/* * xHCI host controller driver * * Copyright (C) 2008 Intel Corp. * * Author: Sarah Sharp * Some code borrowed from the Linux EHCI driver. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * Ring initialization rules: * 1. Each segment is initialized to zero, except for link TRBs. * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or * Consumer Cycle State (CCS), depending on ring function. * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. * * Ring behavior rules: * 1. A ring is empty if enqueue == dequeue. This means there will always be at * least one free TRB in the ring. This is useful if you want to turn that * into a link TRB and expand the ring. * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a * link TRB, then load the pointer with the address in the link TRB. If the * link TRB had its toggle bit set, you may need to update the ring cycle * state (see cycle bit rules). You may have to do this multiple times * until you reach a non-link TRB. * 3. A ring is full if enqueue++ (for the definition of increment above) * equals the dequeue pointer. * * Cycle bit rules: * 1. When a consumer increments a dequeue pointer and encounters a toggle bit * in a link TRB, it must toggle the ring cycle state. * 2. When a producer increments an enqueue pointer and encounters a toggle bit * in a link TRB, it must toggle the ring cycle state. * * Producer rules: * 1. Check if ring is full before you enqueue. * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. * Update enqueue pointer between each write (which may update the ring * cycle state). * 3. Notify consumer. If SW is producer, it rings the doorbell for command * and endpoint rings. If HC is the producer for the event ring, * and it generates an interrupt according to interrupt modulation rules. * * Consumer rules: * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, * the TRB is owned by the consumer. * 2. Update dequeue pointer (which may update the ring cycle state) and * continue processing TRBs until you reach a TRB which is not owned by you. * 3. Notify the producer. SW is the consumer for the event ring, and it * updates event ring dequeue pointer. HC is the consumer for the command and * endpoint rings; it generates events on the event ring for these. */ #include #include #include "xhci.h" static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, struct xhci_event_cmd *event); /* * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA * address of the TRB. */ dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, union xhci_trb *trb) { unsigned long segment_offset; if (!seg || !trb || trb < seg->trbs) return 0; /* offset in TRBs */ segment_offset = trb - seg->trbs; if (segment_offset > TRBS_PER_SEGMENT) return 0; return seg->dma + (segment_offset * sizeof(*trb)); } /* Does this link TRB point to the first segment in a ring, * or was the previous TRB the last TRB on the last segment in the ERST? */ static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, struct xhci_segment *seg, union xhci_trb *trb) { if (ring == xhci->event_ring) return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && (seg->next == xhci->event_ring->first_seg); else return le32_to_cpu(trb->link.control) & LINK_TOGGLE; } /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring * segment? I.e. would the updated event TRB pointer step off the end of the * event seg? */ static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, struct xhci_segment *seg, union xhci_trb *trb) { if (ring == xhci->event_ring) return trb == &seg->trbs[TRBS_PER_SEGMENT]; else return TRB_TYPE_LINK_LE32(trb->link.control); } static int enqueue_is_link_trb(struct xhci_ring *ring) { struct xhci_link_trb *link = &ring->enqueue->link; return TRB_TYPE_LINK_LE32(link->control); } /* Updates trb to point to the next TRB in the ring, and updates seg if the next * TRB is in a new segment. This does not skip over link TRBs, and it does not * effect the ring dequeue or enqueue pointers. */ static void next_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, struct xhci_segment **seg, union xhci_trb **trb) { if (last_trb(xhci, ring, *seg, *trb)) { *seg = (*seg)->next; *trb = ((*seg)->trbs); } else { (*trb)++; } } /* * See Cycle bit rules. SW is the consumer for the event ring only. * Don't make a ring full of link TRBs. That would be dumb and this would loop. */ static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer) { union xhci_trb *next = ++(ring->dequeue); unsigned long long addr; ring->deq_updates++; /* Update the dequeue pointer further if that was a link TRB or we're at * the end of an event ring segment (which doesn't have link TRBS) */ while (last_trb(xhci, ring, ring->deq_seg, next)) { if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) { ring->cycle_state = (ring->cycle_state ? 0 : 1); if (!in_interrupt()) xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n", ring, (unsigned int) ring->cycle_state); } ring->deq_seg = ring->deq_seg->next; ring->dequeue = ring->deq_seg->trbs; next = ring->dequeue; } addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue); } /* * See Cycle bit rules. SW is the consumer for the event ring only. * Don't make a ring full of link TRBs. That would be dumb and this would loop. * * If we've just enqueued a TRB that is in the middle of a TD (meaning the * chain bit is set), then set the chain bit in all the following link TRBs. * If we've enqueued the last TRB in a TD, make sure the following link TRBs * have their chain bit cleared (so that each Link TRB is a separate TD). * * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit * set, but other sections talk about dealing with the chain bit set. This was * fixed in the 0.96 specification errata, but we have to assume that all 0.95 * xHCI hardware can't handle the chain bit being cleared on a link TRB. * * @more_trbs_coming: Will you enqueue more TRBs before calling * prepare_transfer()? */ static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer, bool more_trbs_coming) { u32 chain; union xhci_trb *next; unsigned long long addr; chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; next = ++(ring->enqueue); ring->enq_updates++; /* Update the dequeue pointer further if that was a link TRB or we're at * the end of an event ring segment (which doesn't have link TRBS) */ while (last_trb(xhci, ring, ring->enq_seg, next)) { if (!consumer) { if (ring != xhci->event_ring) { /* * If the caller doesn't plan on enqueueing more * TDs before ringing the doorbell, then we * don't want to give the link TRB to the * hardware just yet. We'll give the link TRB * back in prepare_ring() just before we enqueue * the TD at the top of the ring. */ if (!chain && !more_trbs_coming) break; /* If we're not dealing with 0.95 hardware, * carry over the chain bit of the previous TRB * (which may mean the chain bit is cleared). */ if (!xhci_link_trb_quirk(xhci)) { next->link.control &= cpu_to_le32(~TRB_CHAIN); next->link.control |= cpu_to_le32(chain); } /* Give this link TRB to the hardware */ wmb(); next->link.control ^= cpu_to_le32(TRB_CYCLE); } /* Toggle the cycle bit after the last ring segment. */ if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { ring->cycle_state = (ring->cycle_state ? 0 : 1); if (!in_interrupt()) xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n", ring, (unsigned int) ring->cycle_state); } } ring->enq_seg = ring->enq_seg->next; ring->enqueue = ring->enq_seg->trbs; next = ring->enqueue; } addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue); } /* * Check to see if there's room to enqueue num_trbs on the ring. See rules * above. * FIXME: this would be simpler and faster if we just kept track of the number * of free TRBs in a ring. */ static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, unsigned int num_trbs) { int i; union xhci_trb *enq = ring->enqueue; struct xhci_segment *enq_seg = ring->enq_seg; struct xhci_segment *cur_seg; unsigned int left_on_ring; /* If we are currently pointing to a link TRB, advance the * enqueue pointer before checking for space */ while (last_trb(xhci, ring, enq_seg, enq)) { enq_seg = enq_seg->next; enq = enq_seg->trbs; } /* Check if ring is empty */ if (enq == ring->dequeue) { /* Can't use link trbs */ left_on_ring = TRBS_PER_SEGMENT - 1; for (cur_seg = enq_seg->next; cur_seg != enq_seg; cur_seg = cur_seg->next) left_on_ring += TRBS_PER_SEGMENT - 1; /* Always need one TRB free in the ring. */ left_on_ring -= 1; if (num_trbs > left_on_ring) { xhci_warn(xhci, "Not enough room on ring; " "need %u TRBs, %u TRBs left\n", num_trbs, left_on_ring); return 0; } return 1; } /* Make sure there's an extra empty TRB available */ for (i = 0; i <= num_trbs; ++i) { if (enq == ring->dequeue) return 0; enq++; while (last_trb(xhci, ring, enq_seg, enq)) { enq_seg = enq_seg->next; enq = enq_seg->trbs; } } return 1; } /* Ring the host controller doorbell after placing a command on the ring */ void xhci_ring_cmd_db(struct xhci_hcd *xhci) { xhci_dbg(xhci, "// Ding dong!\n"); xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]); /* Flush PCI posted writes */ xhci_readl(xhci, &xhci->dba->doorbell[0]); } void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id) { __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; unsigned int ep_state = ep->ep_state; /* Don't ring the doorbell for this endpoint if there are pending * cancellations because we don't want to interrupt processing. * We don't want to restart any stream rings if there's a set dequeue * pointer command pending because the device can choose to start any * stream once the endpoint is on the HW schedule. * FIXME - check all the stream rings for pending cancellations. */ if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || (ep_state & EP_HALTED)) return; xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr); /* The CPU has better things to do at this point than wait for a * write-posting flush. It'll get there soon enough. */ } /* Ring the doorbell for any rings with pending URBs */ static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index) { unsigned int stream_id; struct xhci_virt_ep *ep; ep = &xhci->devs[slot_id]->eps[ep_index]; /* A ring has pending URBs if its TD list is not empty */ if (!(ep->ep_state & EP_HAS_STREAMS)) { if (!(list_empty(&ep->ring->td_list))) xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); return; } for (stream_id = 1; stream_id < ep->stream_info->num_streams; stream_id++) { struct xhci_stream_info *stream_info = ep->stream_info; if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); } } /* * Find the segment that trb is in. Start searching in start_seg. * If we must move past a segment that has a link TRB with a toggle cycle state * bit set, then we will toggle the value pointed at by cycle_state. */ static struct xhci_segment *find_trb_seg( struct xhci_segment *start_seg, union xhci_trb *trb, int *cycle_state) { struct xhci_segment *cur_seg = start_seg; struct xhci_generic_trb *generic_trb; while (cur_seg->trbs > trb || &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE)) *cycle_state ^= 0x1; cur_seg = cur_seg->next; if (cur_seg == start_seg) /* Looped over the entire list. Oops! */ return NULL; } return cur_seg; } static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id) { struct xhci_virt_ep *ep; ep = &xhci->devs[slot_id]->eps[ep_index]; /* Common case: no streams */ if (!(ep->ep_state & EP_HAS_STREAMS)) return ep->ring; if (stream_id == 0) { xhci_warn(xhci, "WARN: Slot ID %u, ep index %u has streams, " "but URB has no stream ID.\n", slot_id, ep_index); return NULL; } if (stream_id < ep->stream_info->num_streams) return ep->stream_info->stream_rings[stream_id]; xhci_warn(xhci, "WARN: Slot ID %u, ep index %u has " "stream IDs 1 to %u allocated, " "but stream ID %u is requested.\n", slot_id, ep_index, ep->stream_info->num_streams - 1, stream_id); return NULL; } /* Get the right ring for the given URB. * If the endpoint supports streams, boundary check the URB's stream ID. * If the endpoint doesn't support streams, return the singular endpoint ring. */ static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, struct urb *urb) { return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); } /* * Move the xHC's endpoint ring dequeue pointer past cur_td. * Record the new state of the xHC's endpoint ring dequeue segment, * dequeue pointer, and new consumer cycle state in state. * Update our internal representation of the ring's dequeue pointer. * * We do this in three jumps: * - First we update our new ring state to be the same as when the xHC stopped. * - Then we traverse the ring to find the segment that contains * the last TRB in the TD. We toggle the xHC's new cycle state when we pass * any link TRBs with the toggle cycle bit set. * - Finally we move the dequeue state one TRB further, toggling the cycle bit * if we've moved it past a link TRB with the toggle cycle bit set. * * Some of the uses of xhci_generic_trb are grotty, but if they're done * with correct __le32 accesses they should work fine. Only users of this are * in here. */ void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id, struct xhci_td *cur_td, struct xhci_dequeue_state *state) { struct xhci_virt_device *dev = xhci->devs[slot_id]; struct xhci_ring *ep_ring; struct xhci_generic_trb *trb; struct xhci_ep_ctx *ep_ctx; dma_addr_t addr; ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, ep_index, stream_id); if (!ep_ring) { xhci_warn(xhci, "WARN can't find new dequeue state " "for invalid stream ID %u.\n", stream_id); return; } state->new_cycle_state = 0; xhci_dbg(xhci, "Finding segment containing stopped TRB.\n"); state->new_deq_seg = find_trb_seg(cur_td->start_seg, dev->eps[ep_index].stopped_trb, &state->new_cycle_state); if (!state->new_deq_seg) { WARN_ON(1); return; } /* Dig out the cycle state saved by the xHC during the stop ep cmd */ xhci_dbg(xhci, "Finding endpoint context\n"); ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq); state->new_deq_ptr = cur_td->last_trb; xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n"); state->new_deq_seg = find_trb_seg(state->new_deq_seg, state->new_deq_ptr, &state->new_cycle_state); if (!state->new_deq_seg) { WARN_ON(1); return; } trb = &state->new_deq_ptr->generic; if (TRB_TYPE_LINK_LE32(trb->field[3]) && (trb->field[3] & cpu_to_le32(LINK_TOGGLE))) state->new_cycle_state ^= 0x1; next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); /* * If there is only one segment in a ring, find_trb_seg()'s while loop * will not run, and it will return before it has a chance to see if it * needs to toggle the cycle bit. It can't tell if the stalled transfer * ended just before the link TRB on a one-segment ring, or if the TD * wrapped around the top of the ring, because it doesn't have the TD in * question. Look for the one-segment case where stalled TRB's address * is greater than the new dequeue pointer address. */ if (ep_ring->first_seg == ep_ring->first_seg->next && state->new_deq_ptr < dev->eps[ep_index].stopped_trb) state->new_cycle_state ^= 0x1; xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state); /* Don't update the ring cycle state for the producer (us). */ xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n", state->new_deq_seg); addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n", (unsigned long long) addr); } /* flip_cycle means flip the cycle bit of all but the first and last TRB. * (The last TRB actually points to the ring enqueue pointer, which is not part * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. */ static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, struct xhci_td *cur_td, bool flip_cycle) { struct xhci_segment *cur_seg; union xhci_trb *cur_trb; for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; true; next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { /* Unchain any chained Link TRBs, but * leave the pointers intact. */ cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); /* Flip the cycle bit (link TRBs can't be the first * or last TRB). */ if (flip_cycle) cur_trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); xhci_dbg(xhci, "Cancel (unchain) link TRB\n"); xhci_dbg(xhci, "Address = %p (0x%llx dma); " "in seg %p (0x%llx dma)\n", cur_trb, (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), cur_seg, (unsigned long long)cur_seg->dma); } else { cur_trb->generic.field[0] = 0; cur_trb->generic.field[1] = 0; cur_trb->generic.field[2] = 0; /* Preserve only the cycle bit of this TRB */ cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); /* Flip the cycle bit except on the first or last TRB */ if (flip_cycle && cur_trb != cur_td->first_trb && cur_trb != cur_td->last_trb) cur_trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); cur_trb->generic.field[3] |= cpu_to_le32( TRB_TYPE(TRB_TR_NOOP)); xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) " "in seg %p (0x%llx dma)\n", cur_trb, (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), cur_seg, (unsigned long long)cur_seg->dma); } if (cur_trb == cur_td->last_trb) break; } } static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, unsigned int ep_index, unsigned int stream_id, struct xhci_segment *deq_seg, union xhci_trb *deq_ptr, u32 cycle_state); void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id, struct xhci_dequeue_state *deq_state) { struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " "new deq ptr = %p (0x%llx dma), new cycle = %u\n", deq_state->new_deq_seg, (unsigned long long)deq_state->new_deq_seg->dma, deq_state->new_deq_ptr, (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), deq_state->new_cycle_state); queue_set_tr_deq(xhci, slot_id, ep_index, stream_id, deq_state->new_deq_seg, deq_state->new_deq_ptr, (u32) deq_state->new_cycle_state); /* Stop the TD queueing code from ringing the doorbell until * this command completes. The HC won't set the dequeue pointer * if the ring is running, and ringing the doorbell starts the * ring running. */ ep->ep_state |= SET_DEQ_PENDING; } static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, struct xhci_virt_ep *ep) { ep->ep_state &= ~EP_HALT_PENDING; /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the * timer is running on another CPU, we don't decrement stop_cmds_pending * (since we didn't successfully stop the watchdog timer). */ if (del_timer(&ep->stop_cmd_timer)) ep->stop_cmds_pending--; } /* Must be called with xhci->lock held in interrupt context */ static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, struct xhci_td *cur_td, int status, char *adjective) { struct usb_hcd *hcd; struct urb *urb; struct urb_priv *urb_priv; urb = cur_td->urb; urb_priv = urb->hcpriv; urb_priv->td_cnt++; hcd = bus_to_hcd(urb->dev->bus); /* Only giveback urb when this is the last td in urb */ if (urb_priv->td_cnt == urb_priv->length) { if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { if (xhci->quirks & XHCI_AMD_PLL_FIX) usb_amd_quirk_pll_enable(); } } usb_hcd_unlink_urb_from_ep(hcd, urb); spin_unlock(&xhci->lock); usb_hcd_giveback_urb(hcd, urb, status); xhci_urb_free_priv(xhci, urb_priv); spin_lock(&xhci->lock); } } /* * When we get a command completion for a Stop Endpoint Command, we need to * unlink any cancelled TDs from the ring. There are two ways to do that: * * 1. If the HW was in the middle of processing the TD that needs to be * cancelled, then we must move the ring's dequeue pointer past the last TRB * in the TD with a Set Dequeue Pointer Command. * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain * bit cleared) so that the HW will skip over them. */ static void handle_stopped_endpoint(struct xhci_hcd *xhci, union xhci_trb *trb, struct xhci_event_cmd *event) { unsigned int slot_id; unsigned int ep_index; struct xhci_virt_device *virt_dev; struct xhci_ring *ep_ring; struct xhci_virt_ep *ep; struct list_head *entry; struct xhci_td *cur_td = NULL; struct xhci_td *last_unlinked_td; struct xhci_dequeue_state deq_state; if (unlikely(TRB_TO_SUSPEND_PORT( le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) { slot_id = TRB_TO_SLOT_ID( le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); virt_dev = xhci->devs[slot_id]; if (virt_dev) handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); else xhci_warn(xhci, "Stop endpoint command " "completion for disabled slot %u\n", slot_id); return; } memset(&deq_state, 0, sizeof(deq_state)); slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); ep = &xhci->devs[slot_id]->eps[ep_index]; if (list_empty(&ep->cancelled_td_list)) { xhci_stop_watchdog_timer_in_irq(xhci, ep); ep->stopped_td = NULL; ep->stopped_trb = NULL; ring_doorbell_for_active_rings(xhci, slot_id, ep_index); return; } /* Fix up the ep ring first, so HW stops executing cancelled TDs. * We have the xHCI lock, so nothing can modify this list until we drop * it. We're also in the event handler, so we can't get re-interrupted * if another Stop Endpoint command completes */ list_for_each(entry, &ep->cancelled_td_list) { cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n", cur_td->first_trb, (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb)); ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); if (!ep_ring) { /* This shouldn't happen unless a driver is mucking * with the stream ID after submission. This will * leave the TD on the hardware ring, and the hardware * will try to execute it, and may access a buffer * that has already been freed. In the best case, the * hardware will execute it, and the event handler will * ignore the completion event for that TD, since it was * removed from the td_list for that endpoint. In * short, don't muck with the stream ID after * submission. */ xhci_warn(xhci, "WARN Cancelled URB %p " "has invalid stream ID %u.\n", cur_td->urb, cur_td->urb->stream_id); goto remove_finished_td; } /* * If we stopped on the TD we need to cancel, then we have to * move the xHC endpoint ring dequeue pointer past this TD. */ if (cur_td == ep->stopped_td) xhci_find_new_dequeue_state(xhci, slot_id, ep_index, cur_td->urb->stream_id, cur_td, &deq_state); else td_to_noop(xhci, ep_ring, cur_td, false); remove_finished_td: /* * The event handler won't see a completion for this TD anymore, * so remove it from the endpoint ring's TD list. Keep it in * the cancelled TD list for URB completion later. */ list_del_init(&cur_td->td_list); } last_unlinked_td = cur_td; xhci_stop_watchdog_timer_in_irq(xhci, ep); /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, ep->stopped_td->urb->stream_id, &deq_state); xhci_ring_cmd_db(xhci); } else { /* Otherwise ring the doorbell(s) to restart queued transfers */ ring_doorbell_for_active_rings(xhci, slot_id, ep_index); } ep->stopped_td = NULL; ep->stopped_trb = NULL; /* * Drop the lock and complete the URBs in the cancelled TD list. * New TDs to be cancelled might be added to the end of the list before * we can complete all the URBs for the TDs we already unlinked. * So stop when we've completed the URB for the last TD we unlinked. */ do { cur_td = list_entry(ep->cancelled_td_list.next, struct xhci_td, cancelled_td_list); list_del_init(&cur_td->cancelled_td_list); /* Clean up the cancelled URB */ /* Doesn't matter what we pass for status, since the core will * just overwrite it (because the URB has been unlinked). */ xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled"); /* Stop processing the cancelled list if the watchdog timer is * running. */ if (xhci->xhc_state & XHCI_STATE_DYING) return; } while (cur_td != last_unlinked_td); /* Return to the event handler with xhci->lock re-acquired */ } /* Watchdog timer function for when a stop endpoint command fails to complete. * In this case, we assume the host controller is broken or dying or dead. The * host may still be completing some other events, so we have to be careful to * let the event ring handler and the URB dequeueing/enqueueing functions know * through xhci->state. * * The timer may also fire if the host takes a very long time to respond to the * command, and the stop endpoint command completion handler cannot delete the * timer before the timer function is called. Another endpoint cancellation may * sneak in before the timer function can grab the lock, and that may queue * another stop endpoint command and add the timer back. So we cannot use a * simple flag to say whether there is a pending stop endpoint command for a * particular endpoint. * * Instead we use a combination of that flag and a counter for the number of * pending stop endpoint commands. If the timer is the tail end of the last * stop endpoint command, and the endpoint's command is still pending, we assume * the host is dying. */ void xhci_stop_endpoint_command_watchdog(unsigned long arg) { struct xhci_hcd *xhci; struct xhci_virt_ep *ep; struct xhci_virt_ep *temp_ep; struct xhci_ring *ring; struct xhci_td *cur_td; int ret, i, j; ep = (struct xhci_virt_ep *) arg; xhci = ep->xhci; spin_lock(&xhci->lock); ep->stop_cmds_pending--; if (xhci->xhc_state & XHCI_STATE_DYING) { xhci_dbg(xhci, "Stop EP timer ran, but another timer marked " "xHCI as DYING, exiting.\n"); spin_unlock(&xhci->lock); return; } if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { xhci_dbg(xhci, "Stop EP timer ran, but no command pending, " "exiting.\n"); spin_unlock(&xhci->lock); return; } xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); xhci_warn(xhci, "Assuming host is dying, halting host.\n"); /* Oops, HC is dead or dying or at least not responding to the stop * endpoint command. */ xhci->xhc_state |= XHCI_STATE_DYING; /* Disable interrupts from the host controller and start halting it */ xhci_quiesce(xhci); spin_unlock(&xhci->lock); ret = xhci_halt(xhci); spin_lock(&xhci->lock); if (ret < 0) { /* This is bad; the host is not responding to commands and it's * not allowing itself to be halted. At least interrupts are * disabled. If we call usb_hc_died(), it will attempt to * disconnect all device drivers under this host. Those * disconnect() methods will wait for all URBs to be unlinked, * so we must complete them. */ xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); xhci_warn(xhci, "Completing active URBs anyway.\n"); /* We could turn all TDs on the rings to no-ops. This won't * help if the host has cached part of the ring, and is slow if * we want to preserve the cycle bit. Skip it and hope the host * doesn't touch the memory. */ } for (i = 0; i < MAX_HC_SLOTS; i++) { if (!xhci->devs[i]) continue; for (j = 0; j < 31; j++) { temp_ep = &xhci->devs[i]->eps[j]; ring = temp_ep->ring; if (!ring) continue; xhci_dbg(xhci, "Killing URBs for slot ID %u, " "ep index %u\n", i, j); while (!list_empty(&ring->td_list)) { cur_td = list_first_entry(&ring->td_list, struct xhci_td, td_list); list_del_init(&cur_td->td_list); if (!list_empty(&cur_td->cancelled_td_list)) list_del_init(&cur_td->cancelled_td_list); xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN, "killed"); } while (!list_empty(&temp_ep->cancelled_td_list)) { cur_td = list_first_entry( &temp_ep->cancelled_td_list, struct xhci_td, cancelled_td_list); list_del_init(&cur_td->cancelled_td_list); xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN, "killed"); } } } spin_unlock(&xhci->lock); xhci_dbg(xhci, "Calling usb_hc_died()\n"); usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); xhci_dbg(xhci, "xHCI host controller is dead.\n"); } /* * When we get a completion for a Set Transfer Ring Dequeue Pointer command, * we need to clear the set deq pending flag in the endpoint ring state, so that * the TD queueing code can ring the doorbell again. We also need to ring the * endpoint doorbell to restart the ring, but only if there aren't more * cancellations pending. */ static void handle_set_deq_completion(struct xhci_hcd *xhci, struct xhci_event_cmd *event, union xhci_trb *trb) { unsigned int slot_id; unsigned int ep_index; unsigned int stream_id; struct xhci_ring *ep_ring; struct xhci_virt_device *dev; struct xhci_ep_ctx *ep_ctx; struct xhci_slot_ctx *slot_ctx; slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); dev = xhci->devs[slot_id]; ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); if (!ep_ring) { xhci_warn(xhci, "WARN Set TR deq ptr command for " "freed stream ID %u\n", stream_id); /* XXX: Harmless??? */ dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; return; } ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) { unsigned int ep_state; unsigned int slot_state; switch (GET_COMP_CODE(le32_to_cpu(event->status))) { case COMP_TRB_ERR: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because " "of stream ID configuration\n"); break; case COMP_CTX_STATE: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due " "to incorrect slot or ep state.\n"); ep_state = le32_to_cpu(ep_ctx->ep_info); ep_state &= EP_STATE_MASK; slot_state = le32_to_cpu(slot_ctx->dev_state); slot_state = GET_SLOT_STATE(slot_state); xhci_dbg(xhci, "Slot state = %u, EP state = %u\n", slot_state, ep_state); break; case COMP_EBADSLT: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because " "slot %u was not enabled.\n", slot_id); break; default: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown " "completion code of %u.\n", GET_COMP_CODE(le32_to_cpu(event->status))); break; } /* OK what do we do now? The endpoint state is hosed, and we * should never get to this point if the synchronization between * queueing, and endpoint state are correct. This might happen * if the device gets disconnected after we've finished * cancelling URBs, which might not be an error... */ } else { xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n", le64_to_cpu(ep_ctx->deq)); if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg, dev->eps[ep_index].queued_deq_ptr) == (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) { /* Update the ring's dequeue segment and dequeue pointer * to reflect the new position. */ ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg; ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr; } else { xhci_warn(xhci, "Mismatch between completed Set TR Deq " "Ptr command & xHCI internal state.\n"); xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", dev->eps[ep_index].queued_deq_seg, dev->eps[ep_index].queued_deq_ptr); } } dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; dev->eps[ep_index].queued_deq_seg = NULL; dev->eps[ep_index].queued_deq_ptr = NULL; /* Restart any rings with pending URBs */ ring_doorbell_for_active_rings(xhci, slot_id, ep_index); } static void handle_reset_ep_completion(struct xhci_hcd *xhci, struct xhci_event_cmd *event, union xhci_trb *trb) { int slot_id; unsigned int ep_index; slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3])); ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); /* This command will only fail if the endpoint wasn't halted, * but we don't care. */ xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n", GET_COMP_CODE(le32_to_cpu(event->status))); /* HW with the reset endpoint quirk needs to have a configure endpoint * command complete before the endpoint can be used. Queue that here * because the HW can't handle two commands being queued in a row. */ if (xhci->quirks & XHCI_RESET_EP_QUIRK) { xhci_dbg(xhci, "Queueing configure endpoint command\n"); xhci_queue_configure_endpoint(xhci, xhci->devs[slot_id]->in_ctx->dma, slot_id, false); xhci_ring_cmd_db(xhci); } else { /* Clear our internal halted state and restart the ring(s) */ xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; ring_doorbell_for_active_rings(xhci, slot_id, ep_index); } } /* Check to see if a command in the device's command queue matches this one. * Signal the completion or free the command, and return 1. Return 0 if the * completed command isn't at the head of the command list. */ static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, struct xhci_event_cmd *event) { struct xhci_command *command; if (list_empty(&virt_dev->cmd_list)) return 0; command = list_entry(virt_dev->cmd_list.next, struct xhci_command, cmd_list); if (xhci->cmd_ring->dequeue != command->command_trb) return 0; command->status = GET_COMP_CODE(le32_to_cpu(event->status)); list_del(&command->cmd_list); if (command->completion) complete(command->completion); else xhci_free_command(xhci, command); return 1; } static void handle_cmd_completion(struct xhci_hcd *xhci, struct xhci_event_cmd *event) { int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); u64 cmd_dma; dma_addr_t cmd_dequeue_dma; struct xhci_input_control_ctx *ctrl_ctx; struct xhci_virt_device *virt_dev; unsigned int ep_index; struct xhci_ring *ep_ring; unsigned int ep_state; cmd_dma = le64_to_cpu(event->cmd_trb); cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, xhci->cmd_ring->dequeue); /* Is the command ring deq ptr out of sync with the deq seg ptr? */ if (cmd_dequeue_dma == 0) { xhci->error_bitmask |= 1 << 4; return; } /* Does the DMA address match our internal dequeue pointer address? */ if (cmd_dma != (u64) cmd_dequeue_dma) { xhci->error_bitmask |= 1 << 5; return; } switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]) & TRB_TYPE_BITMASK) { case TRB_TYPE(TRB_ENABLE_SLOT): if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS) xhci->slot_id = slot_id; else xhci->slot_id = 0; complete(&xhci->addr_dev); break; case TRB_TYPE(TRB_DISABLE_SLOT): if (xhci->devs[slot_id]) { if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) /* Delete default control endpoint resources */ xhci_free_device_endpoint_resources(xhci, xhci->devs[slot_id], true); xhci_free_virt_device(xhci, slot_id); } break; case TRB_TYPE(TRB_CONFIG_EP): virt_dev = xhci->devs[slot_id]; if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) break; /* * Configure endpoint commands can come from the USB core * configuration or alt setting changes, or because the HW * needed an extra configure endpoint command after a reset * endpoint command or streams were being configured. * If the command was for a halted endpoint, the xHCI driver * is not waiting on the configure endpoint command. */ ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); /* Input ctx add_flags are the endpoint index plus one */ ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1; /* A usb_set_interface() call directly after clearing a halted * condition may race on this quirky hardware. Not worth * worrying about, since this is prototype hardware. Not sure * if this will work for streams, but streams support was * untested on this prototype. */ if (xhci->quirks & XHCI_RESET_EP_QUIRK && ep_index != (unsigned int) -1 && le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG == le32_to_cpu(ctrl_ctx->drop_flags)) { ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; if (!(ep_state & EP_HALTED)) goto bandwidth_change; xhci_dbg(xhci, "Completed config ep cmd - " "last ep index = %d, state = %d\n", ep_index, ep_state); /* Clear internal halted state and restart ring(s) */ xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; ring_doorbell_for_active_rings(xhci, slot_id, ep_index); break; } bandwidth_change: xhci_dbg(xhci, "Completed config ep cmd\n"); xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); complete(&xhci->devs[slot_id]->cmd_completion); break; case TRB_TYPE(TRB_EVAL_CONTEXT): virt_dev = xhci->devs[slot_id]; if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) break; xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); complete(&xhci->devs[slot_id]->cmd_completion); break; case TRB_TYPE(TRB_ADDR_DEV): xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status)); complete(&xhci->addr_dev); break; case TRB_TYPE(TRB_STOP_RING): handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event); break; case TRB_TYPE(TRB_SET_DEQ): handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue); break; case TRB_TYPE(TRB_CMD_NOOP): break; case TRB_TYPE(TRB_RESET_EP): handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue); break; case TRB_TYPE(TRB_RESET_DEV): xhci_dbg(xhci, "Completed reset device command.\n"); slot_id = TRB_TO_SLOT_ID( le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])); virt_dev = xhci->devs[slot_id]; if (virt_dev) handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); else xhci_warn(xhci, "Reset device command completion " "for disabled slot %u\n", slot_id); break; case TRB_TYPE(TRB_NEC_GET_FW): if (!(xhci->quirks & XHCI_NEC_HOST)) { xhci->error_bitmask |= 1 << 6; break; } xhci_dbg(xhci, "NEC firmware version %2x.%02x\n", NEC_FW_MAJOR(le32_to_cpu(event->status)), NEC_FW_MINOR(le32_to_cpu(event->status))); break; default: /* Skip over unknown commands on the event ring */ xhci->error_bitmask |= 1 << 6; break; } inc_deq(xhci, xhci->cmd_ring, false); } static void handle_vendor_event(struct xhci_hcd *xhci, union xhci_trb *event) { u32 trb_type; trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) handle_cmd_completion(xhci, &event->event_cmd); } /* @port_id: the one-based port ID from the hardware (indexed from array of all * port registers -- USB 3.0 and USB 2.0). * * Returns a zero-based port number, which is suitable for indexing into each of * the split roothubs' port arrays and bus state arrays. */ static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, struct xhci_hcd *xhci, u32 port_id) { unsigned int i; unsigned int num_similar_speed_ports = 0; /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], * and usb2_ports are 0-based indexes. Count the number of similar * speed ports, up to 1 port before this port. */ for (i = 0; i < (port_id - 1); i++) { u8 port_speed = xhci->port_array[i]; /* * Skip ports that don't have known speeds, or have duplicate * Extended Capabilities port speed entries. */ if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) continue; /* * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and * 1.1 ports are under the USB 2.0 hub. If the port speed * matches the device speed, it's a similar speed port. */ if ((port_speed == 0x03) == (hcd->speed == HCD_USB3)) num_similar_speed_ports++; } return num_similar_speed_ports; } static void handle_port_status(struct xhci_hcd *xhci, union xhci_trb *event) { struct usb_hcd *hcd; u32 port_id; u32 temp, temp1; int max_ports; int slot_id; unsigned int faked_port_index; u8 major_revision; struct xhci_bus_state *bus_state; __le32 __iomem **port_array; bool bogus_port_status = false; /* Port status change events always have a successful completion code */ if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); xhci->error_bitmask |= 1 << 8; } port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); max_ports = HCS_MAX_PORTS(xhci->hcs_params1); if ((port_id <= 0) || (port_id > max_ports)) { xhci_warn(xhci, "Invalid port id %d\n", port_id); bogus_port_status = true; goto cleanup; } /* Figure out which usb_hcd this port is attached to: * is it a USB 3.0 port or a USB 2.0/1.1 port? */ major_revision = xhci->port_array[port_id - 1]; if (major_revision == 0) { xhci_warn(xhci, "Event for port %u not in " "Extended Capabilities, ignoring.\n", port_id); bogus_port_status = true; goto cleanup; } if (major_revision == DUPLICATE_ENTRY) { xhci_warn(xhci, "Event for port %u duplicated in" "Extended Capabilities, ignoring.\n", port_id); bogus_port_status = true; goto cleanup; } /* * Hardware port IDs reported by a Port Status Change Event include USB * 3.0 and USB 2.0 ports. We want to check if the port has reported a * resume event, but we first need to translate the hardware port ID * into the index into the ports on the correct split roothub, and the * correct bus_state structure. */ /* Find the right roothub. */ hcd = xhci_to_hcd(xhci); if ((major_revision == 0x03) != (hcd->speed == HCD_USB3)) hcd = xhci->shared_hcd; bus_state = &xhci->bus_state[hcd_index(hcd)]; if (hcd->speed == HCD_USB3) port_array = xhci->usb3_ports; else port_array = xhci->usb2_ports; /* Find the faked port hub number */ faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, port_id); temp = xhci_readl(xhci, port_array[faked_port_index]); if (hcd->state == HC_STATE_SUSPENDED) { xhci_dbg(xhci, "resume root hub\n"); usb_hcd_resume_root_hub(hcd); } if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { xhci_dbg(xhci, "port resume event for port %d\n", port_id); temp1 = xhci_readl(xhci, &xhci->op_regs->command); if (!(temp1 & CMD_RUN)) { xhci_warn(xhci, "xHC is not running.\n"); goto cleanup; } if (DEV_SUPERSPEED(temp)) { xhci_dbg(xhci, "resume SS port %d\n", port_id); temp = xhci_port_state_to_neutral(temp); temp &= ~PORT_PLS_MASK; temp |= PORT_LINK_STROBE | XDEV_U0; xhci_writel(xhci, temp, port_array[faked_port_index]); slot_id = xhci_find_slot_id_by_port(hcd, xhci, faked_port_index); if (!slot_id) { xhci_dbg(xhci, "slot_id is zero\n"); goto cleanup; } xhci_ring_device(xhci, slot_id); xhci_dbg(xhci, "resume SS port %d finished\n", port_id); /* Clear PORT_PLC */ temp = xhci_readl(xhci, port_array[faked_port_index]); temp = xhci_port_state_to_neutral(temp); temp |= PORT_PLC; xhci_writel(xhci, temp, port_array[faked_port_index]); } else { xhci_dbg(xhci, "resume HS port %d\n", port_id); bus_state->resume_done[faked_port_index] = jiffies + msecs_to_jiffies(20); mod_timer(&hcd->rh_timer, bus_state->resume_done[faked_port_index]); /* Do the rest in GetPortStatus */ } } cleanup: /* Update event ring dequeue pointer before dropping the lock */ inc_deq(xhci, xhci->event_ring, true); /* Don't make the USB core poll the roothub if we got a bad port status * change event. Besides, at that point we can't tell which roothub * (USB 2.0 or USB 3.0) to kick. */ if (bogus_port_status) return; spin_unlock(&xhci->lock); /* Pass this up to the core */ usb_hcd_poll_rh_status(hcd); spin_lock(&xhci->lock); } /* * This TD is defined by the TRBs starting at start_trb in start_seg and ending * at end_trb, which may be in another segment. If the suspect DMA address is a * TRB in this TD, this function returns that TRB's segment. Otherwise it * returns 0. */ struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, union xhci_trb *start_trb, union xhci_trb *end_trb, dma_addr_t suspect_dma) { dma_addr_t start_dma; dma_addr_t end_seg_dma; dma_addr_t end_trb_dma; struct xhci_segment *cur_seg; start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); cur_seg = start_seg; do { if (start_dma == 0) return NULL; /* We may get an event for a Link TRB in the middle of a TD */ end_seg_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); /* If the end TRB isn't in this segment, this is set to 0 */ end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); if (end_trb_dma > 0) { /* The end TRB is in this segment, so suspect should be here */ if (start_dma <= end_trb_dma) { if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) return cur_seg; } else { /* Case for one segment with * a TD wrapped around to the top */ if ((suspect_dma >= start_dma && suspect_dma <= end_seg_dma) || (suspect_dma >= cur_seg->dma && suspect_dma <= end_trb_dma)) return cur_seg; } return NULL; } else { /* Might still be somewhere in this segment */ if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) return cur_seg; } cur_seg = cur_seg->next; start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); } while (cur_seg != start_seg); return NULL; } static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id, struct xhci_td *td, union xhci_trb *event_trb) { struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; ep->ep_state |= EP_HALTED; ep->stopped_td = td; ep->stopped_trb = event_trb; ep->stopped_stream = stream_id; xhci_queue_reset_ep(xhci, slot_id, ep_index); xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); ep->stopped_td = NULL; ep->stopped_trb = NULL; ep->stopped_stream = 0; xhci_ring_cmd_db(xhci); } /* Check if an error has halted the endpoint ring. The class driver will * cleanup the halt for a non-default control endpoint if we indicate a stall. * However, a babble and other errors also halt the endpoint ring, and the class * driver won't clear the halt in that case, so we need to issue a Set Transfer * Ring Dequeue Pointer command manually. */ static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, struct xhci_ep_ctx *ep_ctx, unsigned int trb_comp_code) { /* TRB completion codes that may require a manual halt cleanup */ if (trb_comp_code == COMP_TX_ERR || trb_comp_code == COMP_BABBLE || trb_comp_code == COMP_SPLIT_ERR) /* The 0.96 spec says a babbling control endpoint * is not halted. The 0.96 spec says it is. Some HW * claims to be 0.95 compliant, but it halts the control * endpoint anyway. Check if a babble halted the * endpoint. */ if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == cpu_to_le32(EP_STATE_HALTED)) return 1; return 0; } int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) { if (trb_comp_code >= 224 && trb_comp_code <= 255) { /* Vendor defined "informational" completion code, * treat as not-an-error. */ xhci_dbg(xhci, "Vendor defined info completion code %u\n", trb_comp_code); xhci_dbg(xhci, "Treating code as success.\n"); return 1; } return 0; } /* * Finish the td processing, remove the td from td list; * Return 1 if the urb can be given back. */ static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, union xhci_trb *event_trb, struct xhci_transfer_event *event, struct xhci_virt_ep *ep, int *status, bool skip) { struct xhci_virt_device *xdev; struct xhci_ring *ep_ring; unsigned int slot_id; int ep_index; struct urb *urb = NULL; struct xhci_ep_ctx *ep_ctx; int ret = 0; struct urb_priv *urb_priv; u32 trb_comp_code; slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); xdev = xhci->devs[slot_id]; ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); if (skip) goto td_cleanup; if (trb_comp_code == COMP_STOP_INVAL || trb_comp_code == COMP_STOP) { /* The Endpoint Stop Command completion will take care of any * stopped TDs. A stopped TD may be restarted, so don't update * the ring dequeue pointer or take this TD off any lists yet. */ ep->stopped_td = td; ep->stopped_trb = event_trb; return 0; } else { if (trb_comp_code == COMP_STALL) { /* The transfer is completed from the driver's * perspective, but we need to issue a set dequeue * command for this stalled endpoint to move the dequeue * pointer past the TD. We can't do that here because * the halt condition must be cleared first. Let the * USB class driver clear the stall later. */ ep->stopped_td = td; ep->stopped_trb = event_trb; ep->stopped_stream = ep_ring->stream_id; } else if (xhci_requires_manual_halt_cleanup(xhci, ep_ctx, trb_comp_code)) { /* Other types of errors halt the endpoint, but the * class driver doesn't call usb_reset_endpoint() unless * the error is -EPIPE. Clear the halted status in the * xHCI hardware manually. */ xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, ep_ring->stream_id, td, event_trb); } else { /* Update ring dequeue pointer */ while (ep_ring->dequeue != td->last_trb) inc_deq(xhci, ep_ring, false); inc_deq(xhci, ep_ring, false); } td_cleanup: /* Clean up the endpoint's TD list */ urb = td->urb; urb_priv = urb->hcpriv; /* Do one last check of the actual transfer length. * If the host controller said we transferred more data than * the buffer length, urb->actual_length will be a very big * number (since it's unsigned). Play it safe and say we didn't * transfer anything. */ if (urb->actual_length > urb->transfer_buffer_length) { xhci_warn(xhci, "URB transfer length is wrong, " "xHC issue? req. len = %u, " "act. len = %u\n", urb->transfer_buffer_length, urb->actual_length); urb->actual_length = 0; if (td->urb->transfer_flags & URB_SHORT_NOT_OK) *status = -EREMOTEIO; else *status = 0; } list_del_init(&td->td_list); /* Was this TD slated to be cancelled but completed anyway? */ if (!list_empty(&td->cancelled_td_list)) list_del_init(&td->cancelled_td_list); urb_priv->td_cnt++; /* Giveback the urb when all the tds are completed */ if (urb_priv->td_cnt == urb_priv->length) { ret = 1; if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { if (xhci->quirks & XHCI_AMD_PLL_FIX) usb_amd_quirk_pll_enable(); } } } } return ret; } /* * Process control tds, update urb status and actual_length. */ static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, union xhci_trb *event_trb, struct xhci_transfer_event *event, struct xhci_virt_ep *ep, int *status) { struct xhci_virt_device *xdev; struct xhci_ring *ep_ring; unsigned int slot_id; int ep_index; struct xhci_ep_ctx *ep_ctx; u32 trb_comp_code; slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); xdev = xhci->devs[slot_id]; ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); xhci_debug_trb(xhci, xhci->event_ring->dequeue); switch (trb_comp_code) { case COMP_SUCCESS: if (event_trb == ep_ring->dequeue) { xhci_warn(xhci, "WARN: Success on ctrl setup TRB " "without IOC set??\n"); *status = -ESHUTDOWN; } else if (event_trb != td->last_trb) { xhci_warn(xhci, "WARN: Success on ctrl data TRB " "without IOC set??\n"); *status = -ESHUTDOWN; } else { *status = 0; } break; case COMP_SHORT_TX: xhci_warn(xhci, "WARN: short transfer on control ep\n"); if (td->urb->transfer_flags & URB_SHORT_NOT_OK) *status = -EREMOTEIO; else *status = 0; break; case COMP_STOP_INVAL: case COMP_STOP: return finish_td(xhci, td, event_trb, event, ep, status, false); default: if (!xhci_requires_manual_halt_cleanup(xhci, ep_ctx, trb_comp_code)) break; xhci_dbg(xhci, "TRB error code %u, " "halted endpoint index = %u\n", trb_comp_code, ep_index); /* else fall through */ case COMP_STALL: /* Did we transfer part of the data (middle) phase? */ if (event_trb != ep_ring->dequeue && event_trb != td->last_trb) td->urb->actual_length = td->urb->transfer_buffer_length - TRB_LEN(le32_to_cpu(event->transfer_len)); else td->urb->actual_length = 0; xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0, td, event_trb); return finish_td(xhci, td, event_trb, event, ep, status, true); } /* * Did we transfer any data, despite the errors that might have * happened? I.e. did we get past the setup stage? */ if (event_trb != ep_ring->dequeue) { /* The event was for the status stage */ if (event_trb == td->last_trb) { if (td->urb->actual_length != 0) { /* Don't overwrite a previously set error code */ if ((*status == -EINPROGRESS || *status == 0) && (td->urb->transfer_flags & URB_SHORT_NOT_OK)) /* Did we already see a short data * stage? */ *status = -EREMOTEIO; } else { td->urb->actual_length = td->urb->transfer_buffer_length; } } else { /* Maybe the event was for the data stage? */ td->urb->actual_length = td->urb->transfer_buffer_length - TRB_LEN(le32_to_cpu(event->transfer_len)); xhci_dbg(xhci, "Waiting for status " "stage event\n"); return 0; } } return finish_td(xhci, td, event_trb, event, ep, status, false); } /* * Process isochronous tds, update urb packet status and actual_length. */ static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, union xhci_trb *event_trb, struct xhci_transfer_event *event, struct xhci_virt_ep *ep, int *status) { struct xhci_ring *ep_ring; struct urb_priv *urb_priv; int idx; int len = 0; union xhci_trb *cur_trb; struct xhci_segment *cur_seg; struct usb_iso_packet_descriptor *frame; u32 trb_comp_code; bool skip_td = false; ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); urb_priv = td->urb->hcpriv; idx = urb_priv->td_cnt; frame = &td->urb->iso_frame_desc[idx]; /* handle completion code */ switch (trb_comp_code) { case COMP_SUCCESS: frame->status = 0; break; case COMP_SHORT_TX: frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? -EREMOTEIO : 0; break; case COMP_BW_OVER: frame->status = -ECOMM; skip_td = true; break; case COMP_BUFF_OVER: case COMP_BABBLE: frame->status = -EOVERFLOW; skip_td = true; break; case COMP_DEV_ERR: case COMP_STALL: frame->status = -EPROTO; skip_td = true; break; case COMP_STOP: case COMP_STOP_INVAL: break; default: frame->status = -1; break; } if (trb_comp_code == COMP_SUCCESS || skip_td) { frame->actual_length = frame->length; td->urb->actual_length += frame->length; } else { for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; cur_trb != event_trb; next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); } len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - TRB_LEN(le32_to_cpu(event->transfer_len)); if (trb_comp_code != COMP_STOP_INVAL) { frame->actual_length = len; td->urb->actual_length += len; } } return finish_td(xhci, td, event_trb, event, ep, status, false); } static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_transfer_event *event, struct xhci_virt_ep *ep, int *status) { struct xhci_ring *ep_ring; struct urb_priv *urb_priv; struct usb_iso_packet_descriptor *frame; int idx; ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); urb_priv = td->urb->hcpriv; idx = urb_priv->td_cnt; frame = &td->urb->iso_frame_desc[idx]; /* The transfer is partly done. */ frame->status = -EXDEV; /* calc actual length */ frame->actual_length = 0; /* Update ring dequeue pointer */ while (ep_ring->dequeue != td->last_trb) inc_deq(xhci, ep_ring, false); inc_deq(xhci, ep_ring, false); return finish_td(xhci, td, NULL, event, ep, status, true); } /* * Process bulk and interrupt tds, update urb status and actual_length. */ static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, union xhci_trb *event_trb, struct xhci_transfer_event *event, struct xhci_virt_ep *ep, int *status) { struct xhci_ring *ep_ring; union xhci_trb *cur_trb; struct xhci_segment *cur_seg; u32 trb_comp_code; ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); switch (trb_comp_code) { case COMP_SUCCESS: /* Double check that the HW transferred everything. */ if (event_trb != td->last_trb) { xhci_warn(xhci, "WARN Successful completion " "on short TX\n"); if (td->urb->transfer_flags & URB_SHORT_NOT_OK) *status = -EREMOTEIO; else *status = 0; } else { *status = 0; } break; case COMP_SHORT_TX: if (td->urb->transfer_flags & URB_SHORT_NOT_OK) *status = -EREMOTEIO; else *status = 0; break; default: /* Others already handled above */ break; } if (trb_comp_code == COMP_SHORT_TX) xhci_dbg(xhci, "ep %#x - asked for %d bytes, " "%d bytes untransferred\n", td->urb->ep->desc.bEndpointAddress, td->urb->transfer_buffer_length, TRB_LEN(le32_to_cpu(event->transfer_len))); /* Fast path - was this the last TRB in the TD for this URB? */ if (event_trb == td->last_trb) { if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { td->urb->actual_length = td->urb->transfer_buffer_length - TRB_LEN(le32_to_cpu(event->transfer_len)); if (td->urb->transfer_buffer_length < td->urb->actual_length) { xhci_warn(xhci, "HC gave bad length " "of %d bytes left\n", TRB_LEN(le32_to_cpu(event->transfer_len))); td->urb->actual_length = 0; if (td->urb->transfer_flags & URB_SHORT_NOT_OK) *status = -EREMOTEIO; else *status = 0; } /* Don't overwrite a previously set error code */ if (*status == -EINPROGRESS) { if (td->urb->transfer_flags & URB_SHORT_NOT_OK) *status = -EREMOTEIO; else *status = 0; } } else { td->urb->actual_length = td->urb->transfer_buffer_length; /* Ignore a short packet completion if the * untransferred length was zero. */ if (*status == -EREMOTEIO) *status = 0; } } else { /* Slow path - walk the list, starting from the dequeue * pointer, to get the actual length transferred. */ td->urb->actual_length = 0; for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; cur_trb != event_trb; next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) td->urb->actual_length += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); } /* If the ring didn't stop on a Link or No-op TRB, add * in the actual bytes transferred from the Normal TRB */ if (trb_comp_code != COMP_STOP_INVAL) td->urb->actual_length += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - TRB_LEN(le32_to_cpu(event->transfer_len)); } return finish_td(xhci, td, event_trb, event, ep, status, false); } /* * If this function returns an error condition, it means it got a Transfer * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. * At this point, the host controller is probably hosed and should be reset. */ static int handle_tx_event(struct xhci_hcd *xhci, struct xhci_transfer_event *event) { struct xhci_virt_device *xdev; struct xhci_virt_ep *ep; struct xhci_ring *ep_ring; unsigned int slot_id; int ep_index; struct xhci_td *td = NULL; dma_addr_t event_dma; struct xhci_segment *event_seg; union xhci_trb *event_trb; struct urb *urb = NULL; int status = -EINPROGRESS; struct urb_priv *urb_priv; struct xhci_ep_ctx *ep_ctx; u32 trb_comp_code; int ret = 0; slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); xdev = xhci->devs[slot_id]; if (!xdev) { xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); return -ENODEV; } /* Endpoint ID is 1 based, our index is zero based */ ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; ep = &xdev->eps[ep_index]; ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); if (!ep_ring || (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == EP_STATE_DISABLED) { xhci_err(xhci, "ERROR Transfer event for disabled endpoint " "or incorrect stream ring\n"); return -ENODEV; } event_dma = le64_to_cpu(event->buffer); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); /* Look for common error cases */ switch (trb_comp_code) { /* Skip codes that require special handling depending on * transfer type */ case COMP_SUCCESS: case COMP_SHORT_TX: break; case COMP_STOP: xhci_dbg(xhci, "Stopped on Transfer TRB\n"); break; case COMP_STOP_INVAL: xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); break; case COMP_STALL: xhci_warn(xhci, "WARN: Stalled endpoint\n"); ep->ep_state |= EP_HALTED; status = -EPIPE; break; case COMP_TRB_ERR: xhci_warn(xhci, "WARN: TRB error on endpoint\n"); status = -EILSEQ; break; case COMP_SPLIT_ERR: case COMP_TX_ERR: xhci_warn(xhci, "WARN: transfer error on endpoint\n"); status = -EPROTO; break; case COMP_BABBLE: xhci_warn(xhci, "WARN: babble error on endpoint\n"); status = -EOVERFLOW; break; case COMP_DB_ERR: xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); status = -ENOSR; break; case COMP_BW_OVER: xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); break; case COMP_BUFF_OVER: xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); break; case COMP_UNDERRUN: /* * When the Isoch ring is empty, the xHC will generate * a Ring Overrun Event for IN Isoch endpoint or Ring * Underrun Event for OUT Isoch endpoint. */ xhci_dbg(xhci, "underrun event on endpoint\n"); if (!list_empty(&ep_ring->td_list)) xhci_dbg(xhci, "Underrun Event for slot %d ep %d " "still with TDs queued?\n", TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), ep_index); goto cleanup; case COMP_OVERRUN: xhci_dbg(xhci, "overrun event on endpoint\n"); if (!list_empty(&ep_ring->td_list)) xhci_dbg(xhci, "Overrun Event for slot %d ep %d " "still with TDs queued?\n", TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), ep_index); goto cleanup; case COMP_DEV_ERR: xhci_warn(xhci, "WARN: detect an incompatible device"); status = -EPROTO; break; case COMP_MISSED_INT: /* * When encounter missed service error, one or more isoc tds * may be missed by xHC. * Set skip flag of the ep_ring; Complete the missed tds as * short transfer when process the ep_ring next time. */ ep->skip = true; xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); goto cleanup; default: if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { status = 0; break; } xhci_warn(xhci, "ERROR Unknown event condition, HC probably " "busted\n"); goto cleanup; } do { /* This TRB should be in the TD at the head of this ring's * TD list. */ if (list_empty(&ep_ring->td_list)) { xhci_warn(xhci, "WARN Event TRB for slot %d ep %d " "with no TDs queued?\n", TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), ep_index); xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", (le32_to_cpu(event->flags) & TRB_TYPE_BITMASK)>>10); xhci_print_trb_offsets(xhci, (union xhci_trb *) event); if (ep->skip) { ep->skip = false; xhci_dbg(xhci, "td_list is empty while skip " "flag set. Clear skip flag.\n"); } ret = 0; goto cleanup; } td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); /* Is this a TRB in the currently executing TD? */ event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, td->last_trb, event_dma); /* * Skip the Force Stopped Event. The event_trb(event_dma) of FSE * is not in the current TD pointed by ep_ring->dequeue because * that the hardware dequeue pointer still at the previous TRB * of the current TD. The previous TRB maybe a Link TD or the * last TRB of the previous TD. The command completion handle * will take care the rest. */ if (!event_seg && trb_comp_code == COMP_STOP_INVAL) { ret = 0; goto cleanup; } if (!event_seg) { if (!ep->skip || !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { /* Some host controllers give a spurious * successful event after a short transfer. * Ignore it. */ if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && ep_ring->last_td_was_short) { ep_ring->last_td_was_short = false; ret = 0; goto cleanup; } /* HC is busted, give up! */ xhci_err(xhci, "ERROR Transfer event TRB DMA ptr not " "part of current TD\n"); return -ESHUTDOWN; } ret = skip_isoc_td(xhci, td, event, ep, &status); goto cleanup; } if (trb_comp_code == COMP_SHORT_TX) ep_ring->last_td_was_short = true; else ep_ring->last_td_was_short = false; if (ep->skip) { xhci_dbg(xhci, "Found td. Clear skip flag.\n"); ep->skip = false; } event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / sizeof(*event_trb)]; /* * No-op TRB should not trigger interrupts. * If event_trb is a no-op TRB, it means the * corresponding TD has been cancelled. Just ignore * the TD. */ if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { xhci_dbg(xhci, "event_trb is a no-op TRB. Skip it\n"); goto cleanup; } /* Now update the urb's actual_length and give back to * the core */ if (usb_endpoint_xfer_control(&td->urb->ep->desc)) ret = process_ctrl_td(xhci, td, event_trb, event, ep, &status); else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) ret = process_isoc_td(xhci, td, event_trb, event, ep, &status); else ret = process_bulk_intr_td(xhci, td, event_trb, event, ep, &status); cleanup: /* * Do not update event ring dequeue pointer if ep->skip is set. * Will roll back to continue process missed tds. */ if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { inc_deq(xhci, xhci->event_ring, true); } if (ret) { urb = td->urb; urb_priv = urb->hcpriv; /* Leave the TD around for the reset endpoint function * to use(but only if it's not a control endpoint, * since we already queued the Set TR dequeue pointer * command for stalled control endpoints). */ if (usb_endpoint_xfer_control(&urb->ep->desc) || (trb_comp_code != COMP_STALL && trb_comp_code != COMP_BABBLE)) xhci_urb_free_priv(xhci, urb_priv); usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); if ((urb->actual_length != urb->transfer_buffer_length && (urb->transfer_flags & URB_SHORT_NOT_OK)) || status != 0) xhci_dbg(xhci, "Giveback URB %p, len = %d, " "expected = %x, status = %d\n", urb, urb->actual_length, urb->transfer_buffer_length, status); spin_unlock(&xhci->lock); /* EHCI, UHCI, and OHCI always unconditionally set the * urb->status of an isochronous endpoint to 0. */ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) status = 0; usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); spin_lock(&xhci->lock); } /* * If ep->skip is set, it means there are missed tds on the * endpoint ring need to take care of. * Process them as short transfer until reach the td pointed by * the event. */ } while (ep->skip && trb_comp_code != COMP_MISSED_INT); return 0; } /* * This function handles all OS-owned events on the event ring. It may drop * xhci->lock between event processing (e.g. to pass up port status changes). * Returns >0 for "possibly more events to process" (caller should call again), * otherwise 0 if done. In future, <0 returns should indicate error code. */ static int xhci_handle_event(struct xhci_hcd *xhci) { union xhci_trb *event; int update_ptrs = 1; int ret; if (!xhci->event_ring || !xhci->event_ring->dequeue) { xhci->error_bitmask |= 1 << 1; return 0; } event = xhci->event_ring->dequeue; /* Does the HC or OS own the TRB? */ if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != xhci->event_ring->cycle_state) { xhci->error_bitmask |= 1 << 2; return 0; } /* * Barrier between reading the TRB_CYCLE (valid) flag above and any * speculative reads of the event's flags/data below. */ rmb(); /* FIXME: Handle more event types. */ switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { case TRB_TYPE(TRB_COMPLETION): handle_cmd_completion(xhci, &event->event_cmd); break; case TRB_TYPE(TRB_PORT_STATUS): handle_port_status(xhci, event); update_ptrs = 0; break; case TRB_TYPE(TRB_TRANSFER): ret = handle_tx_event(xhci, &event->trans_event); if (ret < 0) xhci->error_bitmask |= 1 << 9; else update_ptrs = 0; break; default: if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= TRB_TYPE(48)) handle_vendor_event(xhci, event); else xhci->error_bitmask |= 1 << 3; } /* Any of the above functions may drop and re-acquire the lock, so check * to make sure a watchdog timer didn't mark the host as non-responsive. */ if (xhci->xhc_state & XHCI_STATE_DYING) { xhci_dbg(xhci, "xHCI host dying, returning from " "event handler.\n"); return 0; } if (update_ptrs) /* Update SW event ring dequeue pointer */ inc_deq(xhci, xhci->event_ring, true); /* Are there more items on the event ring? Caller will call us again to * check. */ return 1; } /* * xHCI spec says we can get an interrupt, and if the HC has an error condition, * we might get bad data out of the event ring. Section 4.10.2.7 has a list of * indicators of an event TRB error, but we check the status *first* to be safe. */ irqreturn_t xhci_irq(struct usb_hcd *hcd) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); u32 status; union xhci_trb *trb; u64 temp_64; union xhci_trb *event_ring_deq; dma_addr_t deq; spin_lock(&xhci->lock); trb = xhci->event_ring->dequeue; /* Check if the xHC generated the interrupt, or the irq is shared */ status = xhci_readl(xhci, &xhci->op_regs->status); if (status == 0xffffffff) goto hw_died; if (!(status & STS_EINT)) { spin_unlock(&xhci->lock); return IRQ_NONE; } if (status & STS_FATAL) { xhci_warn(xhci, "WARNING: Host System Error\n"); xhci_halt(xhci); hw_died: spin_unlock(&xhci->lock); return -ESHUTDOWN; } /* * Clear the op reg interrupt status first, * so we can receive interrupts from other MSI-X interrupters. * Write 1 to clear the interrupt status. */ status |= STS_EINT; xhci_writel(xhci, status, &xhci->op_regs->status); /* FIXME when MSI-X is supported and there are multiple vectors */ /* Clear the MSI-X event interrupt status */ if (hcd->irq != -1) { u32 irq_pending; /* Acknowledge the PCI interrupt */ irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); irq_pending |= 0x3; xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending); } if (xhci->xhc_state & XHCI_STATE_DYING) { xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " "Shouldn't IRQs be disabled?\n"); /* Clear the event handler busy flag (RW1C); * the event ring should be empty. */ temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); xhci_write_64(xhci, temp_64 | ERST_EHB, &xhci->ir_set->erst_dequeue); spin_unlock(&xhci->lock); return IRQ_HANDLED; } event_ring_deq = xhci->event_ring->dequeue; /* FIXME this should be a delayed service routine * that clears the EHB. */ while (xhci_handle_event(xhci) > 0) {} temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); /* If necessary, update the HW's version of the event ring deq ptr. */ if (event_ring_deq != xhci->event_ring->dequeue) { deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, xhci->event_ring->dequeue); if (deq == 0) xhci_warn(xhci, "WARN something wrong with SW event " "ring dequeue ptr.\n"); /* Update HC event ring dequeue pointer */ temp_64 &= ERST_PTR_MASK; temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); } /* Clear the event handler busy flag (RW1C); event ring is empty. */ temp_64 |= ERST_EHB; xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); spin_unlock(&xhci->lock); return IRQ_HANDLED; } irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd) { irqreturn_t ret; struct xhci_hcd *xhci; xhci = hcd_to_xhci(hcd); set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); if (xhci->shared_hcd) set_bit(HCD_FLAG_SAW_IRQ, &xhci->shared_hcd->flags); ret = xhci_irq(hcd); return ret; } /**** Endpoint Ring Operations ****/ /* * Generic function for queueing a TRB on a ring. * The caller must have checked to make sure there's room on the ring. * * @more_trbs_coming: Will you enqueue more TRBs before calling * prepare_transfer()? */ static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer, bool more_trbs_coming, u32 field1, u32 field2, u32 field3, u32 field4) { struct xhci_generic_trb *trb; trb = &ring->enqueue->generic; trb->field[0] = cpu_to_le32(field1); trb->field[1] = cpu_to_le32(field2); trb->field[2] = cpu_to_le32(field3); trb->field[3] = cpu_to_le32(field4); inc_enq(xhci, ring, consumer, more_trbs_coming); } /* * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. * FIXME allocate segments if the ring is full. */ static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) { /* Make sure the endpoint has been added to xHC schedule */ switch (ep_state) { case EP_STATE_DISABLED: /* * USB core changed config/interfaces without notifying us, * or hardware is reporting the wrong state. */ xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); return -ENOENT; case EP_STATE_ERROR: xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); /* FIXME event handling code for error needs to clear it */ /* XXX not sure if this should be -ENOENT or not */ return -EINVAL; case EP_STATE_HALTED: xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); case EP_STATE_STOPPED: case EP_STATE_RUNNING: break; default: xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); /* * FIXME issue Configure Endpoint command to try to get the HC * back into a known state. */ return -EINVAL; } if (!room_on_ring(xhci, ep_ring, num_trbs)) { /* FIXME allocate more room */ xhci_err(xhci, "ERROR no room on ep ring\n"); return -ENOMEM; } if (enqueue_is_link_trb(ep_ring)) { struct xhci_ring *ring = ep_ring; union xhci_trb *next; next = ring->enqueue; while (last_trb(xhci, ring, ring->enq_seg, next)) { /* If we're not dealing with 0.95 hardware, * clear the chain bit. */ if (!xhci_link_trb_quirk(xhci)) next->link.control &= cpu_to_le32(~TRB_CHAIN); else next->link.control |= cpu_to_le32(TRB_CHAIN); wmb(); next->link.control ^= cpu_to_le32(TRB_CYCLE); /* Toggle the cycle bit after the last ring segment. */ if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { ring->cycle_state = (ring->cycle_state ? 0 : 1); if (!in_interrupt()) { xhci_dbg(xhci, "queue_trb: Toggle cycle " "state for ring %p = %i\n", ring, (unsigned int)ring->cycle_state); } } ring->enq_seg = ring->enq_seg->next; ring->enqueue = ring->enq_seg->trbs; next = ring->enqueue; } } return 0; } static int prepare_transfer(struct xhci_hcd *xhci, struct xhci_virt_device *xdev, unsigned int ep_index, unsigned int stream_id, unsigned int num_trbs, struct urb *urb, unsigned int td_index, gfp_t mem_flags) { int ret; struct urb_priv *urb_priv; struct xhci_td *td; struct xhci_ring *ep_ring; struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); if (!ep_ring) { xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", stream_id); return -EINVAL; } ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, num_trbs, mem_flags); if (ret) return ret; urb_priv = urb->hcpriv; td = urb_priv->td[td_index]; INIT_LIST_HEAD(&td->td_list); INIT_LIST_HEAD(&td->cancelled_td_list); if (td_index == 0) { ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); if (unlikely(ret)) return ret; } td->urb = urb; /* Add this TD to the tail of the endpoint ring's TD list */ list_add_tail(&td->td_list, &ep_ring->td_list); td->start_seg = ep_ring->enq_seg; td->first_trb = ep_ring->enqueue; urb_priv->td[td_index] = td; return 0; } static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) { int num_sgs, num_trbs, running_total, temp, i; struct scatterlist *sg; sg = NULL; num_sgs = urb->num_sgs; temp = urb->transfer_buffer_length; xhci_dbg(xhci, "count sg list trbs: \n"); num_trbs = 0; for_each_sg(urb->sg, sg, num_sgs, i) { unsigned int previous_total_trbs = num_trbs; unsigned int len = sg_dma_len(sg); /* Scatter gather list entries may cross 64KB boundaries */ running_total = TRB_MAX_BUFF_SIZE - (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); running_total &= TRB_MAX_BUFF_SIZE - 1; if (running_total != 0) num_trbs++; /* How many more 64KB chunks to transfer, how many more TRBs? */ while (running_total < sg_dma_len(sg) && running_total < temp) { num_trbs++; running_total += TRB_MAX_BUFF_SIZE; } xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n", i, (unsigned long long)sg_dma_address(sg), len, len, num_trbs - previous_total_trbs); len = min_t(int, len, temp); temp -= len; if (temp == 0) break; } xhci_dbg(xhci, "\n"); if (!in_interrupt()) xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, " "num_trbs = %d\n", urb->ep->desc.bEndpointAddress, urb->transfer_buffer_length, num_trbs); return num_trbs; } static void check_trb_math(struct urb *urb, int num_trbs, int running_total) { if (num_trbs != 0) dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " "TRBs, %d left\n", __func__, urb->ep->desc.bEndpointAddress, num_trbs); if (running_total != urb->transfer_buffer_length) dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " "queued %#x (%d), asked for %#x (%d)\n", __func__, urb->ep->desc.bEndpointAddress, running_total, running_total, urb->transfer_buffer_length, urb->transfer_buffer_length); } static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, unsigned int ep_index, unsigned int stream_id, int start_cycle, struct xhci_generic_trb *start_trb) { /* * Pass all the TRBs to the hardware at once and make sure this write * isn't reordered. */ wmb(); if (start_cycle) start_trb->field[3] |= cpu_to_le32(start_cycle); else start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); } /* * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD * (comprised of sg list entries) can take several service intervals to * transmit. */ int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); int xhci_interval; int ep_interval; xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); ep_interval = urb->interval; /* Convert to microframes */ if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) ep_interval *= 8; /* FIXME change this to a warning and a suggestion to use the new API * to set the polling interval (once the API is added). */ if (xhci_interval != ep_interval) { if (printk_ratelimit()) dev_dbg(&urb->dev->dev, "Driver uses different interval" " (%d microframe%s) than xHCI " "(%d microframe%s)\n", ep_interval, ep_interval == 1 ? "" : "s", xhci_interval, xhci_interval == 1 ? "" : "s"); urb->interval = xhci_interval; /* Convert back to frames for LS/FS devices */ if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) urb->interval /= 8; } return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); } /* * The TD size is the number of bytes remaining in the TD (including this TRB), * right shifted by 10. * It must fit in bits 21:17, so it can't be bigger than 31. */ static u32 xhci_td_remainder(unsigned int remainder) { u32 max = (1 << (21 - 17 + 1)) - 1; if ((remainder >> 10) >= max) return max << 17; else return (remainder >> 10) << 17; } /* * For xHCI 1.0 host controllers, TD size is the number of packets remaining in * the TD (*not* including this TRB). * * Total TD packet count = total_packet_count = * roundup(TD size in bytes / wMaxPacketSize) * * Packets transferred up to and including this TRB = packets_transferred = * rounddown(total bytes transferred including this TRB / wMaxPacketSize) * * TD size = total_packet_count - packets_transferred * * It must fit in bits 21:17, so it can't be bigger than 31. */ static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len, unsigned int total_packet_count, struct urb *urb) { int packets_transferred; /* One TRB with a zero-length data packet. */ if (running_total == 0 && trb_buff_len == 0) return 0; /* All the TRB queueing functions don't count the current TRB in * running_total. */ packets_transferred = (running_total + trb_buff_len) / le16_to_cpu(urb->ep->desc.wMaxPacketSize); return xhci_td_remainder(total_packet_count - packets_transferred); } static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ring *ep_ring; unsigned int num_trbs; struct urb_priv *urb_priv; struct xhci_td *td; struct scatterlist *sg; int num_sgs; int trb_buff_len, this_sg_len, running_total; unsigned int total_packet_count; bool first_trb; u64 addr; bool more_trbs_coming; struct xhci_generic_trb *start_trb; int start_cycle; ep_ring = xhci_urb_to_transfer_ring(xhci, urb); if (!ep_ring) return -EINVAL; num_trbs = count_sg_trbs_needed(xhci, urb); num_sgs = urb->num_sgs; total_packet_count = roundup(urb->transfer_buffer_length, le16_to_cpu(urb->ep->desc.wMaxPacketSize)); trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, urb->stream_id, num_trbs, urb, 0, mem_flags); if (trb_buff_len < 0) return trb_buff_len; urb_priv = urb->hcpriv; td = urb_priv->td[0]; /* * Don't give the first TRB to the hardware (by toggling the cycle bit) * until we've finished creating all the other TRBs. The ring's cycle * state may change as we enqueue the other TRBs, so save it too. */ start_trb = &ep_ring->enqueue->generic; start_cycle = ep_ring->cycle_state; running_total = 0; /* * How much data is in the first TRB? * * There are three forces at work for TRB buffer pointers and lengths: * 1. We don't want to walk off the end of this sg-list entry buffer. * 2. The transfer length that the driver requested may be smaller than * the amount of memory allocated for this scatter-gather list. * 3. TRBs buffers can't cross 64KB boundaries. */ sg = urb->sg; addr = (u64) sg_dma_address(sg); this_sg_len = sg_dma_len(sg); trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); trb_buff_len = min_t(int, trb_buff_len, this_sg_len); if (trb_buff_len > urb->transfer_buffer_length) trb_buff_len = urb->transfer_buffer_length; xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n", trb_buff_len); first_trb = true; /* Queue the first TRB, even if it's zero-length */ do { u32 field = 0; u32 length_field = 0; u32 remainder = 0; /* Don't change the cycle bit of the first TRB until later */ if (first_trb) { first_trb = false; if (start_cycle == 0) field |= 0x1; } else field |= ep_ring->cycle_state; /* Chain all the TRBs together; clear the chain bit in the last * TRB to indicate it's the last TRB in the chain. */ if (num_trbs > 1) { field |= TRB_CHAIN; } else { /* FIXME - add check for ZERO_PACKET flag before this */ td->last_trb = ep_ring->enqueue; field |= TRB_IOC; } /* Only set interrupt on short packet for IN endpoints */ if (usb_urb_dir_in(urb)) field |= TRB_ISP; xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), " "64KB boundary at %#x, end dma = %#x\n", (unsigned int) addr, trb_buff_len, trb_buff_len, (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), (unsigned int) addr + trb_buff_len); if (TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), (unsigned int) addr + trb_buff_len); } /* Set the TRB length, TD size, and interrupter fields. */ if (xhci->hci_version < 0x100) { remainder = xhci_td_remainder( urb->transfer_buffer_length - running_total); } else { remainder = xhci_v1_0_td_remainder(running_total, trb_buff_len, total_packet_count, urb); } length_field = TRB_LEN(trb_buff_len) | remainder | TRB_INTR_TARGET(0); if (num_trbs > 1) more_trbs_coming = true; else more_trbs_coming = false; queue_trb(xhci, ep_ring, false, more_trbs_coming, lower_32_bits(addr), upper_32_bits(addr), length_field, field | TRB_TYPE(TRB_NORMAL)); --num_trbs; running_total += trb_buff_len; /* Calculate length for next transfer -- * Are we done queueing all the TRBs for this sg entry? */ this_sg_len -= trb_buff_len; if (this_sg_len == 0) { --num_sgs; if (num_sgs == 0) break; sg = sg_next(sg); addr = (u64) sg_dma_address(sg); this_sg_len = sg_dma_len(sg); } else { addr += trb_buff_len; } trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); trb_buff_len = min_t(int, trb_buff_len, this_sg_len); if (running_total + trb_buff_len > urb->transfer_buffer_length) trb_buff_len = urb->transfer_buffer_length - running_total; } while (running_total < urb->transfer_buffer_length); check_trb_math(urb, num_trbs, running_total); giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, start_cycle, start_trb); return 0; } /* This is very similar to what ehci-q.c qtd_fill() does */ int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ring *ep_ring; struct urb_priv *urb_priv; struct xhci_td *td; int num_trbs; struct xhci_generic_trb *start_trb; bool first_trb; bool more_trbs_coming; int start_cycle; u32 field, length_field; int running_total, trb_buff_len, ret; unsigned int total_packet_count; u64 addr; if (urb->num_sgs) return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); ep_ring = xhci_urb_to_transfer_ring(xhci, urb); if (!ep_ring) return -EINVAL; num_trbs = 0; /* How much data is (potentially) left before the 64KB boundary? */ running_total = TRB_MAX_BUFF_SIZE - (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); running_total &= TRB_MAX_BUFF_SIZE - 1; /* If there's some data on this 64KB chunk, or we have to send a * zero-length transfer, we need at least one TRB */ if (running_total != 0 || urb->transfer_buffer_length == 0) num_trbs++; /* How many more 64KB chunks to transfer, how many more TRBs? */ while (running_total < urb->transfer_buffer_length) { num_trbs++; running_total += TRB_MAX_BUFF_SIZE; } /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ if (!in_interrupt()) xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), " "addr = %#llx, num_trbs = %d\n", urb->ep->desc.bEndpointAddress, urb->transfer_buffer_length, urb->transfer_buffer_length, (unsigned long long)urb->transfer_dma, num_trbs); ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, urb->stream_id, num_trbs, urb, 0, mem_flags); if (ret < 0) return ret; urb_priv = urb->hcpriv; td = urb_priv->td[0]; /* * Don't give the first TRB to the hardware (by toggling the cycle bit) * until we've finished creating all the other TRBs. The ring's cycle * state may change as we enqueue the other TRBs, so save it too. */ start_trb = &ep_ring->enqueue->generic; start_cycle = ep_ring->cycle_state; running_total = 0; total_packet_count = roundup(urb->transfer_buffer_length, le16_to_cpu(urb->ep->desc.wMaxPacketSize)); /* How much data is in the first TRB? */ addr = (u64) urb->transfer_dma; trb_buff_len = TRB_MAX_BUFF_SIZE - (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); if (trb_buff_len > urb->transfer_buffer_length) trb_buff_len = urb->transfer_buffer_length; first_trb = true; /* Queue the first TRB, even if it's zero-length */ do { u32 remainder = 0; field = 0; /* Don't change the cycle bit of the first TRB until later */ if (first_trb) { first_trb = false; if (start_cycle == 0) field |= 0x1; } else field |= ep_ring->cycle_state; /* Chain all the TRBs together; clear the chain bit in the last * TRB to indicate it's the last TRB in the chain. */ if (num_trbs > 1) { field |= TRB_CHAIN; } else { /* FIXME - add check for ZERO_PACKET flag before this */ td->last_trb = ep_ring->enqueue; field |= TRB_IOC; } /* Only set interrupt on short packet for IN endpoints */ if (usb_urb_dir_in(urb)) field |= TRB_ISP; /* Set the TRB length, TD size, and interrupter fields. */ if (xhci->hci_version < 0x100) { remainder = xhci_td_remainder( urb->transfer_buffer_length - running_total); } else { remainder = xhci_v1_0_td_remainder(running_total, trb_buff_len, total_packet_count, urb); } length_field = TRB_LEN(trb_buff_len) | remainder | TRB_INTR_TARGET(0); if (num_trbs > 1) more_trbs_coming = true; else more_trbs_coming = false; queue_trb(xhci, ep_ring, false, more_trbs_coming, lower_32_bits(addr), upper_32_bits(addr), length_field, field | TRB_TYPE(TRB_NORMAL)); --num_trbs; running_total += trb_buff_len; /* Calculate length for next transfer */ addr += trb_buff_len; trb_buff_len = urb->transfer_buffer_length - running_total; if (trb_buff_len > TRB_MAX_BUFF_SIZE) trb_buff_len = TRB_MAX_BUFF_SIZE; } while (running_total < urb->transfer_buffer_length); check_trb_math(urb, num_trbs, running_total); giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, start_cycle, start_trb); return 0; } /* Caller must have locked xhci->lock */ int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ring *ep_ring; int num_trbs; int ret; struct usb_ctrlrequest *setup; struct xhci_generic_trb *start_trb; int start_cycle; u32 field, length_field; struct urb_priv *urb_priv; struct xhci_td *td; ep_ring = xhci_urb_to_transfer_ring(xhci, urb); if (!ep_ring) return -EINVAL; /* * Need to copy setup packet into setup TRB, so we can't use the setup * DMA address. */ if (!urb->setup_packet) return -EINVAL; if (!in_interrupt()) xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n", slot_id, ep_index); /* 1 TRB for setup, 1 for status */ num_trbs = 2; /* * Don't need to check if we need additional event data and normal TRBs, * since data in control transfers will never get bigger than 16MB * XXX: can we get a buffer that crosses 64KB boundaries? */ if (urb->transfer_buffer_length > 0) num_trbs++; ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, urb->stream_id, num_trbs, urb, 0, mem_flags); if (ret < 0) return ret; urb_priv = urb->hcpriv; td = urb_priv->td[0]; /* * Don't give the first TRB to the hardware (by toggling the cycle bit) * until we've finished creating all the other TRBs. The ring's cycle * state may change as we enqueue the other TRBs, so save it too. */ start_trb = &ep_ring->enqueue->generic; start_cycle = ep_ring->cycle_state; /* Queue setup TRB - see section 6.4.1.2.1 */ /* FIXME better way to translate setup_packet into two u32 fields? */ setup = (struct usb_ctrlrequest *) urb->setup_packet; field = 0; field |= TRB_IDT | TRB_TYPE(TRB_SETUP); if (start_cycle == 0) field |= 0x1; /* xHCI 1.0 6.4.1.2.1: Transfer Type field */ if (xhci->hci_version == 0x100) { if (urb->transfer_buffer_length > 0) { if (setup->bRequestType & USB_DIR_IN) field |= TRB_TX_TYPE(TRB_DATA_IN); else field |= TRB_TX_TYPE(TRB_DATA_OUT); } } queue_trb(xhci, ep_ring, false, true, setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, TRB_LEN(8) | TRB_INTR_TARGET(0), /* Immediate data in pointer */ field); /* If there's data, queue data TRBs */ /* Only set interrupt on short packet for IN endpoints */ if (usb_urb_dir_in(urb)) field = TRB_ISP | TRB_TYPE(TRB_DATA); else field = TRB_TYPE(TRB_DATA); length_field = TRB_LEN(urb->transfer_buffer_length) | xhci_td_remainder(urb->transfer_buffer_length) | TRB_INTR_TARGET(0); if (urb->transfer_buffer_length > 0) { if (setup->bRequestType & USB_DIR_IN) field |= TRB_DIR_IN; queue_trb(xhci, ep_ring, false, true, lower_32_bits(urb->transfer_dma), upper_32_bits(urb->transfer_dma), length_field, field | ep_ring->cycle_state); } /* Save the DMA address of the last TRB in the TD */ td->last_trb = ep_ring->enqueue; /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ /* If the device sent data, the status stage is an OUT transfer */ if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) field = 0; else field = TRB_DIR_IN; queue_trb(xhci, ep_ring, false, false, 0, 0, TRB_INTR_TARGET(0), /* Event on completion */ field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); giveback_first_trb(xhci, slot_id, ep_index, 0, start_cycle, start_trb); return 0; } static int count_isoc_trbs_needed(struct xhci_hcd *xhci, struct urb *urb, int i) { int num_trbs = 0; u64 addr, td_len; addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); td_len = urb->iso_frame_desc[i].length; num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), TRB_MAX_BUFF_SIZE); if (num_trbs == 0) num_trbs++; return num_trbs; } /* * The transfer burst count field of the isochronous TRB defines the number of * bursts that are required to move all packets in this TD. Only SuperSpeed * devices can burst up to bMaxBurst number of packets per service interval. * This field is zero based, meaning a value of zero in the field means one * burst. Basically, for everything but SuperSpeed devices, this field will be * zero. Only xHCI 1.0 host controllers support this field. */ static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, struct usb_device *udev, struct urb *urb, unsigned int total_packet_count) { unsigned int max_burst; if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) return 0; max_burst = urb->ep->ss_ep_comp.bMaxBurst; return roundup(total_packet_count, max_burst + 1) - 1; } /* * Returns the number of packets in the last "burst" of packets. This field is * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so * the last burst packet count is equal to the total number of packets in the * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst * must contain (bMaxBurst + 1) number of packets, but the last burst can * contain 1 to (bMaxBurst + 1) packets. */ static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, struct usb_device *udev, struct urb *urb, unsigned int total_packet_count) { unsigned int max_burst; unsigned int residue; if (xhci->hci_version < 0x100) return 0; switch (udev->speed) { case USB_SPEED_SUPER: /* bMaxBurst is zero based: 0 means 1 packet per burst */ max_burst = urb->ep->ss_ep_comp.bMaxBurst; residue = total_packet_count % (max_burst + 1); /* If residue is zero, the last burst contains (max_burst + 1) * number of packets, but the TLBPC field is zero-based. */ if (residue == 0) return max_burst; return residue - 1; default: if (total_packet_count == 0) return 0; return total_packet_count - 1; } } /* This is for isoc transfer */ static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ring *ep_ring; struct urb_priv *urb_priv; struct xhci_td *td; int num_tds, trbs_per_td; struct xhci_generic_trb *start_trb; bool first_trb; int start_cycle; u32 field, length_field; int running_total, trb_buff_len, td_len, td_remain_len, ret; u64 start_addr, addr; int i, j; bool more_trbs_coming; ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; num_tds = urb->number_of_packets; if (num_tds < 1) { xhci_dbg(xhci, "Isoc URB with zero packets?\n"); return -EINVAL; } if (!in_interrupt()) xhci_dbg(xhci, "ep %#x - urb len = %#x (%d)," " addr = %#llx, num_tds = %d\n", urb->ep->desc.bEndpointAddress, urb->transfer_buffer_length, urb->transfer_buffer_length, (unsigned long long)urb->transfer_dma, num_tds); start_addr = (u64) urb->transfer_dma; start_trb = &ep_ring->enqueue->generic; start_cycle = ep_ring->cycle_state; urb_priv = urb->hcpriv; /* Queue the first TRB, even if it's zero-length */ for (i = 0; i < num_tds; i++) { unsigned int total_packet_count; unsigned int burst_count; unsigned int residue; first_trb = true; running_total = 0; addr = start_addr + urb->iso_frame_desc[i].offset; td_len = urb->iso_frame_desc[i].length; td_remain_len = td_len; total_packet_count = roundup(td_len, le16_to_cpu(urb->ep->desc.wMaxPacketSize)); /* A zero-length transfer still involves at least one packet. */ if (total_packet_count == 0) total_packet_count++; burst_count = xhci_get_burst_count(xhci, urb->dev, urb, total_packet_count); residue = xhci_get_last_burst_packet_count(xhci, urb->dev, urb, total_packet_count); trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, urb->stream_id, trbs_per_td, urb, i, mem_flags); if (ret < 0) { if (i == 0) return ret; goto cleanup; } td = urb_priv->td[i]; for (j = 0; j < trbs_per_td; j++) { u32 remainder = 0; field = TRB_TBC(burst_count) | TRB_TLBPC(residue); if (first_trb) { /* Queue the isoc TRB */ field |= TRB_TYPE(TRB_ISOC); /* Assume URB_ISO_ASAP is set */ field |= TRB_SIA; if (i == 0) { if (start_cycle == 0) field |= 0x1; } else field |= ep_ring->cycle_state; first_trb = false; } else { /* Queue other normal TRBs */ field |= TRB_TYPE(TRB_NORMAL); field |= ep_ring->cycle_state; } /* Only set interrupt on short packet for IN EPs */ if (usb_urb_dir_in(urb)) field |= TRB_ISP; /* Chain all the TRBs together; clear the chain bit in * the last TRB to indicate it's the last TRB in the * chain. */ if (j < trbs_per_td - 1) { field |= TRB_CHAIN; more_trbs_coming = true; } else { td->last_trb = ep_ring->enqueue; field |= TRB_IOC; if (xhci->hci_version == 0x100) { /* Set BEI bit except for the last td */ if (i < num_tds - 1) field |= TRB_BEI; } more_trbs_coming = false; } /* Calculate TRB length */ trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); if (trb_buff_len > td_remain_len) trb_buff_len = td_remain_len; /* Set the TRB length, TD size, & interrupter fields. */ if (xhci->hci_version < 0x100) { remainder = xhci_td_remainder( td_len - running_total); } else { remainder = xhci_v1_0_td_remainder( running_total, trb_buff_len, total_packet_count, urb); } length_field = TRB_LEN(trb_buff_len) | remainder | TRB_INTR_TARGET(0); queue_trb(xhci, ep_ring, false, more_trbs_coming, lower_32_bits(addr), upper_32_bits(addr), length_field, field); running_total += trb_buff_len; addr += trb_buff_len; td_remain_len -= trb_buff_len; } /* Check TD length */ if (running_total != td_len) { xhci_err(xhci, "ISOC TD length unmatch\n"); return -EINVAL; } } if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { if (xhci->quirks & XHCI_AMD_PLL_FIX) usb_amd_quirk_pll_disable(); } xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, start_cycle, start_trb); return 0; cleanup: /* Clean up a partially enqueued isoc transfer. */ for (i--; i >= 0; i--) list_del_init(&urb_priv->td[i]->td_list); /* Use the first TD as a temporary variable to turn the TDs we've queued * into No-ops with a software-owned cycle bit. That way the hardware * won't accidentally start executing bogus TDs when we partially * overwrite them. td->first_trb and td->start_seg are already set. */ urb_priv->td[0]->last_trb = ep_ring->enqueue; /* Every TRB except the first & last will have its cycle bit flipped. */ td_to_noop(xhci, ep_ring, urb_priv->td[0], true); /* Reset the ring enqueue back to the first TRB and its cycle bit. */ ep_ring->enqueue = urb_priv->td[0]->first_trb; ep_ring->enq_seg = urb_priv->td[0]->start_seg; ep_ring->cycle_state = start_cycle; usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); return ret; } /* * Check transfer ring to guarantee there is enough room for the urb. * Update ISO URB start_frame and interval. * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to * update the urb->start_frame by now. * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. */ int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_virt_device *xdev; struct xhci_ring *ep_ring; struct xhci_ep_ctx *ep_ctx; int start_frame; int xhci_interval; int ep_interval; int num_tds, num_trbs, i; int ret; xdev = xhci->devs[slot_id]; ep_ring = xdev->eps[ep_index].ring; ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); num_trbs = 0; num_tds = urb->number_of_packets; for (i = 0; i < num_tds; i++) num_trbs += count_isoc_trbs_needed(xhci, urb, i); /* Check the ring to guarantee there is enough room for the whole urb. * Do not insert any td of the urb to the ring if the check failed. */ ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, num_trbs, mem_flags); if (ret) return ret; start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index); start_frame &= 0x3fff; urb->start_frame = start_frame; if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) urb->start_frame >>= 3; xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); ep_interval = urb->interval; /* Convert to microframes */ if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) ep_interval *= 8; /* FIXME change this to a warning and a suggestion to use the new API * to set the polling interval (once the API is added). */ if (xhci_interval != ep_interval) { if (printk_ratelimit()) dev_dbg(&urb->dev->dev, "Driver uses different interval" " (%d microframe%s) than xHCI " "(%d microframe%s)\n", ep_interval, ep_interval == 1 ? "" : "s", xhci_interval, xhci_interval == 1 ? "" : "s"); urb->interval = xhci_interval; /* Convert back to frames for LS/FS devices */ if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) urb->interval /= 8; } return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); } /**** Command Ring Operations ****/ /* Generic function for queueing a command TRB on the command ring. * Check to make sure there's room on the command ring for one command TRB. * Also check that there's room reserved for commands that must not fail. * If this is a command that must not fail, meaning command_must_succeed = TRUE, * then only check for the number of reserved spots. * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB * because the command event handler may want to resubmit a failed command. */ static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, u32 field3, u32 field4, bool command_must_succeed) { int reserved_trbs = xhci->cmd_ring_reserved_trbs; int ret; if (!command_must_succeed) reserved_trbs++; ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, reserved_trbs, GFP_ATOMIC); if (ret < 0) { xhci_err(xhci, "ERR: No room for command on command ring\n"); if (command_must_succeed) xhci_err(xhci, "ERR: Reserved TRB counting for " "unfailable commands failed.\n"); return ret; } queue_trb(xhci, xhci->cmd_ring, false, false, field1, field2, field3, field4 | xhci->cmd_ring->cycle_state); return 0; } /* Queue a slot enable or disable request on the command ring */ int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) { return queue_command(xhci, 0, 0, 0, TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); } /* Queue an address device command TRB */ int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, u32 slot_id) { return queue_command(xhci, lower_32_bits(in_ctx_ptr), upper_32_bits(in_ctx_ptr), 0, TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id), false); } int xhci_queue_vendor_command(struct xhci_hcd *xhci, u32 field1, u32 field2, u32 field3, u32 field4) { return queue_command(xhci, field1, field2, field3, field4, false); } /* Queue a reset device command TRB */ int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id) { return queue_command(xhci, 0, 0, 0, TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), false); } /* Queue a configure endpoint command TRB */ int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) { return queue_command(xhci, lower_32_bits(in_ctx_ptr), upper_32_bits(in_ctx_ptr), 0, TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), command_must_succeed); } /* Queue an evaluate context command TRB */ int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, u32 slot_id) { return queue_command(xhci, lower_32_bits(in_ctx_ptr), upper_32_bits(in_ctx_ptr), 0, TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), false); } /* * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop * activity on an endpoint that is about to be suspended. */ int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, unsigned int ep_index, int suspend) { u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); u32 type = TRB_TYPE(TRB_STOP_RING); u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type | trb_suspend, false); } /* Set Transfer Ring Dequeue Pointer command. * This should not be used for endpoints that have streams enabled. */ static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, unsigned int ep_index, unsigned int stream_id, struct xhci_segment *deq_seg, union xhci_trb *deq_ptr, u32 cycle_state) { dma_addr_t addr; u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); u32 type = TRB_TYPE(TRB_SET_DEQ); struct xhci_virt_ep *ep; addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); if (addr == 0) { xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", deq_seg, deq_ptr); return 0; } ep = &xhci->devs[slot_id]->eps[ep_index]; if ((ep->ep_state & SET_DEQ_PENDING)) { xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); return 0; } ep->queued_deq_seg = deq_seg; ep->queued_deq_ptr = deq_ptr; return queue_command(xhci, lower_32_bits(addr) | cycle_state, upper_32_bits(addr), trb_stream_id, trb_slot_id | trb_ep_index | type, false); } int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, unsigned int ep_index) { u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); u32 type = TRB_TYPE(TRB_RESET_EP); return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, false); }