/* * xHCI host controller driver * * Copyright (C) 2008 Intel Corp. * * Author: Sarah Sharp * Some code borrowed from the Linux EHCI driver. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include "xhci.h" #define DRIVER_AUTHOR "Sarah Sharp" #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */ static int link_quirk; module_param(link_quirk, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB"); /* TODO: copied from ehci-hcd.c - can this be refactored? */ /* * handshake - spin reading hc until handshake completes or fails * @ptr: address of hc register to be read * @mask: bits to look at in result of read * @done: value of those bits when handshake succeeds * @usec: timeout in microseconds * * Returns negative errno, or zero on success * * Success happens when the "mask" bits have the specified value (hardware * handshake done). There are two failure modes: "usec" have passed (major * hardware flakeout), or the register reads as all-ones (hardware removed). */ static int handshake(struct xhci_hcd *xhci, void __iomem *ptr, u32 mask, u32 done, int usec) { u32 result; do { result = xhci_readl(xhci, ptr); if (result == ~(u32)0) /* card removed */ return -ENODEV; result &= mask; if (result == done) return 0; udelay(1); usec--; } while (usec > 0); return -ETIMEDOUT; } /* * Disable interrupts and begin the xHCI halting process. */ void xhci_quiesce(struct xhci_hcd *xhci) { u32 halted; u32 cmd; u32 mask; mask = ~(XHCI_IRQS); halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; if (!halted) mask &= ~CMD_RUN; cmd = xhci_readl(xhci, &xhci->op_regs->command); cmd &= mask; xhci_writel(xhci, cmd, &xhci->op_regs->command); } /* * Force HC into halt state. * * Disable any IRQs and clear the run/stop bit. * HC will complete any current and actively pipelined transactions, and * should halt within 16 ms of the run/stop bit being cleared. * Read HC Halted bit in the status register to see when the HC is finished. */ int xhci_halt(struct xhci_hcd *xhci) { int ret; xhci_dbg(xhci, "// Halt the HC\n"); xhci_quiesce(xhci); ret = handshake(xhci, &xhci->op_regs->status, STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); if (!ret) xhci->xhc_state |= XHCI_STATE_HALTED; return ret; } /* * Set the run bit and wait for the host to be running. */ static int xhci_start(struct xhci_hcd *xhci) { u32 temp; int ret; temp = xhci_readl(xhci, &xhci->op_regs->command); temp |= (CMD_RUN); xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n", temp); xhci_writel(xhci, temp, &xhci->op_regs->command); /* * Wait for the HCHalted Status bit to be 0 to indicate the host is * running. */ ret = handshake(xhci, &xhci->op_regs->status, STS_HALT, 0, XHCI_MAX_HALT_USEC); if (ret == -ETIMEDOUT) xhci_err(xhci, "Host took too long to start, " "waited %u microseconds.\n", XHCI_MAX_HALT_USEC); if (!ret) xhci->xhc_state &= ~XHCI_STATE_HALTED; return ret; } /* * Reset a halted HC. * * This resets pipelines, timers, counters, state machines, etc. * Transactions will be terminated immediately, and operational registers * will be set to their defaults. */ int xhci_reset(struct xhci_hcd *xhci) { u32 command; u32 state; int ret; state = xhci_readl(xhci, &xhci->op_regs->status); if ((state & STS_HALT) == 0) { xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); return 0; } xhci_dbg(xhci, "// Reset the HC\n"); command = xhci_readl(xhci, &xhci->op_regs->command); command |= CMD_RESET; xhci_writel(xhci, command, &xhci->op_regs->command); ret = handshake(xhci, &xhci->op_regs->command, CMD_RESET, 0, 250 * 1000); if (ret) return ret; xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n"); /* * xHCI cannot write to any doorbells or operational registers other * than status until the "Controller Not Ready" flag is cleared. */ return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000); } /* * Free IRQs * free all IRQs request */ static void xhci_free_irq(struct xhci_hcd *xhci) { int i; struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); /* return if using legacy interrupt */ if (xhci_to_hcd(xhci)->irq >= 0) return; if (xhci->msix_entries) { for (i = 0; i < xhci->msix_count; i++) if (xhci->msix_entries[i].vector) free_irq(xhci->msix_entries[i].vector, xhci_to_hcd(xhci)); } else if (pdev->irq >= 0) free_irq(pdev->irq, xhci_to_hcd(xhci)); return; } /* * Set up MSI */ static int xhci_setup_msi(struct xhci_hcd *xhci) { int ret; struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); ret = pci_enable_msi(pdev); if (ret) { xhci_err(xhci, "failed to allocate MSI entry\n"); return ret; } ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq, 0, "xhci_hcd", xhci_to_hcd(xhci)); if (ret) { xhci_err(xhci, "disable MSI interrupt\n"); pci_disable_msi(pdev); } return ret; } /* * Set up MSI-X */ static int xhci_setup_msix(struct xhci_hcd *xhci) { int i, ret = 0; struct usb_hcd *hcd = xhci_to_hcd(xhci); struct pci_dev *pdev = to_pci_dev(hcd->self.controller); /* * calculate number of msi-x vectors supported. * - HCS_MAX_INTRS: the max number of interrupts the host can handle, * with max number of interrupters based on the xhci HCSPARAMS1. * - num_online_cpus: maximum msi-x vectors per CPUs core. * Add additional 1 vector to ensure always available interrupt. */ xhci->msix_count = min(num_online_cpus() + 1, HCS_MAX_INTRS(xhci->hcs_params1)); xhci->msix_entries = kmalloc((sizeof(struct msix_entry))*xhci->msix_count, GFP_KERNEL); if (!xhci->msix_entries) { xhci_err(xhci, "Failed to allocate MSI-X entries\n"); return -ENOMEM; } for (i = 0; i < xhci->msix_count; i++) { xhci->msix_entries[i].entry = i; xhci->msix_entries[i].vector = 0; } ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); if (ret) { xhci_err(xhci, "Failed to enable MSI-X\n"); goto free_entries; } for (i = 0; i < xhci->msix_count; i++) { ret = request_irq(xhci->msix_entries[i].vector, (irq_handler_t)xhci_msi_irq, 0, "xhci_hcd", xhci_to_hcd(xhci)); if (ret) goto disable_msix; } hcd->msix_enabled = 1; return ret; disable_msix: xhci_err(xhci, "disable MSI-X interrupt\n"); xhci_free_irq(xhci); pci_disable_msix(pdev); free_entries: kfree(xhci->msix_entries); xhci->msix_entries = NULL; return ret; } /* Free any IRQs and disable MSI-X */ static void xhci_cleanup_msix(struct xhci_hcd *xhci) { struct usb_hcd *hcd = xhci_to_hcd(xhci); struct pci_dev *pdev = to_pci_dev(hcd->self.controller); xhci_free_irq(xhci); if (xhci->msix_entries) { pci_disable_msix(pdev); kfree(xhci->msix_entries); xhci->msix_entries = NULL; } else { pci_disable_msi(pdev); } hcd->msix_enabled = 0; return; } /* * Initialize memory for HCD and xHC (one-time init). * * Program the PAGESIZE register, initialize the device context array, create * device contexts (?), set up a command ring segment (or two?), create event * ring (one for now). */ int xhci_init(struct usb_hcd *hcd) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); int retval = 0; xhci_dbg(xhci, "xhci_init\n"); spin_lock_init(&xhci->lock); if (link_quirk) { xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n"); xhci->quirks |= XHCI_LINK_TRB_QUIRK; } else { xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n"); } retval = xhci_mem_init(xhci, GFP_KERNEL); xhci_dbg(xhci, "Finished xhci_init\n"); return retval; } /*-------------------------------------------------------------------------*/ #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING static void xhci_event_ring_work(unsigned long arg) { unsigned long flags; int temp; u64 temp_64; struct xhci_hcd *xhci = (struct xhci_hcd *) arg; int i, j; xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies); spin_lock_irqsave(&xhci->lock, flags); temp = xhci_readl(xhci, &xhci->op_regs->status); xhci_dbg(xhci, "op reg status = 0x%x\n", temp); if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) { xhci_dbg(xhci, "HW died, polling stopped.\n"); spin_unlock_irqrestore(&xhci->lock, flags); return; } temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp); xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask); xhci->error_bitmask = 0; xhci_dbg(xhci, "Event ring:\n"); xhci_debug_segment(xhci, xhci->event_ring->deq_seg); xhci_dbg_ring_ptrs(xhci, xhci->event_ring); temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); temp_64 &= ~ERST_PTR_MASK; xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); xhci_dbg(xhci, "Command ring:\n"); xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg); xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); xhci_dbg_cmd_ptrs(xhci); for (i = 0; i < MAX_HC_SLOTS; ++i) { if (!xhci->devs[i]) continue; for (j = 0; j < 31; ++j) { xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]); } } spin_unlock_irqrestore(&xhci->lock, flags); if (!xhci->zombie) mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ); else xhci_dbg(xhci, "Quit polling the event ring.\n"); } #endif static int xhci_run_finished(struct xhci_hcd *xhci) { if (xhci_start(xhci)) { xhci_halt(xhci); return -ENODEV; } xhci->shared_hcd->state = HC_STATE_RUNNING; if (xhci->quirks & XHCI_NEC_HOST) xhci_ring_cmd_db(xhci); xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n"); return 0; } /* * Start the HC after it was halted. * * This function is called by the USB core when the HC driver is added. * Its opposite is xhci_stop(). * * xhci_init() must be called once before this function can be called. * Reset the HC, enable device slot contexts, program DCBAAP, and * set command ring pointer and event ring pointer. * * Setup MSI-X vectors and enable interrupts. */ int xhci_run(struct usb_hcd *hcd) { u32 temp; u64 temp_64; u32 ret; struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); /* Start the xHCI host controller running only after the USB 2.0 roothub * is setup. */ hcd->uses_new_polling = 1; if (!usb_hcd_is_primary_hcd(hcd)) return xhci_run_finished(xhci); xhci_dbg(xhci, "xhci_run\n"); /* unregister the legacy interrupt */ if (hcd->irq) free_irq(hcd->irq, hcd); hcd->irq = -1; ret = xhci_setup_msix(xhci); if (ret) /* fall back to msi*/ ret = xhci_setup_msi(xhci); if (ret) { /* fall back to legacy interrupt*/ ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED, hcd->irq_descr, hcd); if (ret) { xhci_err(xhci, "request interrupt %d failed\n", pdev->irq); return ret; } hcd->irq = pdev->irq; } #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING init_timer(&xhci->event_ring_timer); xhci->event_ring_timer.data = (unsigned long) xhci; xhci->event_ring_timer.function = xhci_event_ring_work; /* Poll the event ring */ xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ; xhci->zombie = 0; xhci_dbg(xhci, "Setting event ring polling timer\n"); add_timer(&xhci->event_ring_timer); #endif xhci_dbg(xhci, "Command ring memory map follows:\n"); xhci_debug_ring(xhci, xhci->cmd_ring); xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); xhci_dbg_cmd_ptrs(xhci); xhci_dbg(xhci, "ERST memory map follows:\n"); xhci_dbg_erst(xhci, &xhci->erst); xhci_dbg(xhci, "Event ring:\n"); xhci_debug_ring(xhci, xhci->event_ring); xhci_dbg_ring_ptrs(xhci, xhci->event_ring); temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); temp_64 &= ~ERST_PTR_MASK; xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); xhci_dbg(xhci, "// Set the interrupt modulation register\n"); temp = xhci_readl(xhci, &xhci->ir_set->irq_control); temp &= ~ER_IRQ_INTERVAL_MASK; temp |= (u32) 160; xhci_writel(xhci, temp, &xhci->ir_set->irq_control); /* Set the HCD state before we enable the irqs */ temp = xhci_readl(xhci, &xhci->op_regs->command); temp |= (CMD_EIE); xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n", temp); xhci_writel(xhci, temp, &xhci->op_regs->command); temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n", xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); xhci_writel(xhci, ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending); xhci_print_ir_set(xhci, 0); if (xhci->quirks & XHCI_NEC_HOST) xhci_queue_vendor_command(xhci, 0, 0, 0, TRB_TYPE(TRB_NEC_GET_FW)); xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n"); return 0; } static void xhci_only_stop_hcd(struct usb_hcd *hcd) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); spin_lock_irq(&xhci->lock); xhci_halt(xhci); /* The shared_hcd is going to be deallocated shortly (the USB core only * calls this function when allocation fails in usb_add_hcd(), or * usb_remove_hcd() is called). So we need to unset xHCI's pointer. */ xhci->shared_hcd = NULL; spin_unlock_irq(&xhci->lock); } /* * Stop xHCI driver. * * This function is called by the USB core when the HC driver is removed. * Its opposite is xhci_run(). * * Disable device contexts, disable IRQs, and quiesce the HC. * Reset the HC, finish any completed transactions, and cleanup memory. */ void xhci_stop(struct usb_hcd *hcd) { u32 temp; struct xhci_hcd *xhci = hcd_to_xhci(hcd); if (!usb_hcd_is_primary_hcd(hcd)) { xhci_only_stop_hcd(xhci->shared_hcd); return; } spin_lock_irq(&xhci->lock); /* Make sure the xHC is halted for a USB3 roothub * (xhci_stop() could be called as part of failed init). */ xhci_halt(xhci); xhci_reset(xhci); spin_unlock_irq(&xhci->lock); xhci_cleanup_msix(xhci); #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING /* Tell the event ring poll function not to reschedule */ xhci->zombie = 1; del_timer_sync(&xhci->event_ring_timer); #endif if (xhci->quirks & XHCI_AMD_PLL_FIX) usb_amd_dev_put(); xhci_dbg(xhci, "// Disabling event ring interrupts\n"); temp = xhci_readl(xhci, &xhci->op_regs->status); xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); xhci_writel(xhci, ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); xhci_print_ir_set(xhci, 0); xhci_dbg(xhci, "cleaning up memory\n"); xhci_mem_cleanup(xhci); xhci_dbg(xhci, "xhci_stop completed - status = %x\n", xhci_readl(xhci, &xhci->op_regs->status)); } /* * Shutdown HC (not bus-specific) * * This is called when the machine is rebooting or halting. We assume that the * machine will be powered off, and the HC's internal state will be reset. * Don't bother to free memory. * * This will only ever be called with the main usb_hcd (the USB3 roothub). */ void xhci_shutdown(struct usb_hcd *hcd) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); spin_lock_irq(&xhci->lock); xhci_halt(xhci); spin_unlock_irq(&xhci->lock); xhci_cleanup_msix(xhci); xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n", xhci_readl(xhci, &xhci->op_regs->status)); } #ifdef CONFIG_PM static void xhci_save_registers(struct xhci_hcd *xhci) { xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command); xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification); xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg); xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control); xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size); xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base); xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); } static void xhci_restore_registers(struct xhci_hcd *xhci) { xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command); xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification); xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr); xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg); xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending); xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control); xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size); xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base); } static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci) { u64 val_64; /* step 2: initialize command ring buffer */ val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, xhci->cmd_ring->dequeue) & (u64) ~CMD_RING_RSVD_BITS) | xhci->cmd_ring->cycle_state; xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n", (long unsigned long) val_64); xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); } /* * The whole command ring must be cleared to zero when we suspend the host. * * The host doesn't save the command ring pointer in the suspend well, so we * need to re-program it on resume. Unfortunately, the pointer must be 64-byte * aligned, because of the reserved bits in the command ring dequeue pointer * register. Therefore, we can't just set the dequeue pointer back in the * middle of the ring (TRBs are 16-byte aligned). */ static void xhci_clear_command_ring(struct xhci_hcd *xhci) { struct xhci_ring *ring; struct xhci_segment *seg; ring = xhci->cmd_ring; seg = ring->deq_seg; do { memset(seg->trbs, 0, SEGMENT_SIZE); seg = seg->next; } while (seg != ring->deq_seg); /* Reset the software enqueue and dequeue pointers */ ring->deq_seg = ring->first_seg; ring->dequeue = ring->first_seg->trbs; ring->enq_seg = ring->deq_seg; ring->enqueue = ring->dequeue; /* * Ring is now zeroed, so the HW should look for change of ownership * when the cycle bit is set to 1. */ ring->cycle_state = 1; /* * Reset the hardware dequeue pointer. * Yes, this will need to be re-written after resume, but we're paranoid * and want to make sure the hardware doesn't access bogus memory * because, say, the BIOS or an SMI started the host without changing * the command ring pointers. */ xhci_set_cmd_ring_deq(xhci); } /* * Stop HC (not bus-specific) * * This is called when the machine transition into S3/S4 mode. * */ int xhci_suspend(struct xhci_hcd *xhci) { int rc = 0; struct usb_hcd *hcd = xhci_to_hcd(xhci); u32 command; int i; spin_lock_irq(&xhci->lock); clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); /* step 1: stop endpoint */ /* skipped assuming that port suspend has done */ /* step 2: clear Run/Stop bit */ command = xhci_readl(xhci, &xhci->op_regs->command); command &= ~CMD_RUN; xhci_writel(xhci, command, &xhci->op_regs->command); if (handshake(xhci, &xhci->op_regs->status, STS_HALT, STS_HALT, 100*100)) { xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n"); spin_unlock_irq(&xhci->lock); return -ETIMEDOUT; } xhci_clear_command_ring(xhci); /* step 3: save registers */ xhci_save_registers(xhci); /* step 4: set CSS flag */ command = xhci_readl(xhci, &xhci->op_regs->command); command |= CMD_CSS; xhci_writel(xhci, command, &xhci->op_regs->command); if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) { xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n"); spin_unlock_irq(&xhci->lock); return -ETIMEDOUT; } spin_unlock_irq(&xhci->lock); /* step 5: remove core well power */ /* synchronize irq when using MSI-X */ if (xhci->msix_entries) { for (i = 0; i < xhci->msix_count; i++) synchronize_irq(xhci->msix_entries[i].vector); } return rc; } /* * start xHC (not bus-specific) * * This is called when the machine transition from S3/S4 mode. * */ int xhci_resume(struct xhci_hcd *xhci, bool hibernated) { u32 command, temp = 0; struct usb_hcd *hcd = xhci_to_hcd(xhci); struct usb_hcd *secondary_hcd; int retval; /* Wait a bit if either of the roothubs need to settle from the * transition into bus suspend. */ if (time_before(jiffies, xhci->bus_state[0].next_statechange) || time_before(jiffies, xhci->bus_state[1].next_statechange)) msleep(100); spin_lock_irq(&xhci->lock); if (!hibernated) { /* step 1: restore register */ xhci_restore_registers(xhci); /* step 2: initialize command ring buffer */ xhci_set_cmd_ring_deq(xhci); /* step 3: restore state and start state*/ /* step 3: set CRS flag */ command = xhci_readl(xhci, &xhci->op_regs->command); command |= CMD_CRS; xhci_writel(xhci, command, &xhci->op_regs->command); if (handshake(xhci, &xhci->op_regs->status, STS_RESTORE, 0, 10*100)) { xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n"); spin_unlock_irq(&xhci->lock); return -ETIMEDOUT; } temp = xhci_readl(xhci, &xhci->op_regs->status); } /* If restore operation fails, re-initialize the HC during resume */ if ((temp & STS_SRE) || hibernated) { /* Let the USB core know _both_ roothubs lost power. */ usb_root_hub_lost_power(xhci->main_hcd->self.root_hub); usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub); xhci_dbg(xhci, "Stop HCD\n"); xhci_halt(xhci); xhci_reset(xhci); spin_unlock_irq(&xhci->lock); xhci_cleanup_msix(xhci); #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING /* Tell the event ring poll function not to reschedule */ xhci->zombie = 1; del_timer_sync(&xhci->event_ring_timer); #endif xhci_dbg(xhci, "// Disabling event ring interrupts\n"); temp = xhci_readl(xhci, &xhci->op_regs->status); xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); xhci_writel(xhci, ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending); xhci_print_ir_set(xhci, 0); xhci_dbg(xhci, "cleaning up memory\n"); xhci_mem_cleanup(xhci); xhci_dbg(xhci, "xhci_stop completed - status = %x\n", xhci_readl(xhci, &xhci->op_regs->status)); /* USB core calls the PCI reinit and start functions twice: * first with the primary HCD, and then with the secondary HCD. * If we don't do the same, the host will never be started. */ if (!usb_hcd_is_primary_hcd(hcd)) secondary_hcd = hcd; else secondary_hcd = xhci->shared_hcd; xhci_dbg(xhci, "Initialize the xhci_hcd\n"); retval = xhci_init(hcd->primary_hcd); if (retval) return retval; xhci_dbg(xhci, "Start the primary HCD\n"); retval = xhci_run(hcd->primary_hcd); if (retval) goto failed_restart; xhci_dbg(xhci, "Start the secondary HCD\n"); retval = xhci_run(secondary_hcd); if (!retval) { set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); } failed_restart: hcd->state = HC_STATE_SUSPENDED; xhci->shared_hcd->state = HC_STATE_SUSPENDED; return retval; } /* step 4: set Run/Stop bit */ command = xhci_readl(xhci, &xhci->op_regs->command); command |= CMD_RUN; xhci_writel(xhci, command, &xhci->op_regs->command); handshake(xhci, &xhci->op_regs->status, STS_HALT, 0, 250 * 1000); /* step 5: walk topology and initialize portsc, * portpmsc and portli */ /* this is done in bus_resume */ /* step 6: restart each of the previously * Running endpoints by ringing their doorbells */ set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags); spin_unlock_irq(&xhci->lock); return 0; } #endif /* CONFIG_PM */ /*-------------------------------------------------------------------------*/ /** * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and * HCDs. Find the index for an endpoint given its descriptor. Use the return * value to right shift 1 for the bitmask. * * Index = (epnum * 2) + direction - 1, * where direction = 0 for OUT, 1 for IN. * For control endpoints, the IN index is used (OUT index is unused), so * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) */ unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) { unsigned int index; if (usb_endpoint_xfer_control(desc)) index = (unsigned int) (usb_endpoint_num(desc)*2); else index = (unsigned int) (usb_endpoint_num(desc)*2) + (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; return index; } /* Find the flag for this endpoint (for use in the control context). Use the * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is * bit 1, etc. */ unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) { return 1 << (xhci_get_endpoint_index(desc) + 1); } /* Find the flag for this endpoint (for use in the control context). Use the * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is * bit 1, etc. */ unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index) { return 1 << (ep_index + 1); } /* Compute the last valid endpoint context index. Basically, this is the * endpoint index plus one. For slot contexts with more than valid endpoint, * we find the most significant bit set in the added contexts flags. * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. */ unsigned int xhci_last_valid_endpoint(u32 added_ctxs) { return fls(added_ctxs) - 1; } /* Returns 1 if the arguments are OK; * returns 0 this is a root hub; returns -EINVAL for NULL pointers. */ static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev, const char *func) { struct xhci_hcd *xhci; struct xhci_virt_device *virt_dev; if (!hcd || (check_ep && !ep) || !udev) { printk(KERN_DEBUG "xHCI %s called with invalid args\n", func); return -EINVAL; } if (!udev->parent) { printk(KERN_DEBUG "xHCI %s called for root hub\n", func); return 0; } if (check_virt_dev) { xhci = hcd_to_xhci(hcd); if (!udev->slot_id || !xhci->devs || !xhci->devs[udev->slot_id]) { printk(KERN_DEBUG "xHCI %s called with unaddressed " "device\n", func); return -EINVAL; } virt_dev = xhci->devs[udev->slot_id]; if (virt_dev->udev != udev) { printk(KERN_DEBUG "xHCI %s called with udev and " "virt_dev does not match\n", func); return -EINVAL; } } return 1; } static int xhci_configure_endpoint(struct xhci_hcd *xhci, struct usb_device *udev, struct xhci_command *command, bool ctx_change, bool must_succeed); /* * Full speed devices may have a max packet size greater than 8 bytes, but the * USB core doesn't know that until it reads the first 8 bytes of the * descriptor. If the usb_device's max packet size changes after that point, * we need to issue an evaluate context command and wait on it. */ static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, struct urb *urb) { struct xhci_container_ctx *in_ctx; struct xhci_container_ctx *out_ctx; struct xhci_input_control_ctx *ctrl_ctx; struct xhci_ep_ctx *ep_ctx; int max_packet_size; int hw_max_packet_size; int ret = 0; out_ctx = xhci->devs[slot_id]->out_ctx; ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); max_packet_size = le16_to_cpu(urb->dev->ep0.desc.wMaxPacketSize); if (hw_max_packet_size != max_packet_size) { xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n"); xhci_dbg(xhci, "Max packet size in usb_device = %d\n", max_packet_size); xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n", hw_max_packet_size); xhci_dbg(xhci, "Issuing evaluate context command.\n"); /* Set up the modified control endpoint 0 */ xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, xhci->devs[slot_id]->out_ctx, ep_index); in_ctx = xhci->devs[slot_id]->in_ctx; ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK); ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); /* Set up the input context flags for the command */ /* FIXME: This won't work if a non-default control endpoint * changes max packet sizes. */ ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); ctrl_ctx->drop_flags = 0; xhci_dbg(xhci, "Slot %d input context\n", slot_id); xhci_dbg_ctx(xhci, in_ctx, ep_index); xhci_dbg(xhci, "Slot %d output context\n", slot_id); xhci_dbg_ctx(xhci, out_ctx, ep_index); ret = xhci_configure_endpoint(xhci, urb->dev, NULL, true, false); /* Clean up the input context for later use by bandwidth * functions. */ ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); } return ret; } /* * non-error returns are a promise to giveback() the urb later * we drop ownership so next owner (or urb unlink) can get it */ int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); unsigned long flags; int ret = 0; unsigned int slot_id, ep_index; struct urb_priv *urb_priv; int size, i; if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, true, true, __func__) <= 0) return -EINVAL; slot_id = urb->dev->slot_id; ep_index = xhci_get_endpoint_index(&urb->ep->desc); if (!HCD_HW_ACCESSIBLE(hcd)) { if (!in_interrupt()) xhci_dbg(xhci, "urb submitted during PCI suspend\n"); ret = -ESHUTDOWN; goto exit; } if (usb_endpoint_xfer_isoc(&urb->ep->desc)) size = urb->number_of_packets; else size = 1; urb_priv = kzalloc(sizeof(struct urb_priv) + size * sizeof(struct xhci_td *), mem_flags); if (!urb_priv) return -ENOMEM; for (i = 0; i < size; i++) { urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags); if (!urb_priv->td[i]) { urb_priv->length = i; xhci_urb_free_priv(xhci, urb_priv); return -ENOMEM; } } urb_priv->length = size; urb_priv->td_cnt = 0; urb->hcpriv = urb_priv; if (usb_endpoint_xfer_control(&urb->ep->desc)) { /* Check to see if the max packet size for the default control * endpoint changed during FS device enumeration */ if (urb->dev->speed == USB_SPEED_FULL) { ret = xhci_check_maxpacket(xhci, slot_id, ep_index, urb); if (ret < 0) return ret; } /* We have a spinlock and interrupts disabled, so we must pass * atomic context to this function, which may allocate memory. */ spin_lock_irqsave(&xhci->lock, flags); if (xhci->xhc_state & XHCI_STATE_DYING) goto dying; ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); spin_unlock_irqrestore(&xhci->lock, flags); } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) { spin_lock_irqsave(&xhci->lock, flags); if (xhci->xhc_state & XHCI_STATE_DYING) goto dying; if (xhci->devs[slot_id]->eps[ep_index].ep_state & EP_GETTING_STREAMS) { xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " "is transitioning to using streams.\n"); ret = -EINVAL; } else if (xhci->devs[slot_id]->eps[ep_index].ep_state & EP_GETTING_NO_STREAMS) { xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep " "is transitioning to " "not having streams.\n"); ret = -EINVAL; } else { ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); } spin_unlock_irqrestore(&xhci->lock, flags); } else if (usb_endpoint_xfer_int(&urb->ep->desc)) { spin_lock_irqsave(&xhci->lock, flags); if (xhci->xhc_state & XHCI_STATE_DYING) goto dying; ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); spin_unlock_irqrestore(&xhci->lock, flags); } else { spin_lock_irqsave(&xhci->lock, flags); if (xhci->xhc_state & XHCI_STATE_DYING) goto dying; ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb, slot_id, ep_index); spin_unlock_irqrestore(&xhci->lock, flags); } exit: return ret; dying: xhci_urb_free_priv(xhci, urb_priv); urb->hcpriv = NULL; xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for " "non-responsive xHCI host.\n", urb->ep->desc.bEndpointAddress, urb); spin_unlock_irqrestore(&xhci->lock, flags); return -ESHUTDOWN; } /* Get the right ring for the given URB. * If the endpoint supports streams, boundary check the URB's stream ID. * If the endpoint doesn't support streams, return the singular endpoint ring. */ static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, struct urb *urb) { unsigned int slot_id; unsigned int ep_index; unsigned int stream_id; struct xhci_virt_ep *ep; slot_id = urb->dev->slot_id; ep_index = xhci_get_endpoint_index(&urb->ep->desc); stream_id = urb->stream_id; ep = &xhci->devs[slot_id]->eps[ep_index]; /* Common case: no streams */ if (!(ep->ep_state & EP_HAS_STREAMS)) return ep->ring; if (stream_id == 0) { xhci_warn(xhci, "WARN: Slot ID %u, ep index %u has streams, " "but URB has no stream ID.\n", slot_id, ep_index); return NULL; } if (stream_id < ep->stream_info->num_streams) return ep->stream_info->stream_rings[stream_id]; xhci_warn(xhci, "WARN: Slot ID %u, ep index %u has " "stream IDs 1 to %u allocated, " "but stream ID %u is requested.\n", slot_id, ep_index, ep->stream_info->num_streams - 1, stream_id); return NULL; } /* * Remove the URB's TD from the endpoint ring. This may cause the HC to stop * USB transfers, potentially stopping in the middle of a TRB buffer. The HC * should pick up where it left off in the TD, unless a Set Transfer Ring * Dequeue Pointer is issued. * * The TRBs that make up the buffers for the canceled URB will be "removed" from * the ring. Since the ring is a contiguous structure, they can't be physically * removed. Instead, there are two options: * * 1) If the HC is in the middle of processing the URB to be canceled, we * simply move the ring's dequeue pointer past those TRBs using the Set * Transfer Ring Dequeue Pointer command. This will be the common case, * when drivers timeout on the last submitted URB and attempt to cancel. * * 2) If the HC is in the middle of a different TD, we turn the TRBs into a * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The * HC will need to invalidate the any TRBs it has cached after the stop * endpoint command, as noted in the xHCI 0.95 errata. * * 3) The TD may have completed by the time the Stop Endpoint Command * completes, so software needs to handle that case too. * * This function should protect against the TD enqueueing code ringing the * doorbell while this code is waiting for a Stop Endpoint command to complete. * It also needs to account for multiple cancellations on happening at the same * time for the same endpoint. * * Note that this function can be called in any context, or so says * usb_hcd_unlink_urb() */ int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) { unsigned long flags; int ret, i; u32 temp; struct xhci_hcd *xhci; struct urb_priv *urb_priv; struct xhci_td *td; unsigned int ep_index; struct xhci_ring *ep_ring; struct xhci_virt_ep *ep; xhci = hcd_to_xhci(hcd); spin_lock_irqsave(&xhci->lock, flags); /* Make sure the URB hasn't completed or been unlinked already */ ret = usb_hcd_check_unlink_urb(hcd, urb, status); if (ret || !urb->hcpriv) goto done; temp = xhci_readl(xhci, &xhci->op_regs->status); if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) { xhci_dbg(xhci, "HW died, freeing TD.\n"); urb_priv = urb->hcpriv; usb_hcd_unlink_urb_from_ep(hcd, urb); spin_unlock_irqrestore(&xhci->lock, flags); usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN); xhci_urb_free_priv(xhci, urb_priv); return ret; } if (xhci->xhc_state & XHCI_STATE_DYING) { xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on " "non-responsive xHCI host.\n", urb->ep->desc.bEndpointAddress, urb); /* Let the stop endpoint command watchdog timer (which set this * state) finish cleaning up the endpoint TD lists. We must * have caught it in the middle of dropping a lock and giving * back an URB. */ goto done; } xhci_dbg(xhci, "Cancel URB %p\n", urb); xhci_dbg(xhci, "Event ring:\n"); xhci_debug_ring(xhci, xhci->event_ring); ep_index = xhci_get_endpoint_index(&urb->ep->desc); ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index]; ep_ring = xhci_urb_to_transfer_ring(xhci, urb); if (!ep_ring) { ret = -EINVAL; goto done; } xhci_dbg(xhci, "Endpoint ring:\n"); xhci_debug_ring(xhci, ep_ring); urb_priv = urb->hcpriv; for (i = urb_priv->td_cnt; i < urb_priv->length; i++) { td = urb_priv->td[i]; list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list); } /* Queue a stop endpoint command, but only if this is * the first cancellation to be handled. */ if (!(ep->ep_state & EP_HALT_PENDING)) { ep->ep_state |= EP_HALT_PENDING; ep->stop_cmds_pending++; ep->stop_cmd_timer.expires = jiffies + XHCI_STOP_EP_CMD_TIMEOUT * HZ; add_timer(&ep->stop_cmd_timer); xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0); xhci_ring_cmd_db(xhci); } done: spin_unlock_irqrestore(&xhci->lock, flags); return ret; } /* Drop an endpoint from a new bandwidth configuration for this device. * Only one call to this function is allowed per endpoint before * check_bandwidth() or reset_bandwidth() must be called. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will * add the endpoint to the schedule with possibly new parameters denoted by a * different endpoint descriptor in usb_host_endpoint. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is * not allowed. * * The USB core will not allow URBs to be queued to an endpoint that is being * disabled, so there's no need for mutual exclusion to protect * the xhci->devs[slot_id] structure. */ int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint *ep) { struct xhci_hcd *xhci; struct xhci_container_ctx *in_ctx, *out_ctx; struct xhci_input_control_ctx *ctrl_ctx; struct xhci_slot_ctx *slot_ctx; unsigned int last_ctx; unsigned int ep_index; struct xhci_ep_ctx *ep_ctx; u32 drop_flag; u32 new_add_flags, new_drop_flags, new_slot_info; int ret; ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); if (ret <= 0) return ret; xhci = hcd_to_xhci(hcd); xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); drop_flag = xhci_get_endpoint_flag(&ep->desc); if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", __func__, drop_flag); return 0; } in_ctx = xhci->devs[udev->slot_id]->in_ctx; out_ctx = xhci->devs[udev->slot_id]->out_ctx; ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); ep_index = xhci_get_endpoint_index(&ep->desc); ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); /* If the HC already knows the endpoint is disabled, * or the HCD has noted it is disabled, ignore this request */ if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == EP_STATE_DISABLED || le32_to_cpu(ctrl_ctx->drop_flags) & xhci_get_endpoint_flag(&ep->desc)) { xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", __func__, ep); return 0; } ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag); new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag); new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)); slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); /* Update the last valid endpoint context, if we deleted the last one */ if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) > LAST_CTX(last_ctx)) { slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); } new_slot_info = le32_to_cpu(slot_ctx->dev_info); xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", (unsigned int) ep->desc.bEndpointAddress, udev->slot_id, (unsigned int) new_drop_flags, (unsigned int) new_add_flags, (unsigned int) new_slot_info); return 0; } /* Add an endpoint to a new possible bandwidth configuration for this device. * Only one call to this function is allowed per endpoint before * check_bandwidth() or reset_bandwidth() must be called. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will * add the endpoint to the schedule with possibly new parameters denoted by a * different endpoint descriptor in usb_host_endpoint. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is * not allowed. * * The USB core will not allow URBs to be queued to an endpoint until the * configuration or alt setting is installed in the device, so there's no need * for mutual exclusion to protect the xhci->devs[slot_id] structure. */ int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint *ep) { struct xhci_hcd *xhci; struct xhci_container_ctx *in_ctx, *out_ctx; unsigned int ep_index; struct xhci_ep_ctx *ep_ctx; struct xhci_slot_ctx *slot_ctx; struct xhci_input_control_ctx *ctrl_ctx; u32 added_ctxs; unsigned int last_ctx; u32 new_add_flags, new_drop_flags, new_slot_info; int ret = 0; ret = xhci_check_args(hcd, udev, ep, 1, true, __func__); if (ret <= 0) { /* So we won't queue a reset ep command for a root hub */ ep->hcpriv = NULL; return ret; } xhci = hcd_to_xhci(hcd); added_ctxs = xhci_get_endpoint_flag(&ep->desc); last_ctx = xhci_last_valid_endpoint(added_ctxs); if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { /* FIXME when we have to issue an evaluate endpoint command to * deal with ep0 max packet size changing once we get the * descriptors */ xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", __func__, added_ctxs); return 0; } in_ctx = xhci->devs[udev->slot_id]->in_ctx; out_ctx = xhci->devs[udev->slot_id]->out_ctx; ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); ep_index = xhci_get_endpoint_index(&ep->desc); ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); /* If the HCD has already noted the endpoint is enabled, * ignore this request. */ if (le32_to_cpu(ctrl_ctx->add_flags) & xhci_get_endpoint_flag(&ep->desc)) { xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", __func__, ep); return 0; } /* * Configuration and alternate setting changes must be done in * process context, not interrupt context (or so documenation * for usb_set_interface() and usb_set_configuration() claim). */ if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id], udev, ep, GFP_NOIO) < 0) { dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", __func__, ep->desc.bEndpointAddress); return -ENOMEM; } ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs); new_add_flags = le32_to_cpu(ctrl_ctx->add_flags); /* If xhci_endpoint_disable() was called for this endpoint, but the * xHC hasn't been notified yet through the check_bandwidth() call, * this re-adds a new state for the endpoint from the new endpoint * descriptors. We must drop and re-add this endpoint, so we leave the * drop flags alone. */ new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); /* Update the last valid endpoint context, if we just added one past */ if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) < LAST_CTX(last_ctx)) { slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx)); } new_slot_info = le32_to_cpu(slot_ctx->dev_info); /* Store the usb_device pointer for later use */ ep->hcpriv = udev; xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", (unsigned int) ep->desc.bEndpointAddress, udev->slot_id, (unsigned int) new_drop_flags, (unsigned int) new_add_flags, (unsigned int) new_slot_info); return 0; } static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) { struct xhci_input_control_ctx *ctrl_ctx; struct xhci_ep_ctx *ep_ctx; struct xhci_slot_ctx *slot_ctx; int i; /* When a device's add flag and drop flag are zero, any subsequent * configure endpoint command will leave that endpoint's state * untouched. Make sure we don't leave any old state in the input * endpoint contexts. */ ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); ctrl_ctx->drop_flags = 0; ctrl_ctx->add_flags = 0; slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); /* Endpoint 0 is always valid */ slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); for (i = 1; i < 31; ++i) { ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); ep_ctx->ep_info = 0; ep_ctx->ep_info2 = 0; ep_ctx->deq = 0; ep_ctx->tx_info = 0; } } static int xhci_configure_endpoint_result(struct xhci_hcd *xhci, struct usb_device *udev, int *cmd_status) { int ret; switch (*cmd_status) { case COMP_ENOMEM: dev_warn(&udev->dev, "Not enough host controller resources " "for new device state.\n"); ret = -ENOMEM; /* FIXME: can we allocate more resources for the HC? */ break; case COMP_BW_ERR: dev_warn(&udev->dev, "Not enough bandwidth " "for new device state.\n"); ret = -ENOSPC; /* FIXME: can we go back to the old state? */ break; case COMP_TRB_ERR: /* the HCD set up something wrong */ dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, " "add flag = 1, " "and endpoint is not disabled.\n"); ret = -EINVAL; break; case COMP_SUCCESS: dev_dbg(&udev->dev, "Successful Endpoint Configure command\n"); ret = 0; break; default: xhci_err(xhci, "ERROR: unexpected command completion " "code 0x%x.\n", *cmd_status); ret = -EINVAL; break; } return ret; } static int xhci_evaluate_context_result(struct xhci_hcd *xhci, struct usb_device *udev, int *cmd_status) { int ret; struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id]; switch (*cmd_status) { case COMP_EINVAL: dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate " "context command.\n"); ret = -EINVAL; break; case COMP_EBADSLT: dev_warn(&udev->dev, "WARN: slot not enabled for" "evaluate context command.\n"); case COMP_CTX_STATE: dev_warn(&udev->dev, "WARN: invalid context state for " "evaluate context command.\n"); xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1); ret = -EINVAL; break; case COMP_SUCCESS: dev_dbg(&udev->dev, "Successful evaluate context command\n"); ret = 0; break; default: xhci_err(xhci, "ERROR: unexpected command completion " "code 0x%x.\n", *cmd_status); ret = -EINVAL; break; } return ret; } /* Issue a configure endpoint command or evaluate context command * and wait for it to finish. */ static int xhci_configure_endpoint(struct xhci_hcd *xhci, struct usb_device *udev, struct xhci_command *command, bool ctx_change, bool must_succeed) { int ret; int timeleft; unsigned long flags; struct xhci_container_ctx *in_ctx; struct completion *cmd_completion; u32 *cmd_status; struct xhci_virt_device *virt_dev; spin_lock_irqsave(&xhci->lock, flags); virt_dev = xhci->devs[udev->slot_id]; if (command) { in_ctx = command->in_ctx; cmd_completion = command->completion; cmd_status = &command->status; command->command_trb = xhci->cmd_ring->enqueue; /* Enqueue pointer can be left pointing to the link TRB, * we must handle that */ if ((le32_to_cpu(command->command_trb->link.control) & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK)) command->command_trb = xhci->cmd_ring->enq_seg->next->trbs; list_add_tail(&command->cmd_list, &virt_dev->cmd_list); } else { in_ctx = virt_dev->in_ctx; cmd_completion = &virt_dev->cmd_completion; cmd_status = &virt_dev->cmd_status; } init_completion(cmd_completion); if (!ctx_change) ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma, udev->slot_id, must_succeed); else ret = xhci_queue_evaluate_context(xhci, in_ctx->dma, udev->slot_id); if (ret < 0) { if (command) list_del(&command->cmd_list); spin_unlock_irqrestore(&xhci->lock, flags); xhci_dbg(xhci, "FIXME allocate a new ring segment\n"); return -ENOMEM; } xhci_ring_cmd_db(xhci); spin_unlock_irqrestore(&xhci->lock, flags); /* Wait for the configure endpoint command to complete */ timeleft = wait_for_completion_interruptible_timeout( cmd_completion, USB_CTRL_SET_TIMEOUT); if (timeleft <= 0) { xhci_warn(xhci, "%s while waiting for %s command\n", timeleft == 0 ? "Timeout" : "Signal", ctx_change == 0 ? "configure endpoint" : "evaluate context"); /* FIXME cancel the configure endpoint command */ return -ETIME; } if (!ctx_change) return xhci_configure_endpoint_result(xhci, udev, cmd_status); return xhci_evaluate_context_result(xhci, udev, cmd_status); } /* Called after one or more calls to xhci_add_endpoint() or * xhci_drop_endpoint(). If this call fails, the USB core is expected * to call xhci_reset_bandwidth(). * * Since we are in the middle of changing either configuration or * installing a new alt setting, the USB core won't allow URBs to be * enqueued for any endpoint on the old config or interface. Nothing * else should be touching the xhci->devs[slot_id] structure, so we * don't need to take the xhci->lock for manipulating that. */ int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) { int i; int ret = 0; struct xhci_hcd *xhci; struct xhci_virt_device *virt_dev; struct xhci_input_control_ctx *ctrl_ctx; struct xhci_slot_ctx *slot_ctx; ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); if (ret <= 0) return ret; xhci = hcd_to_xhci(hcd); xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); virt_dev = xhci->devs[udev->slot_id]; /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); xhci_dbg(xhci, "New Input Control Context:\n"); slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); xhci_dbg_ctx(xhci, virt_dev->in_ctx, LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); ret = xhci_configure_endpoint(xhci, udev, NULL, false, false); if (ret) { /* Callee should call reset_bandwidth() */ return ret; } xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); xhci_dbg_ctx(xhci, virt_dev->out_ctx, LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info))); xhci_zero_in_ctx(xhci, virt_dev); /* Install new rings and free or cache any old rings */ for (i = 1; i < 31; ++i) { if (!virt_dev->eps[i].new_ring) continue; /* Only cache or free the old ring if it exists. * It may not if this is the first add of an endpoint. */ if (virt_dev->eps[i].ring) { xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); } virt_dev->eps[i].ring = virt_dev->eps[i].new_ring; virt_dev->eps[i].new_ring = NULL; } return ret; } void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) { struct xhci_hcd *xhci; struct xhci_virt_device *virt_dev; int i, ret; ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); if (ret <= 0) return; xhci = hcd_to_xhci(hcd); xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); virt_dev = xhci->devs[udev->slot_id]; /* Free any rings allocated for added endpoints */ for (i = 0; i < 31; ++i) { if (virt_dev->eps[i].new_ring) { xhci_ring_free(xhci, virt_dev->eps[i].new_ring); virt_dev->eps[i].new_ring = NULL; } } xhci_zero_in_ctx(xhci, virt_dev); } static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, struct xhci_container_ctx *in_ctx, struct xhci_container_ctx *out_ctx, u32 add_flags, u32 drop_flags) { struct xhci_input_control_ctx *ctrl_ctx; ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); ctrl_ctx->add_flags = cpu_to_le32(add_flags); ctrl_ctx->drop_flags = cpu_to_le32(drop_flags); xhci_slot_copy(xhci, in_ctx, out_ctx); ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); xhci_dbg(xhci, "Input Context:\n"); xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); } static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, struct xhci_dequeue_state *deq_state) { struct xhci_container_ctx *in_ctx; struct xhci_ep_ctx *ep_ctx; u32 added_ctxs; dma_addr_t addr; xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx, xhci->devs[slot_id]->out_ctx, ep_index); in_ctx = xhci->devs[slot_id]->in_ctx; ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr); if (addr == 0) { xhci_warn(xhci, "WARN Cannot submit config ep after " "reset ep command\n"); xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n", deq_state->new_deq_seg, deq_state->new_deq_ptr); return; } ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state); added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs); } void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, struct usb_device *udev, unsigned int ep_index) { struct xhci_dequeue_state deq_state; struct xhci_virt_ep *ep; xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n"); ep = &xhci->devs[udev->slot_id]->eps[ep_index]; /* We need to move the HW's dequeue pointer past this TD, * or it will attempt to resend it on the next doorbell ring. */ xhci_find_new_dequeue_state(xhci, udev->slot_id, ep_index, ep->stopped_stream, ep->stopped_td, &deq_state); /* HW with the reset endpoint quirk will use the saved dequeue state to * issue a configure endpoint command later. */ if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) { xhci_dbg(xhci, "Queueing new dequeue state\n"); xhci_queue_new_dequeue_state(xhci, udev->slot_id, ep_index, ep->stopped_stream, &deq_state); } else { /* Better hope no one uses the input context between now and the * reset endpoint completion! * XXX: No idea how this hardware will react when stream rings * are enabled. */ xhci_dbg(xhci, "Setting up input context for " "configure endpoint command\n"); xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id, ep_index, &deq_state); } } /* Deal with stalled endpoints. The core should have sent the control message * to clear the halt condition. However, we need to make the xHCI hardware * reset its sequence number, since a device will expect a sequence number of * zero after the halt condition is cleared. * Context: in_interrupt */ void xhci_endpoint_reset(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { struct xhci_hcd *xhci; struct usb_device *udev; unsigned int ep_index; unsigned long flags; int ret; struct xhci_virt_ep *virt_ep; xhci = hcd_to_xhci(hcd); udev = (struct usb_device *) ep->hcpriv; /* Called with a root hub endpoint (or an endpoint that wasn't added * with xhci_add_endpoint() */ if (!ep->hcpriv) return; ep_index = xhci_get_endpoint_index(&ep->desc); virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index]; if (!virt_ep->stopped_td) { xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n", ep->desc.bEndpointAddress); return; } if (usb_endpoint_xfer_control(&ep->desc)) { xhci_dbg(xhci, "Control endpoint stall already handled.\n"); return; } xhci_dbg(xhci, "Queueing reset endpoint command\n"); spin_lock_irqsave(&xhci->lock, flags); ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); /* * Can't change the ring dequeue pointer until it's transitioned to the * stopped state, which is only upon a successful reset endpoint * command. Better hope that last command worked! */ if (!ret) { xhci_cleanup_stalled_ring(xhci, udev, ep_index); kfree(virt_ep->stopped_td); xhci_ring_cmd_db(xhci); } virt_ep->stopped_td = NULL; virt_ep->stopped_trb = NULL; virt_ep->stopped_stream = 0; spin_unlock_irqrestore(&xhci->lock, flags); if (ret) xhci_warn(xhci, "FIXME allocate a new ring segment\n"); } static int xhci_check_streams_endpoint(struct xhci_hcd *xhci, struct usb_device *udev, struct usb_host_endpoint *ep, unsigned int slot_id) { int ret; unsigned int ep_index; unsigned int ep_state; if (!ep) return -EINVAL; ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__); if (ret <= 0) return -EINVAL; if (ep->ss_ep_comp.bmAttributes == 0) { xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion" " descriptor for ep 0x%x does not support streams\n", ep->desc.bEndpointAddress); return -EINVAL; } ep_index = xhci_get_endpoint_index(&ep->desc); ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; if (ep_state & EP_HAS_STREAMS || ep_state & EP_GETTING_STREAMS) { xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x " "already has streams set up.\n", ep->desc.bEndpointAddress); xhci_warn(xhci, "Send email to xHCI maintainer and ask for " "dynamic stream context array reallocation.\n"); return -EINVAL; } if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) { xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk " "endpoint 0x%x; URBs are pending.\n", ep->desc.bEndpointAddress); return -EINVAL; } return 0; } static void xhci_calculate_streams_entries(struct xhci_hcd *xhci, unsigned int *num_streams, unsigned int *num_stream_ctxs) { unsigned int max_streams; /* The stream context array size must be a power of two */ *num_stream_ctxs = roundup_pow_of_two(*num_streams); /* * Find out how many primary stream array entries the host controller * supports. Later we may use secondary stream arrays (similar to 2nd * level page entries), but that's an optional feature for xHCI host * controllers. xHCs must support at least 4 stream IDs. */ max_streams = HCC_MAX_PSA(xhci->hcc_params); if (*num_stream_ctxs > max_streams) { xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n", max_streams); *num_stream_ctxs = max_streams; *num_streams = max_streams; } } /* Returns an error code if one of the endpoint already has streams. * This does not change any data structures, it only checks and gathers * information. */ static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci, struct usb_device *udev, struct usb_host_endpoint **eps, unsigned int num_eps, unsigned int *num_streams, u32 *changed_ep_bitmask) { unsigned int max_streams; unsigned int endpoint_flag; int i; int ret; for (i = 0; i < num_eps; i++) { ret = xhci_check_streams_endpoint(xhci, udev, eps[i], udev->slot_id); if (ret < 0) return ret; max_streams = USB_SS_MAX_STREAMS( eps[i]->ss_ep_comp.bmAttributes); if (max_streams < (*num_streams - 1)) { xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n", eps[i]->desc.bEndpointAddress, max_streams); *num_streams = max_streams+1; } endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc); if (*changed_ep_bitmask & endpoint_flag) return -EINVAL; *changed_ep_bitmask |= endpoint_flag; } return 0; } static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci, struct usb_device *udev, struct usb_host_endpoint **eps, unsigned int num_eps) { u32 changed_ep_bitmask = 0; unsigned int slot_id; unsigned int ep_index; unsigned int ep_state; int i; slot_id = udev->slot_id; if (!xhci->devs[slot_id]) return 0; for (i = 0; i < num_eps; i++) { ep_index = xhci_get_endpoint_index(&eps[i]->desc); ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; /* Are streams already being freed for the endpoint? */ if (ep_state & EP_GETTING_NO_STREAMS) { xhci_warn(xhci, "WARN Can't disable streams for " "endpoint 0x%x\n, " "streams are being disabled already.", eps[i]->desc.bEndpointAddress); return 0; } /* Are there actually any streams to free? */ if (!(ep_state & EP_HAS_STREAMS) && !(ep_state & EP_GETTING_STREAMS)) { xhci_warn(xhci, "WARN Can't disable streams for " "endpoint 0x%x\n, " "streams are already disabled!", eps[i]->desc.bEndpointAddress); xhci_warn(xhci, "WARN xhci_free_streams() called " "with non-streams endpoint\n"); return 0; } changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc); } return changed_ep_bitmask; } /* * The USB device drivers use this function (though the HCD interface in USB * core) to prepare a set of bulk endpoints to use streams. Streams are used to * coordinate mass storage command queueing across multiple endpoints (basically * a stream ID == a task ID). * * Setting up streams involves allocating the same size stream context array * for each endpoint and issuing a configure endpoint command for all endpoints. * * Don't allow the call to succeed if one endpoint only supports one stream * (which means it doesn't support streams at all). * * Drivers may get less stream IDs than they asked for, if the host controller * hardware or endpoints claim they can't support the number of requested * stream IDs. */ int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint **eps, unsigned int num_eps, unsigned int num_streams, gfp_t mem_flags) { int i, ret; struct xhci_hcd *xhci; struct xhci_virt_device *vdev; struct xhci_command *config_cmd; unsigned int ep_index; unsigned int num_stream_ctxs; unsigned long flags; u32 changed_ep_bitmask = 0; if (!eps) return -EINVAL; /* Add one to the number of streams requested to account for * stream 0 that is reserved for xHCI usage. */ num_streams += 1; xhci = hcd_to_xhci(hcd); xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n", num_streams); config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); if (!config_cmd) { xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); return -ENOMEM; } /* Check to make sure all endpoints are not already configured for * streams. While we're at it, find the maximum number of streams that * all the endpoints will support and check for duplicate endpoints. */ spin_lock_irqsave(&xhci->lock, flags); ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps, num_eps, &num_streams, &changed_ep_bitmask); if (ret < 0) { xhci_free_command(xhci, config_cmd); spin_unlock_irqrestore(&xhci->lock, flags); return ret; } if (num_streams <= 1) { xhci_warn(xhci, "WARN: endpoints can't handle " "more than one stream.\n"); xhci_free_command(xhci, config_cmd); spin_unlock_irqrestore(&xhci->lock, flags); return -EINVAL; } vdev = xhci->devs[udev->slot_id]; /* Mark each endpoint as being in transition, so * xhci_urb_enqueue() will reject all URBs. */ for (i = 0; i < num_eps; i++) { ep_index = xhci_get_endpoint_index(&eps[i]->desc); vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS; } spin_unlock_irqrestore(&xhci->lock, flags); /* Setup internal data structures and allocate HW data structures for * streams (but don't install the HW structures in the input context * until we're sure all memory allocation succeeded). */ xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs); xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n", num_stream_ctxs, num_streams); for (i = 0; i < num_eps; i++) { ep_index = xhci_get_endpoint_index(&eps[i]->desc); vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci, num_stream_ctxs, num_streams, mem_flags); if (!vdev->eps[ep_index].stream_info) goto cleanup; /* Set maxPstreams in endpoint context and update deq ptr to * point to stream context array. FIXME */ } /* Set up the input context for a configure endpoint command. */ for (i = 0; i < num_eps; i++) { struct xhci_ep_ctx *ep_ctx; ep_index = xhci_get_endpoint_index(&eps[i]->desc); ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index); xhci_endpoint_copy(xhci, config_cmd->in_ctx, vdev->out_ctx, ep_index); xhci_setup_streams_ep_input_ctx(xhci, ep_ctx, vdev->eps[ep_index].stream_info); } /* Tell the HW to drop its old copy of the endpoint context info * and add the updated copy from the input context. */ xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx, vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); /* Issue and wait for the configure endpoint command */ ret = xhci_configure_endpoint(xhci, udev, config_cmd, false, false); /* xHC rejected the configure endpoint command for some reason, so we * leave the old ring intact and free our internal streams data * structure. */ if (ret < 0) goto cleanup; spin_lock_irqsave(&xhci->lock, flags); for (i = 0; i < num_eps; i++) { ep_index = xhci_get_endpoint_index(&eps[i]->desc); vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n", udev->slot_id, ep_index); vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS; } xhci_free_command(xhci, config_cmd); spin_unlock_irqrestore(&xhci->lock, flags); /* Subtract 1 for stream 0, which drivers can't use */ return num_streams - 1; cleanup: /* If it didn't work, free the streams! */ for (i = 0; i < num_eps; i++) { ep_index = xhci_get_endpoint_index(&eps[i]->desc); xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); vdev->eps[ep_index].stream_info = NULL; /* FIXME Unset maxPstreams in endpoint context and * update deq ptr to point to normal string ring. */ vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS; vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; xhci_endpoint_zero(xhci, vdev, eps[i]); } xhci_free_command(xhci, config_cmd); return -ENOMEM; } /* Transition the endpoint from using streams to being a "normal" endpoint * without streams. * * Modify the endpoint context state, submit a configure endpoint command, * and free all endpoint rings for streams if that completes successfully. */ int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint **eps, unsigned int num_eps, gfp_t mem_flags) { int i, ret; struct xhci_hcd *xhci; struct xhci_virt_device *vdev; struct xhci_command *command; unsigned int ep_index; unsigned long flags; u32 changed_ep_bitmask; xhci = hcd_to_xhci(hcd); vdev = xhci->devs[udev->slot_id]; /* Set up a configure endpoint command to remove the streams rings */ spin_lock_irqsave(&xhci->lock, flags); changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci, udev, eps, num_eps); if (changed_ep_bitmask == 0) { spin_unlock_irqrestore(&xhci->lock, flags); return -EINVAL; } /* Use the xhci_command structure from the first endpoint. We may have * allocated too many, but the driver may call xhci_free_streams() for * each endpoint it grouped into one call to xhci_alloc_streams(). */ ep_index = xhci_get_endpoint_index(&eps[0]->desc); command = vdev->eps[ep_index].stream_info->free_streams_command; for (i = 0; i < num_eps; i++) { struct xhci_ep_ctx *ep_ctx; ep_index = xhci_get_endpoint_index(&eps[i]->desc); ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index); xhci->devs[udev->slot_id]->eps[ep_index].ep_state |= EP_GETTING_NO_STREAMS; xhci_endpoint_copy(xhci, command->in_ctx, vdev->out_ctx, ep_index); xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx, &vdev->eps[ep_index]); } xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx, vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask); spin_unlock_irqrestore(&xhci->lock, flags); /* Issue and wait for the configure endpoint command, * which must succeed. */ ret = xhci_configure_endpoint(xhci, udev, command, false, true); /* xHC rejected the configure endpoint command for some reason, so we * leave the streams rings intact. */ if (ret < 0) return ret; spin_lock_irqsave(&xhci->lock, flags); for (i = 0; i < num_eps; i++) { ep_index = xhci_get_endpoint_index(&eps[i]->desc); xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info); vdev->eps[ep_index].stream_info = NULL; /* FIXME Unset maxPstreams in endpoint context and * update deq ptr to point to normal string ring. */ vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS; vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS; } spin_unlock_irqrestore(&xhci->lock, flags); return 0; } /* * This submits a Reset Device Command, which will set the device state to 0, * set the device address to 0, and disable all the endpoints except the default * control endpoint. The USB core should come back and call * xhci_address_device(), and then re-set up the configuration. If this is * called because of a usb_reset_and_verify_device(), then the old alternate * settings will be re-installed through the normal bandwidth allocation * functions. * * Wait for the Reset Device command to finish. Remove all structures * associated with the endpoints that were disabled. Clear the input device * structure? Cache the rings? Reset the control endpoint 0 max packet size? * * If the virt_dev to be reset does not exist or does not match the udev, * it means the device is lost, possibly due to the xHC restore error and * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to * re-allocate the device. */ int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) { int ret, i; unsigned long flags; struct xhci_hcd *xhci; unsigned int slot_id; struct xhci_virt_device *virt_dev; struct xhci_command *reset_device_cmd; int timeleft; int last_freed_endpoint; ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__); if (ret <= 0) return ret; xhci = hcd_to_xhci(hcd); slot_id = udev->slot_id; virt_dev = xhci->devs[slot_id]; if (!virt_dev) { xhci_dbg(xhci, "The device to be reset with slot ID %u does " "not exist. Re-allocate the device\n", slot_id); ret = xhci_alloc_dev(hcd, udev); if (ret == 1) return 0; else return -EINVAL; } if (virt_dev->udev != udev) { /* If the virt_dev and the udev does not match, this virt_dev * may belong to another udev. * Re-allocate the device. */ xhci_dbg(xhci, "The device to be reset with slot ID %u does " "not match the udev. Re-allocate the device\n", slot_id); ret = xhci_alloc_dev(hcd, udev); if (ret == 1) return 0; else return -EINVAL; } xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id); /* Allocate the command structure that holds the struct completion. * Assume we're in process context, since the normal device reset * process has to wait for the device anyway. Storage devices are * reset as part of error handling, so use GFP_NOIO instead of * GFP_KERNEL. */ reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO); if (!reset_device_cmd) { xhci_dbg(xhci, "Couldn't allocate command structure.\n"); return -ENOMEM; } /* Attempt to submit the Reset Device command to the command ring */ spin_lock_irqsave(&xhci->lock, flags); reset_device_cmd->command_trb = xhci->cmd_ring->enqueue; /* Enqueue pointer can be left pointing to the link TRB, * we must handle that */ if ((le32_to_cpu(reset_device_cmd->command_trb->link.control) & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK)) reset_device_cmd->command_trb = xhci->cmd_ring->enq_seg->next->trbs; list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list); ret = xhci_queue_reset_device(xhci, slot_id); if (ret) { xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); list_del(&reset_device_cmd->cmd_list); spin_unlock_irqrestore(&xhci->lock, flags); goto command_cleanup; } xhci_ring_cmd_db(xhci); spin_unlock_irqrestore(&xhci->lock, flags); /* Wait for the Reset Device command to finish */ timeleft = wait_for_completion_interruptible_timeout( reset_device_cmd->completion, USB_CTRL_SET_TIMEOUT); if (timeleft <= 0) { xhci_warn(xhci, "%s while waiting for reset device command\n", timeleft == 0 ? "Timeout" : "Signal"); spin_lock_irqsave(&xhci->lock, flags); /* The timeout might have raced with the event ring handler, so * only delete from the list if the item isn't poisoned. */ if (reset_device_cmd->cmd_list.next != LIST_POISON1) list_del(&reset_device_cmd->cmd_list); spin_unlock_irqrestore(&xhci->lock, flags); ret = -ETIME; goto command_cleanup; } /* The Reset Device command can't fail, according to the 0.95/0.96 spec, * unless we tried to reset a slot ID that wasn't enabled, * or the device wasn't in the addressed or configured state. */ ret = reset_device_cmd->status; switch (ret) { case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */ case COMP_CTX_STATE: /* 0.96 completion code for same thing */ xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n", slot_id, xhci_get_slot_state(xhci, virt_dev->out_ctx)); xhci_info(xhci, "Not freeing device rings.\n"); /* Don't treat this as an error. May change my mind later. */ ret = 0; goto command_cleanup; case COMP_SUCCESS: xhci_dbg(xhci, "Successful reset device command.\n"); break; default: if (xhci_is_vendor_info_code(xhci, ret)) break; xhci_warn(xhci, "Unknown completion code %u for " "reset device command.\n", ret); ret = -EINVAL; goto command_cleanup; } /* Everything but endpoint 0 is disabled, so free or cache the rings. */ last_freed_endpoint = 1; for (i = 1; i < 31; ++i) { struct xhci_virt_ep *ep = &virt_dev->eps[i]; if (ep->ep_state & EP_HAS_STREAMS) { xhci_free_stream_info(xhci, ep->stream_info); ep->stream_info = NULL; ep->ep_state &= ~EP_HAS_STREAMS; } if (ep->ring) { xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i); last_freed_endpoint = i; } } xhci_dbg(xhci, "Output context after successful reset device cmd:\n"); xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint); ret = 0; command_cleanup: xhci_free_command(xhci, reset_device_cmd); return ret; } /* * At this point, the struct usb_device is about to go away, the device has * disconnected, and all traffic has been stopped and the endpoints have been * disabled. Free any HC data structures associated with that device. */ void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct xhci_virt_device *virt_dev; unsigned long flags; u32 state; int i, ret; ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__); if (ret <= 0) return; virt_dev = xhci->devs[udev->slot_id]; /* Stop any wayward timer functions (which may grab the lock) */ for (i = 0; i < 31; ++i) { virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING; del_timer_sync(&virt_dev->eps[i].stop_cmd_timer); } spin_lock_irqsave(&xhci->lock, flags); /* Don't disable the slot if the host controller is dead. */ state = xhci_readl(xhci, &xhci->op_regs->status); if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) { xhci_free_virt_device(xhci, udev->slot_id); spin_unlock_irqrestore(&xhci->lock, flags); return; } if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { spin_unlock_irqrestore(&xhci->lock, flags); xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); return; } xhci_ring_cmd_db(xhci); spin_unlock_irqrestore(&xhci->lock, flags); /* * Event command completion handler will free any data structures * associated with the slot. XXX Can free sleep? */ } /* * Returns 0 if the xHC ran out of device slots, the Enable Slot command * timed out, or allocating memory failed. Returns 1 on success. */ int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); unsigned long flags; int timeleft; int ret; spin_lock_irqsave(&xhci->lock, flags); ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); if (ret) { spin_unlock_irqrestore(&xhci->lock, flags); xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); return 0; } xhci_ring_cmd_db(xhci); spin_unlock_irqrestore(&xhci->lock, flags); /* XXX: how much time for xHC slot assignment? */ timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, USB_CTRL_SET_TIMEOUT); if (timeleft <= 0) { xhci_warn(xhci, "%s while waiting for a slot\n", timeleft == 0 ? "Timeout" : "Signal"); /* FIXME cancel the enable slot request */ return 0; } if (!xhci->slot_id) { xhci_err(xhci, "Error while assigning device slot ID\n"); return 0; } /* xhci_alloc_virt_device() does not touch rings; no need to lock. * Use GFP_NOIO, since this function can be called from * xhci_discover_or_reset_device(), which may be called as part of * mass storage driver error handling. */ if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) { /* Disable slot, if we can do it without mem alloc */ xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); spin_lock_irqsave(&xhci->lock, flags); if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) xhci_ring_cmd_db(xhci); spin_unlock_irqrestore(&xhci->lock, flags); return 0; } udev->slot_id = xhci->slot_id; /* Is this a LS or FS device under a HS hub? */ /* Hub or peripherial? */ return 1; } /* * Issue an Address Device command (which will issue a SetAddress request to * the device). * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so * we should only issue and wait on one address command at the same time. * * We add one to the device address issued by the hardware because the USB core * uses address 1 for the root hubs (even though they're not really devices). */ int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) { unsigned long flags; int timeleft; struct xhci_virt_device *virt_dev; int ret = 0; struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct xhci_slot_ctx *slot_ctx; struct xhci_input_control_ctx *ctrl_ctx; u64 temp_64; if (!udev->slot_id) { xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id); return -EINVAL; } virt_dev = xhci->devs[udev->slot_id]; if (WARN_ON(!virt_dev)) { /* * In plug/unplug torture test with an NEC controller, * a zero-dereference was observed once due to virt_dev = 0. * Print useful debug rather than crash if it is observed again! */ xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n", udev->slot_id); return -EINVAL; } slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); /* * If this is the first Set Address since device plug-in or * virt_device realloaction after a resume with an xHCI power loss, * then set up the slot context. */ if (!slot_ctx->dev_info) xhci_setup_addressable_virt_dev(xhci, udev); /* Otherwise, update the control endpoint ring enqueue pointer. */ else xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev); xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); spin_lock_irqsave(&xhci->lock, flags); ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, udev->slot_id); if (ret) { spin_unlock_irqrestore(&xhci->lock, flags); xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); return ret; } xhci_ring_cmd_db(xhci); spin_unlock_irqrestore(&xhci->lock, flags); /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, USB_CTRL_SET_TIMEOUT); /* FIXME: From section 4.3.4: "Software shall be responsible for timing * the SetAddress() "recovery interval" required by USB and aborting the * command on a timeout. */ if (timeleft <= 0) { xhci_warn(xhci, "%s while waiting for a slot\n", timeleft == 0 ? "Timeout" : "Signal"); /* FIXME cancel the address device command */ return -ETIME; } switch (virt_dev->cmd_status) { case COMP_CTX_STATE: case COMP_EBADSLT: xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", udev->slot_id); ret = -EINVAL; break; case COMP_TX_ERR: dev_warn(&udev->dev, "Device not responding to set address.\n"); ret = -EPROTO; break; case COMP_SUCCESS: xhci_dbg(xhci, "Successful Address Device command\n"); break; default: xhci_err(xhci, "ERROR: unexpected command completion " "code 0x%x.\n", virt_dev->cmd_status); xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); ret = -EINVAL; break; } if (ret) { return ret; } temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64); xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n", udev->slot_id, &xhci->dcbaa->dev_context_ptrs[udev->slot_id], (unsigned long long) le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id])); xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", (unsigned long long)virt_dev->out_ctx->dma); xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); /* * USB core uses address 1 for the roothubs, so we add one to the * address given back to us by the HC. */ slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); /* Use kernel assigned address for devices; store xHC assigned * address locally. */ virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK) + 1; /* Zero the input context control for later use */ ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); ctrl_ctx->add_flags = 0; ctrl_ctx->drop_flags = 0; xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address); return 0; } /* Once a hub descriptor is fetched for a device, we need to update the xHC's * internal data structures for the device. */ int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, struct usb_tt *tt, gfp_t mem_flags) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct xhci_virt_device *vdev; struct xhci_command *config_cmd; struct xhci_input_control_ctx *ctrl_ctx; struct xhci_slot_ctx *slot_ctx; unsigned long flags; unsigned think_time; int ret; /* Ignore root hubs */ if (!hdev->parent) return 0; vdev = xhci->devs[hdev->slot_id]; if (!vdev) { xhci_warn(xhci, "Cannot update hub desc for unknown device.\n"); return -EINVAL; } config_cmd = xhci_alloc_command(xhci, true, true, mem_flags); if (!config_cmd) { xhci_dbg(xhci, "Could not allocate xHCI command structure.\n"); return -ENOMEM; } spin_lock_irqsave(&xhci->lock, flags); xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); if (tt->multi) slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); if (xhci->hci_version > 0x95) { xhci_dbg(xhci, "xHCI version %x needs hub " "TT think time and number of ports\n", (unsigned int) xhci->hci_version); slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild)); /* Set TT think time - convert from ns to FS bit times. * 0 = 8 FS bit times, 1 = 16 FS bit times, * 2 = 24 FS bit times, 3 = 32 FS bit times. */ think_time = tt->think_time; if (think_time != 0) think_time = (think_time / 666) - 1; slot_ctx->tt_info |= cpu_to_le32(TT_THINK_TIME(think_time)); } else { xhci_dbg(xhci, "xHCI version %x doesn't need hub " "TT think time or number of ports\n", (unsigned int) xhci->hci_version); } slot_ctx->dev_state = 0; spin_unlock_irqrestore(&xhci->lock, flags); xhci_dbg(xhci, "Set up %s for hub device.\n", (xhci->hci_version > 0x95) ? "configure endpoint" : "evaluate context"); xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id); xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0); /* Issue and wait for the configure endpoint or * evaluate context command. */ if (xhci->hci_version > 0x95) ret = xhci_configure_endpoint(xhci, hdev, config_cmd, false, false); else ret = xhci_configure_endpoint(xhci, hdev, config_cmd, true, false); xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id); xhci_dbg_ctx(xhci, vdev->out_ctx, 0); xhci_free_command(xhci, config_cmd); return ret; } int xhci_get_frame(struct usb_hcd *hcd) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); /* EHCI mods by the periodic size. Why? */ return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; } MODULE_DESCRIPTION(DRIVER_DESC); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_LICENSE("GPL"); static int __init xhci_hcd_init(void) { #ifdef CONFIG_PCI int retval = 0; retval = xhci_register_pci(); if (retval < 0) { printk(KERN_DEBUG "Problem registering PCI driver."); return retval; } #endif /* * Check the compiler generated sizes of structures that must be laid * out in specific ways for hardware access. */ BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); /* xhci_device_control has eight fields, and also * embeds one xhci_slot_ctx and 31 xhci_ep_ctx */ BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); return 0; } module_init(xhci_hcd_init); static void __exit xhci_hcd_cleanup(void) { #ifdef CONFIG_PCI xhci_unregister_pci(); #endif } module_exit(xhci_hcd_cleanup);