scale_type = chip->sensor[sensor_num].scale_type; chip->adc->amux_prop->amux_channel = channel; chip->adc->amux_prop->decimation = chip->adc->adc_channels[sensor_num].adc_decimation; chip->adc->amux_prop->hw_settle_time = chip->adc->adc_channels[sensor_num].hw_settle_time; chip->adc->amux_prop->fast_avg_setup = chip->adc->adc_channels[sensor_num].fast_avg_setup; chip->adc->amux_prop->mode_sel = ADC_OP_MEASUREMENT_INTERVAL << QPNP_OP_MODE_SHIFT; adc_tm_rscale_fn[scale_type].chan(chip->vadc_dev, client_info->btm_param, &chip->adc->amux_prop->chan_prop->low_thr, &chip->adc->amux_prop->chan_prop->high_thr); qpnp_adc_tm_add_to_list(chip, sensor_num, client_info->btm_param, chip->adc->amux_prop->chan_prop); chip->adc->amux_prop->chan_prop->tm_channel_select = chip->sensor[sensor_num].btm_channel_num; chip->adc->amux_prop->chan_prop->state_request = client_info->btm_param->state_request; rc = qpnp_adc_tm_configure(chip, chip->adc->amux_prop); if (rc) { pr_err("adc-tm configure failed with %d\n", rc); goto fail; } *notify_check = 0; pr_debug("BTM channel reconfigured for measuremnt\n"); } fail: return rc; } static int qpnp_adc_tm_disable_rearm_high_thresholds( struct qpnp_adc_tm_chip *chip, int sensor_num) { struct qpnp_adc_thr_client_info *client_info = NULL; struct list_head *thr_list; uint32_t btm_chan_num = 0; u8 sensor_mask = 0, notify_check = 0; int rc = 0; btm_chan_num = chip->sensor[sensor_num].btm_channel_num; pr_debug("high:sen:%d, hs:0x%x, ls:0x%x, meas_en:0x%x\n", sensor_num, chip->th_info.adc_tm_high_enable, chip->th_info.adc_tm_low_enable, chip->th_info.qpnp_adc_tm_meas_en); if (!chip->sensor[sensor_num].thermal_node) { /* * For non thermal registered clients such as usb_id, * vbatt, pmic_therm */ sensor_mask = 1 << sensor_num; pr_debug("non thermal node - mask:%x\n", sensor_mask); rc = qpnp_adc_tm_recalib_request_check(chip, sensor_num, true, ¬ify_check); if (rc < 0 || !notify_check) { pr_debug("Calib recheck re-armed rc=%d\n", rc); chip->th_info.adc_tm_high_enable = 0; return rc; } } else { /* * Uses the thermal sysfs registered device to disable * the corresponding high voltage threshold which * is triggered by low temp */ sensor_mask = 1 << sensor_num; pr_debug("thermal node with mask:%x\n", sensor_mask); rc = qpnp_adc_tm_activate_trip_type( chip->sensor[sensor_num].tz_dev, ADC_TM_TRIP_LOW_COOL, THERMAL_TRIP_ACTIVATION_DISABLED); if (rc < 0) { pr_err("notify error:%d\n", sensor_num); return rc; } } list_for_each(thr_list, &chip->sensor[sensor_num].thr_list) { client_info = list_entry(thr_list, struct qpnp_adc_thr_client_info, list); if (client_info->high_thr_set) { client_info->high_thr_set = false; client_info->notify_high_thr = true; if (client_info->state_req_copy == ADC_TM_HIGH_LOW_THR_ENABLE) client_info->state_req_copy = ADC_TM_LOW_THR_ENABLE; else client_info->state_req_copy = ADC_TM_HIGH_THR_DISABLE; } } qpnp_adc_tm_manage_thresholds(chip, sensor_num, btm_chan_num); if (!chip->adc_tm_hc) { rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_MULTI_MEAS_EN, sensor_mask, false); if (rc < 0) { pr_err("multi meas disable failed\n"); return rc; } } else { rc = qpnp_adc_tm_reg_update(chip, QPNP_BTM_Mn_EN(sensor_num), QPNP_BTM_Mn_MEAS_EN, false); if (rc < 0) { pr_err("multi meas disable failed\n"); return rc; } } rc = qpnp_adc_tm_enable_if_channel_meas(chip); if (rc < 0) { pr_err("re-enabling measurement failed\n"); return rc; } queue_work(chip->sensor[sensor_num].req_wq, &chip->sensor[sensor_num].work); return rc; } static int qpnp_adc_tm_disable_rearm_low_thresholds( struct qpnp_adc_tm_chip *chip, int sensor_num) { struct qpnp_adc_thr_client_info *client_info = NULL; struct list_head *thr_list; uint32_t btm_chan_num = 0; u8 sensor_mask = 0, notify_check = 0; int rc = 0; btm_chan_num = chip->sensor[sensor_num].btm_channel_num; pr_debug("low:sen:%d, hs:0x%x, ls:0x%x, meas_en:0x%x\n", sensor_num, chip->th_info.adc_tm_high_enable, chip->th_info.adc_tm_low_enable, chip->th_info.qpnp_adc_tm_meas_en); if (!chip->sensor[sensor_num].thermal_node) { /* * For non thermal registered clients such as usb_id, * vbatt, pmic_therm */ pr_debug("non thermal node - mask:%x\n", sensor_mask); rc = qpnp_adc_tm_recalib_request_check(chip, sensor_num, false, ¬ify_check); if (rc < 0 || !notify_check) { pr_debug("Calib recheck re-armed rc=%d\n", rc); chip->th_info.adc_tm_low_enable = 0; return rc; } sensor_mask = 1 << sensor_num; rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_LOW_THR_INT_EN, sensor_mask, false); if (rc < 0) { pr_err("low threshold int read failed\n"); return rc; } } else { /* * Uses the thermal sysfs registered device to disable * the corresponding high voltage threshold which * is triggered by low temp */ sensor_mask = 1 << sensor_num; pr_debug("thermal node with mask:%x\n", sensor_mask); rc = qpnp_adc_tm_activate_trip_type( chip->sensor[sensor_num].tz_dev, ADC_TM_TRIP_HIGH_WARM, THERMAL_TRIP_ACTIVATION_DISABLED); if (rc < 0) { pr_err("notify error:%d\n", sensor_num); return rc; } } list_for_each(thr_list, &chip->sensor[sensor_num].thr_list) { client_info = list_entry(thr_list, struct qpnp_adc_thr_client_info, list); if (client_info->low_thr_set) { client_info->low_thr_set = false; client_info->notify_low_thr = true; if (client_info->state_req_copy == ADC_TM_HIGH_LOW_THR_ENABLE) client_info->state_req_copy = ADC_TM_HIGH_THR_ENABLE; else client_info->state_req_copy = ADC_TM_LOW_THR_DISABLE; } } qpnp_adc_tm_manage_thresholds(chip, sensor_num, btm_chan_num); if (!chip->adc_tm_hc) { rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_MULTI_MEAS_EN, sensor_mask, false); if (rc < 0) { pr_err("multi meas disable failed\n"); return rc; } } else { rc = qpnp_adc_tm_reg_update(chip, QPNP_BTM_Mn_EN(sensor_num), QPNP_BTM_Mn_MEAS_EN, false); if (rc < 0) { pr_err("multi meas disable failed\n"); return rc; } } rc = qpnp_adc_tm_enable_if_channel_meas(chip); if (rc < 0) { pr_err("re-enabling measurement failed\n"); return rc; } queue_work(chip->sensor[sensor_num].req_wq, &chip->sensor[sensor_num].work); return rc; } static int qpnp_adc_tm_read_status(struct qpnp_adc_tm_chip *chip) { int rc = 0, sensor_num = 0; if (qpnp_adc_tm_is_valid(chip)) return -ENODEV; pr_debug("%s\n", __func__); mutex_lock(&chip->adc->adc_lock); if (!chip->adc_tm_hc) { rc = qpnp_adc_tm_req_sts_check(chip); if (rc) { pr_err("adc-tm-tm req sts check failed with %d\n", rc); goto fail; } } while (sensor_num < chip->max_channels_available) { if (chip->sensor[sensor_num].high_thr_triggered) { rc = qpnp_adc_tm_disable_rearm_high_thresholds( chip, sensor_num); if (rc) { pr_err("rearm threshold failed\n"); goto fail; } chip->sensor[sensor_num].high_thr_triggered = false; } sensor_num++; } sensor_num = 0; while (sensor_num < chip->max_channels_available) { if (chip->sensor[sensor_num].low_thr_triggered) { rc = qpnp_adc_tm_disable_rearm_low_thresholds( chip, sensor_num); if (rc) { pr_err("rearm threshold failed\n"); goto fail; } chip->sensor[sensor_num].low_thr_triggered = false; } sensor_num++; } fail: mutex_unlock(&chip->adc->adc_lock); if (rc < 0 || (!chip->th_info.adc_tm_high_enable && !chip->th_info.adc_tm_low_enable)) atomic_dec(&chip->wq_cnt); return rc; } static void qpnp_adc_tm_high_thr_work(struct work_struct *work) { struct qpnp_adc_tm_chip *chip = container_of(work, struct qpnp_adc_tm_chip, trigger_high_thr_work); int rc; /* disable the vote if applicable */ if (chip->adc_vote_enable && chip->adc->hkadc_ldo && chip->adc->hkadc_ldo_ok) { qpnp_adc_disable_voltage(chip->adc); chip->adc_vote_enable = false; } pr_debug("thr:0x%x\n", chip->th_info.adc_tm_high_enable); rc = qpnp_adc_tm_read_status(chip); if (rc < 0) pr_err("adc-tm high thr work failed\n"); return; } static irqreturn_t qpnp_adc_tm_high_thr_isr(int irq, void *data) { struct qpnp_adc_tm_chip *chip = data; u8 mode_ctl = 0, status1 = 0, sensor_mask = 0; int rc = 0, sensor_notify_num = 0, i = 0, sensor_num = 0; mode_ctl = ADC_OP_NORMAL_MODE << QPNP_OP_MODE_SHIFT; /* Set measurement in single measurement mode */ qpnp_adc_tm_mode_select(chip, mode_ctl); qpnp_adc_tm_disable(chip); rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_STATUS1, &status1, 1); if (rc) { pr_err("adc-tm read status1 failed\n"); return IRQ_HANDLED; } rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_STATUS_HIGH, &chip->th_info.status_high, 1); if (rc) { pr_err("adc-tm-tm read status high failed with %d\n", rc); return IRQ_HANDLED; } rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_HIGH_THR_INT_EN, &chip->th_info.adc_tm_high_thr_set, 1); if (rc) { pr_err("adc-tm-tm read high thr failed with %d\n", rc); return IRQ_HANDLED; } /* Check which interrupt threshold is lower and measure against the * enabled channel */ rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_MULTI_MEAS_EN, &chip->th_info.qpnp_adc_tm_meas_en, 1); if (rc) { pr_err("adc-tm-tm read status high failed with %d\n", rc); return IRQ_HANDLED; } chip->th_info.adc_tm_high_enable = chip->th_info.qpnp_adc_tm_meas_en & chip->th_info.status_high; chip->th_info.adc_tm_high_enable &= chip->th_info.adc_tm_high_thr_set; sensor_notify_num = chip->th_info.adc_tm_high_enable; while (i < chip->max_channels_available) { if ((sensor_notify_num & 0x1) == 1) sensor_num = i; sensor_notify_num >>= 1; i++; } if (!chip->sensor[sensor_num].thermal_node) { sensor_mask = 1 << sensor_num; rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_HIGH_THR_INT_EN, sensor_mask, false); if (rc < 0) { pr_err("high threshold int read failed\n"); return IRQ_HANDLED; } } else { /* Uses the thermal sysfs registered device to disable the corresponding high voltage threshold which is triggered by low temp */ pr_debug("thermal node with mask:%x\n", sensor_mask); rc = qpnp_adc_tm_activate_trip_type( chip->sensor[sensor_num].tz_dev, ADC_TM_TRIP_LOW_COOL, THERMAL_TRIP_ACTIVATION_DISABLED); if (rc < 0) { pr_err("notify error:%d\n", sensor_num); return IRQ_HANDLED; } } atomic_inc(&chip->wq_cnt); queue_work(chip->high_thr_wq, &chip->trigger_high_thr_work); return IRQ_HANDLED; } static void qpnp_adc_tm_low_thr_work(struct work_struct *work) { struct qpnp_adc_tm_chip *chip = container_of(work, struct qpnp_adc_tm_chip, trigger_low_thr_work); int rc; /* disable the vote if applicable */ if (chip->adc_vote_enable && chip->adc->hkadc_ldo && chip->adc->hkadc_ldo_ok) { qpnp_adc_disable_voltage(chip->adc); chip->adc_vote_enable = false; } pr_debug("thr:0x%x\n", chip->th_info.adc_tm_low_enable); rc = qpnp_adc_tm_read_status(chip); if (rc < 0) pr_err("adc-tm low thr work failed\n"); return; } static irqreturn_t qpnp_adc_tm_low_thr_isr(int irq, void *data) { struct qpnp_adc_tm_chip *chip = data; u8 mode_ctl = 0, status1 = 0, sensor_mask = 0; int rc = 0, sensor_notify_num = 0, i = 0, sensor_num = 0; mode_ctl = ADC_OP_NORMAL_MODE << QPNP_OP_MODE_SHIFT; /* Set measurement in single measurement mode */ qpnp_adc_tm_mode_select(chip, mode_ctl); qpnp_adc_tm_disable(chip); rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_STATUS1, &status1, 1); if (rc) { pr_err("adc-tm read status1 failed\n"); return IRQ_HANDLED; } rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_STATUS_LOW, &chip->th_info.status_low, 1); if (rc) { pr_err("adc-tm-tm read status low failed with %d\n", rc); return IRQ_HANDLED; } rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_LOW_THR_INT_EN, &chip->th_info.adc_tm_low_thr_set, 1); if (rc) { pr_err("adc-tm-tm read low thr failed with %d\n", rc); return IRQ_HANDLED; } rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_MULTI_MEAS_EN, &chip->th_info.qpnp_adc_tm_meas_en, 1); if (rc) { pr_err("adc-tm-tm read status high failed with %d\n", rc); return IRQ_HANDLED; } chip->th_info.adc_tm_low_enable = chip->th_info.qpnp_adc_tm_meas_en & chip->th_info.status_low; chip->th_info.adc_tm_low_enable &= chip->th_info.adc_tm_low_thr_set; sensor_notify_num = chip->th_info.adc_tm_low_enable; while (i < chip->max_channels_available) { if ((sensor_notify_num & 0x1) == 1) sensor_num = i; sensor_notify_num >>= 1; i++; } if (!chip->sensor[sensor_num].thermal_node) { sensor_mask = 1 << sensor_num; rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_LOW_THR_INT_EN, sensor_mask, false); if (rc < 0) { pr_err("low threshold int read failed\n"); return IRQ_HANDLED; } } else { /* Uses the thermal sysfs registered device to disable the corresponding low voltage threshold which is triggered by high temp */ pr_debug("thermal node with mask:%x\n", sensor_mask); rc = qpnp_adc_tm_activate_trip_type( chip->sensor[sensor_num].tz_dev, ADC_TM_TRIP_HIGH_WARM, THERMAL_TRIP_ACTIVATION_DISABLED); if (rc < 0) { pr_err("notify error:%d\n", sensor_num); return IRQ_HANDLED; } } atomic_inc(&chip->wq_cnt); queue_work(chip->low_thr_wq, &chip->trigger_low_thr_work); return IRQ_HANDLED; } static int qpnp_adc_tm_rc_check_sensor_trip(struct qpnp_adc_tm_chip *chip, u8 status_low, u8 status_high, int i, int *sensor_low_notify_num, int *sensor_high_notify_num) { int rc = 0; u8 ctl = 0, sensor_mask = 0; if (((status_low & 0x1) == 1) || ((status_high & 0x1) == 1)) { rc = qpnp_adc_tm_read_reg(chip, QPNP_BTM_Mn_EN(i), &ctl, 1); if (rc) { pr_err("ctl read failed with %d\n", rc); return IRQ_HANDLED; } if ((status_low & 0x1) && (ctl & QPNP_BTM_Mn_MEAS_EN) && (ctl & QPNP_BTM_Mn_LOW_THR_INT_EN)) { /* Mask the corresponding low threshold interrupt en */ if (!chip->sensor[i].thermal_node) { rc = qpnp_adc_tm_reg_update(chip, QPNP_BTM_Mn_EN(i), QPNP_BTM_Mn_LOW_THR_INT_EN, false); if (rc < 0) { pr_err("low thr_int en failed\n"); return IRQ_HANDLED; } } else { /* * Uses the thermal sysfs registered device to disable * the corresponding low voltage threshold which * is triggered by high temp */ pr_debug("thermal node with mask:%x\n", sensor_mask); rc = qpnp_adc_tm_activate_trip_type( chip->sensor[i].tz_dev, ADC_TM_TRIP_HIGH_WARM, THERMAL_TRIP_ACTIVATION_DISABLED); if (rc < 0) { pr_err("notify error:%d\n", i); return IRQ_HANDLED; } } *sensor_low_notify_num |= (status_low & 0x1); chip->sensor[i].low_thr_triggered = true; } if ((status_high & 0x1) && (ctl & QPNP_BTM_Mn_MEAS_EN) && (ctl & QPNP_BTM_Mn_HIGH_THR_INT_EN)) { /* Mask the corresponding high threshold interrupt en */ if (!chip->sensor[i].thermal_node) { rc = qpnp_adc_tm_reg_update(chip, QPNP_BTM_Mn_EN(i), QPNP_BTM_Mn_HIGH_THR_INT_EN, false); if (rc < 0) { pr_err("high thr_int en failed\n"); return IRQ_HANDLED; } } else { /* * Uses the thermal sysfs registered device to disable * the corresponding high voltage threshold which * is triggered by low temp */ pr_debug("thermal node with mask:%x\n", i); rc = qpnp_adc_tm_activate_trip_type( chip->sensor[i].tz_dev, ADC_TM_TRIP_LOW_COOL, THERMAL_TRIP_ACTIVATION_DISABLED); if (rc < 0) { pr_err("notify error:%d\n", i); return IRQ_HANDLED; } } *sensor_high_notify_num |= (status_high & 0x1); chip->sensor[i].high_thr_triggered = true; } } return rc; } static irqreturn_t qpnp_adc_tm_rc_thr_isr(int irq, void *data) { struct qpnp_adc_tm_chip *chip = data; u8 status_low = 0, status_high = 0; int rc = 0, sensor_low_notify_num = 0, i = 0; int sensor_high_notify_num = 0; rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_STATUS_LOW, &status_low, 1); if (rc) { pr_err("adc-tm-tm read status low failed with %d\n", rc); return IRQ_HANDLED; } if (status_low) chip->th_info.adc_tm_low_enable = status_low; rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_STATUS_HIGH, &status_high, 1); if (rc) { pr_err("adc-tm-tm read status high failed with %d\n", rc); return IRQ_HANDLED; } if (status_high) chip->th_info.adc_tm_high_enable = status_high; while (i < chip->max_channels_available) { rc = qpnp_adc_tm_rc_check_sensor_trip(chip, status_low, status_high, i, &sensor_low_notify_num, &sensor_high_notify_num); if (rc) { pr_err("Sensor trip read failed\n"); return IRQ_HANDLED; } status_low >>= 1; status_high >>= 1; i++; } if (sensor_low_notify_num) { atomic_inc(&chip->wq_cnt); queue_work(chip->low_thr_wq, &chip->trigger_low_thr_work); } if (sensor_high_notify_num) { atomic_inc(&chip->wq_cnt); queue_work(chip->high_thr_wq, &chip->trigger_high_thr_work); } return IRQ_HANDLED; } static int qpnp_adc_read_temp(struct thermal_zone_device *thermal, int *temp) { struct qpnp_adc_tm_sensor *adc_tm_sensor = thermal->devdata; struct qpnp_adc_tm_chip *chip = adc_tm_sensor->chip; struct qpnp_vadc_result result; int rc = 0; rc = qpnp_vadc_read(chip->vadc_dev, adc_tm_sensor->vadc_channel_num, &result); if (rc) return rc; *temp = result.physical; return rc; } static struct thermal_zone_device_ops qpnp_adc_tm_thermal_ops = { .get_temp = qpnp_adc_read_temp, .get_mode = qpnp_adc_tm_get_mode, .set_mode = qpnp_adc_tm_set_mode, .get_trip_type = qpnp_adc_tm_get_trip_type, .activate_trip_type = qpnp_adc_tm_activate_trip_type, .get_trip_temp = qpnp_adc_tm_get_trip_temp, .set_trip_temp = qpnp_adc_tm_set_trip_temp, }; int32_t qpnp_adc_tm_channel_measure(struct qpnp_adc_tm_chip *chip, struct qpnp_adc_tm_btm_param *param) { uint32_t channel, amux_prescaling, dt_index = 0, scale_type = 0; int rc = 0, i = 0, version = 0; bool chan_found = false; if (qpnp_adc_tm_is_valid(chip)) { pr_err("chip not valid\n"); return -ENODEV; } if (param->threshold_notification == NULL) { pr_debug("No notification for high/low temp??\n"); return -EINVAL; } mutex_lock(&chip->adc->adc_lock); channel = param->channel; if (channel == VSYS) { version = qpnp_adc_get_revid_version(chip->dev); if (version == QPNP_REV_ID_PM8950_1_0) { pr_debug("Channel not supported\n"); rc = -EINVAL; goto fail_unlock; } } while (i < chip->max_channels_available) { if (chip->adc->adc_channels[i].channel_num == channel) { dt_index = i; chan_found = true; i++; } else i++; } if (!chan_found) { pr_err("not a valid ADC_TM channel\n"); rc = -EINVAL; goto fail_unlock; } rc = qpnp_adc_tm_check_revision(chip, chip->sensor[dt_index].btm_channel_num); if (rc < 0) goto fail_unlock; scale_type = chip->adc->adc_channels[dt_index].adc_scale_fn; if (scale_type >= SCALE_RSCALE_NONE) { rc = -EBADF; goto fail_unlock; } amux_prescaling = chip->adc->adc_channels[dt_index].chan_path_prescaling; if (amux_prescaling >= PATH_SCALING_NONE) { rc = -EINVAL; goto fail_unlock; } pr_debug("channel:%d, scale_type:%d, dt_idx:%d", channel, scale_type, dt_index); param->gain_num = qpnp_vadc_amux_scaling_ratio[amux_prescaling].num; param->gain_den = qpnp_vadc_amux_scaling_ratio[amux_prescaling].den; param->adc_tm_hc = chip->adc_tm_hc; chip->adc->amux_prop->amux_channel = channel; chip->adc->amux_prop->decimation = chip->adc->adc_channels[dt_index].adc_decimation; chip->adc->amux_prop->hw_settle_time = chip->adc->adc_channels[dt_index].hw_settle_time; chip->adc->amux_prop->fast_avg_setup = chip->adc->adc_channels[dt_index].fast_avg_setup; chip->adc->amux_prop->mode_sel = ADC_OP_MEASUREMENT_INTERVAL << QPNP_OP_MODE_SHIFT; adc_tm_rscale_fn[scale_type].chan(chip->vadc_dev, param, &chip->adc->amux_prop->chan_prop->low_thr, &chip->adc->amux_prop->chan_prop->high_thr); qpnp_adc_tm_add_to_list(chip, dt_index, param, chip->adc->amux_prop->chan_prop); chip->adc->amux_prop->chan_prop->tm_channel_select = chip->sensor[dt_index].btm_channel_num; chip->adc->amux_prop->chan_prop->state_request = param->state_request; chip->adc->amux_prop->calib_type = chip->adc->adc_channels[dt_index].calib_type; if (!chip->adc_tm_hc) { rc = qpnp_adc_tm_configure(chip, chip->adc->amux_prop); if (rc) { pr_err("adc-tm configure failed with %d\n", rc); goto fail_unlock; } } else { rc = qpnp_adc_tm_hc_configure(chip, chip->adc->amux_prop); if (rc) { pr_err("adc-tm hc configure failed with %d\n", rc); goto fail_unlock; } } chip->sensor[dt_index].scale_type = scale_type; fail_unlock: mutex_unlock(&chip->adc->adc_lock); return rc; } EXPORT_SYMBOL(qpnp_adc_tm_channel_measure); int32_t qpnp_adc_tm_disable_chan_meas(struct qpnp_adc_tm_chip *chip, struct qpnp_adc_tm_btm_param *param) { uint32_t channel, dt_index = 0, btm_chan_num; u8 sensor_mask = 0, mode_ctl = 0; int rc = 0; if (qpnp_adc_tm_is_valid(chip)) return -ENODEV; mutex_lock(&chip->adc->adc_lock); if (!chip->adc_tm_hc) { /* Set measurement in single measurement mode */ mode_ctl = ADC_OP_NORMAL_MODE << QPNP_OP_MODE_SHIFT; rc = qpnp_adc_tm_mode_select(chip, mode_ctl); if (rc < 0) { pr_err("adc-tm single mode select failed\n"); goto fail; } } /* Disable bank */ rc = qpnp_adc_tm_disable(chip); if (rc < 0) { pr_err("adc-tm disable failed\n"); goto fail; } if (!chip->adc_tm_hc) { /* Check if a conversion is in progress */ rc = qpnp_adc_tm_req_sts_check(chip); if (rc < 0) { pr_err("adc-tm req_sts check failed\n"); goto fail; } } channel = param->channel; while ((chip->adc->adc_channels[dt_index].channel_num != channel) && (dt_index < chip->max_channels_available)) dt_index++; if (dt_index >= chip->max_channels_available) { pr_err("not a valid ADC_TMN channel\n"); rc = -EINVAL; goto fail; } btm_chan_num = chip->sensor[dt_index].btm_channel_num; if (!chip->adc_tm_hc) { sensor_mask = 1 << chip->sensor[dt_index].sensor_num; rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_LOW_THR_INT_EN, sensor_mask, false); if (rc < 0) { pr_err("low threshold int write failed\n"); goto fail; } rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_HIGH_THR_INT_EN, sensor_mask, false); if (rc < 0) { pr_err("high threshold int enable failed\n"); goto fail; } rc = qpnp_adc_tm_reg_update(chip, QPNP_ADC_TM_MULTI_MEAS_EN, sensor_mask, false); if (rc < 0) { pr_err("multi measurement en failed\n"); goto fail; } } else { rc = qpnp_adc_tm_reg_update(chip, QPNP_BTM_Mn_EN(btm_chan_num), QPNP_BTM_Mn_HIGH_THR_INT_EN, false); if (rc < 0) { pr_err("high thr disable err:%d\n", btm_chan_num); return rc; } rc = qpnp_adc_tm_reg_update(chip, QPNP_BTM_Mn_EN(btm_chan_num), QPNP_BTM_Mn_LOW_THR_INT_EN, false); if (rc < 0) { pr_err("low thr disable err:%d\n", btm_chan_num); return rc; } rc = qpnp_adc_tm_reg_update(chip, QPNP_BTM_Mn_EN(btm_chan_num), QPNP_BTM_Mn_MEAS_EN, false); if (rc < 0) { pr_err("multi measurement disable failed\n"); return rc; } } rc = qpnp_adc_tm_enable_if_channel_meas(chip); if (rc < 0) pr_err("re-enabling measurement failed\n"); fail: mutex_unlock(&chip->adc->adc_lock); return rc; } EXPORT_SYMBOL(qpnp_adc_tm_disable_chan_meas); int32_t qpnp_adc_tm_usbid_configure(struct qpnp_adc_tm_chip *chip, struct qpnp_adc_tm_btm_param *param) { param->channel = LR_MUX10_PU2_AMUX_USB_ID_LV; return qpnp_adc_tm_channel_measure(chip, param); } EXPORT_SYMBOL(qpnp_adc_tm_usbid_configure); int32_t qpnp_adc_tm_usbid_end(struct qpnp_adc_tm_chip *chip) { struct qpnp_adc_tm_btm_param param; return qpnp_adc_tm_disable_chan_meas(chip, ¶m); } EXPORT_SYMBOL(qpnp_adc_tm_usbid_end); struct qpnp_adc_tm_chip *qpnp_get_adc_tm(struct device *dev, const char *name) { struct qpnp_adc_tm_chip *chip; struct device_node *node = NULL; char prop_name[QPNP_MAX_PROP_NAME_LEN]; snprintf(prop_name, QPNP_MAX_PROP_NAME_LEN, "qcom,%s-adc_tm", name); node = of_parse_phandle(dev->of_node, prop_name, 0); if (node == NULL) return ERR_PTR(-ENODEV); list_for_each_entry(chip, &qpnp_adc_tm_device_list, list) if (chip->adc->pdev->dev.of_node == node) return chip; return ERR_PTR(-EPROBE_DEFER); } EXPORT_SYMBOL(qpnp_get_adc_tm); static int qpnp_adc_tm_initial_setup(struct qpnp_adc_tm_chip *chip) { u8 thr_init = 0; int rc = 0; rc = qpnp_adc_tm_write_reg(chip, QPNP_ADC_TM_HIGH_THR_INT_EN, thr_init, 1); if (rc < 0) { pr_err("high thr init failed\n"); return rc; } rc = qpnp_adc_tm_write_reg(chip, QPNP_ADC_TM_LOW_THR_INT_EN, thr_init, 1); if (rc < 0) { pr_err("low thr init failed\n"); return rc; } rc = qpnp_adc_tm_write_reg(chip, QPNP_ADC_TM_MULTI_MEAS_EN, thr_init, 1); if (rc < 0) { pr_err("multi meas en failed\n"); return rc; } return rc; } static const struct of_device_id qpnp_adc_tm_match_table[] = { { .compatible = "qcom,qpnp-adc-tm" }, { .compatible = "qcom,qpnp-adc-tm-hc" }, {} }; static int qpnp_adc_tm_probe(struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node, *child; struct qpnp_adc_tm_chip *chip; struct qpnp_adc_drv *adc_qpnp; int32_t count_adc_channel_list = 0, rc, sen_idx = 0, i = 0; bool thermal_node = false; const struct of_device_id *id; for_each_child_of_node(node, child) count_adc_channel_list++; if (!count_adc_channel_list) { pr_err("No channel listing\n"); return -EINVAL; } id = of_match_node(qpnp_adc_tm_match_table, node); if (id == NULL) { pr_err("qpnp_adc_tm_match of_node prop not present\n"); return -ENODEV; } chip = devm_kzalloc(&pdev->dev, sizeof(struct qpnp_adc_tm_chip) + (count_adc_channel_list * sizeof(struct qpnp_adc_tm_sensor)), GFP_KERNEL); if (!chip) return -ENOMEM; adc_qpnp = devm_kzalloc(&pdev->dev, sizeof(struct qpnp_adc_drv), GFP_KERNEL); if (!adc_qpnp) { rc = -ENOMEM; goto fail; } chip->dev = &(pdev->dev); chip->adc = adc_qpnp; chip->adc->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!chip->adc->regmap) { dev_err(&pdev->dev, "Couldn't get parent's regmap\n"); rc = -EINVAL; goto fail; } if (of_device_is_compatible(node, "qcom,qpnp-adc-tm-hc")) { chip->adc_tm_hc = true; chip->adc->adc_hc = true; } rc = qpnp_adc_get_devicetree_data(pdev, chip->adc); if (rc) { dev_err(&pdev->dev, "failed to read device tree\n"); goto fail; } mutex_init(&chip->adc->adc_lock); /* Register the ADC peripheral interrupt */ if (!chip->adc_tm_hc) { chip->adc->adc_high_thr_irq = platform_get_irq_byname(pdev, "high-thr-en-set"); if (chip->adc->adc_high_thr_irq < 0) { pr_err("Invalid irq\n"); rc = -ENXIO; goto fail; } chip->adc->adc_low_thr_irq = platform_get_irq_byname(pdev, "low-thr-en-set"); if (chip->adc->adc_low_thr_irq < 0) { pr_err("Invalid irq\n"); rc = -ENXIO; goto fail; } } chip->vadc_dev = qpnp_get_vadc(&pdev->dev, "adc_tm"); if (IS_ERR(chip->vadc_dev)) { rc = PTR_ERR(chip->vadc_dev); if (rc != -EPROBE_DEFER) pr_err("vadc property missing, rc=%d\n", rc); goto fail; } chip->adc_tm_recalib_check = of_property_read_bool(node, "qcom,adc-tm-recalib-check"); for_each_child_of_node(node, child) { char name[25]; int btm_channel_num, timer_select = 0; rc = of_property_read_u32(child, "qcom,btm-channel-number", &btm_channel_num); if (rc) { pr_err("Invalid btm channel number\n"); goto fail; } rc = of_property_read_u32(child, "qcom,meas-interval-timer-idx", &timer_select); if (rc) { pr_debug("Default to timer2 with interval of 1 sec\n"); chip->sensor[sen_idx].timer_select = ADC_MEAS_TIMER_SELECT2; chip->sensor[sen_idx].meas_interval = ADC_MEAS2_INTERVAL_1S; } else { if (timer_select >= ADC_MEAS_TIMER_NUM) { pr_err("Invalid timer selection number\n"); goto fail; } chip->sensor[sen_idx].timer_select = timer_select; if (timer_select == ADC_MEAS_TIMER_SELECT1) chip->sensor[sen_idx].meas_interval = ADC_MEAS1_INTERVAL_3P9MS; else if (timer_select == ADC_MEAS_TIMER_SELECT3) chip->sensor[sen_idx].meas_interval = ADC_MEAS3_INTERVAL_4S; else if (timer_select == ADC_MEAS_TIMER_SELECT2) chip->sensor[sen_idx].meas_interval = ADC_MEAS2_INTERVAL_1S; } chip->sensor[sen_idx].btm_channel_num = btm_channel_num; chip->sensor[sen_idx].vadc_channel_num = chip->adc->adc_channels[sen_idx].channel_num; chip->sensor[sen_idx].sensor_num = sen_idx; chip->sensor[sen_idx].chip = chip; pr_debug("btm_chan:%x, vadc_chan:%x\n", btm_channel_num, chip->adc->adc_channels[sen_idx].channel_num); thermal_node = of_property_read_bool(child, "qcom,thermal-node"); if (thermal_node) { /* Register with the thermal zone */ pr_debug("thermal node%x\n", btm_channel_num); chip->sensor[sen_idx].mode = THERMAL_DEVICE_DISABLED; chip->sensor[sen_idx].thermal_node = true; snprintf(name, sizeof(name), "%s", chip->adc->adc_channels[sen_idx].name); chip->sensor[sen_idx].meas_interval = QPNP_ADC_TM_MEAS_INTERVAL; chip->sensor[sen_idx].low_thr = QPNP_ADC_TM_M0_LOW_THR; chip->sensor[sen_idx].high_thr = QPNP_ADC_TM_M0_HIGH_THR; chip->sensor[sen_idx].tz_dev = thermal_zone_device_register(name, ADC_TM_TRIP_NUM, ADC_TM_WRITABLE_TRIPS_MASK, &chip->sensor[sen_idx], &qpnp_adc_tm_thermal_ops, NULL, 0, 0); if (IS_ERR(chip->sensor[sen_idx].tz_dev)) pr_err("thermal device register failed.\n"); } chip->sensor[sen_idx].req_wq = alloc_workqueue( "qpnp_adc_notify_wq", WQ_HIGHPRI, 0); if (!chip->sensor[sen_idx].req_wq) { pr_err("Requesting priority wq failed\n"); goto fail; } INIT_WORK(&chip->sensor[sen_idx].work, notify_adc_tm_fn); INIT_LIST_HEAD(&chip->sensor[sen_idx].thr_list); sen_idx++; } chip->max_channels_available = count_adc_channel_list; chip->high_thr_wq = alloc_workqueue("qpnp_adc_tm_high_thr_wq", WQ_HIGHPRI, 0); if (!chip->high_thr_wq) { pr_err("Requesting high thr priority wq failed\n"); goto fail; } chip->low_thr_wq = alloc_workqueue("qpnp_adc_tm_low_thr_wq", WQ_HIGHPRI, 0); if (!chip->low_thr_wq) { pr_err("Requesting low thr priority wq failed\n"); goto fail; } chip->thr_wq = alloc_workqueue("qpnp_adc_tm_thr_wq", WQ_HIGHPRI, 0); if (!chip->thr_wq) { pr_err("Requesting thr priority wq failed\n"); goto fail; } INIT_WORK(&chip->trigger_high_thr_work, qpnp_adc_tm_high_thr_work); INIT_WORK(&chip->trigger_low_thr_work, qpnp_adc_tm_low_thr_work); atomic_set(&chip->wq_cnt, 0); if (!chip->adc_tm_hc) { rc = qpnp_adc_tm_initial_setup(chip); if (rc) goto fail; rc = devm_request_irq(&pdev->dev, chip->adc->adc_high_thr_irq, qpnp_adc_tm_high_thr_isr, IRQF_TRIGGER_RISING, "qpnp_adc_tm_high_interrupt", chip); if (rc) { dev_err(&pdev->dev, "failed to request adc irq\n"); goto fail; } else { enable_irq_wake(chip->adc->adc_high_thr_irq); } rc = devm_request_irq(&pdev->dev, chip->adc->adc_low_thr_irq, qpnp_adc_tm_low_thr_isr, IRQF_TRIGGER_RISING, "qpnp_adc_tm_low_interrupt", chip); if (rc) { dev_err(&pdev->dev, "failed to request adc irq\n"); goto fail; } else { enable_irq_wake(chip->adc->adc_low_thr_irq); } } else { rc = devm_request_irq(&pdev->dev, chip->adc->adc_irq_eoc, qpnp_adc_tm_rc_thr_isr, IRQF_TRIGGER_RISING, "qpnp_adc_tm_interrupt", chip); if (rc) dev_err(&pdev->dev, "failed to request adc irq\n"); else enable_irq_wake(chip->adc->adc_irq_eoc); } chip->adc_vote_enable = false; dev_set_drvdata(&pdev->dev, chip); list_add(&chip->list, &qpnp_adc_tm_device_list); pr_debug("OK\n"); return 0; fail: for_each_child_of_node(node, child) { thermal_node = of_property_read_bool(child, "qcom,thermal-node"); if (thermal_node) { thermal_zone_device_unregister(chip->sensor[i].tz_dev); if (chip->sensor[i].req_wq) destroy_workqueue(chip->sensor[sen_idx].req_wq); } } if (chip->high_thr_wq) destroy_workqueue(chip->high_thr_wq); if (chip->low_thr_wq) destroy_workqueue(chip->low_thr_wq); dev_set_drvdata(&pdev->dev, NULL); return rc; } static int qpnp_adc_tm_remove(struct platform_device *pdev) { struct qpnp_adc_tm_chip *chip = dev_get_drvdata(&pdev->dev); struct device_node *node = pdev->dev.of_node, *child; bool thermal_node = false; int i = 0; for_each_child_of_node(node, child) { thermal_node = of_property_read_bool(child, "qcom,thermal-node"); if (thermal_node) { thermal_zone_device_unregister(chip->sensor[i].tz_dev); if (chip->sensor[i].req_wq) destroy_workqueue(chip->sensor[i].req_wq); } i++; } if (chip->high_thr_wq) destroy_workqueue(chip->high_thr_wq); if (chip->low_thr_wq) destroy_workqueue(chip->low_thr_wq); if (chip->adc->hkadc_ldo && chip->adc->hkadc_ldo_ok) qpnp_adc_free_voltage_resource(chip->adc); dev_set_drvdata(&pdev->dev, NULL); return 0; } static void qpnp_adc_tm_shutdown(struct platform_device *pdev) { struct qpnp_adc_tm_chip *chip = dev_get_drvdata(&pdev->dev); int rc = 0, i = 0; u8 reg_val = 0, status1 = 0, en_ctl1 = 0; if (!chip->adc_tm_hc) { /* Set measurement in single measurement mode */ reg_val = ADC_OP_NORMAL_MODE << QPNP_OP_MODE_SHIFT; rc = qpnp_adc_tm_mode_select(chip, reg_val); if (rc < 0) pr_err("adc-tm single mode select failed\n"); } /* Disable bank */ rc = qpnp_adc_tm_disable(chip); if (rc < 0) pr_err("adc-tm disable failed\n"); if (chip->adc_tm_hc) { for (i = 0; i < 8; i++) { rc = qpnp_adc_tm_reg_update(chip, QPNP_BTM_Mn_EN(i), QPNP_BTM_Mn_MEAS_EN, false); if (rc < 0) pr_err("multi meas disable failed\n"); } } else { /* Check if a conversion is in progress */ rc = qpnp_adc_tm_req_sts_check(chip); if (rc < 0) pr_err("adc-tm req_sts check failed\n"); /* Disable multimeasurement */ reg_val = 0; rc = qpnp_adc_tm_write_reg(chip, QPNP_ADC_TM_MULTI_MEAS_EN, reg_val, 1); if (rc < 0) pr_err("adc-tm multi-meas mode disable failed\n"); rc = qpnp_adc_tm_read_reg(chip, QPNP_ADC_TM_STATUS1, &status1, 1); if (rc < 0) pr_err("adc-tm status1 read failed\n"); rc = qpnp_adc_tm_read_reg(chip, QPNP_EN_CTL1, &en_ctl1, 1); if (rc < 0) pr_err("adc-tm en_ctl1 read failed\n"); pr_debug("status1=0%x, en_ctl1=0x%x\n", status1, en_ctl1); } } static int qpnp_adc_tm_suspend_noirq(struct device *dev) { struct qpnp_adc_tm_chip *chip = dev_get_drvdata(dev); if (atomic_read(&chip->wq_cnt) != 0) { pr_err( "Aborting suspend, adc_tm notification running while suspending\n"); return -EBUSY; } return 0; } static const struct dev_pm_ops qpnp_adc_tm_pm_ops = { .suspend_noirq = qpnp_adc_tm_suspend_noirq, }; static struct platform_driver qpnp_adc_tm_driver = { .driver = { .name = "qcom,qpnp-adc-tm", .of_match_table = qpnp_adc_tm_match_table, .pm = &qpnp_adc_tm_pm_ops, }, .probe = qpnp_adc_tm_probe, .remove = qpnp_adc_tm_remove, .shutdown = qpnp_adc_tm_shutdown, }; static int __init qpnp_adc_tm_init(void) { return platform_driver_register(&qpnp_adc_tm_driver); } module_init(qpnp_adc_tm_init); static void __exit qpnp_adc_tm_exit(void) { platform_driver_unregister(&qpnp_adc_tm_driver); } module_exit(qpnp_adc_tm_exit); MODULE_DESCRIPTION("QPNP PMIC ADC Threshold Monitoring driver"); MODULE_LICENSE("GPL v2");