/* * linux/fs/ext4/crypto_key.c * * Copyright (C) 2015, Google, Inc. * * This contains encryption key functions for ext4 * * Written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar, 2015. */ #include #include #include #include #include #include "ext4.h" #include "ext4_ice.h" #include "xattr.h" static void derive_crypt_complete(struct crypto_async_request *req, int rc) { struct ext4_completion_result *ecr = req->data; if (rc == -EINPROGRESS) return; ecr->res = rc; complete(&ecr->completion); } /** * ext4_derive_key_v1() - Derive a key using AES-128-ECB * @deriving_key: Encryption key used for derivation. * @source_key: Source key to which to apply derivation. * @derived_key: Derived key. * * Return: 0 on success, -errno on failure */ static int ext4_derive_key_v1(const char deriving_key[EXT4_AES_128_ECB_KEY_SIZE], const char source_key[EXT4_AES_256_XTS_KEY_SIZE], char derived_key[EXT4_AES_256_XTS_KEY_SIZE]) { int res = 0; struct ablkcipher_request *req = NULL; DECLARE_EXT4_COMPLETION_RESULT(ecr); struct scatterlist src_sg, dst_sg; struct crypto_ablkcipher *tfm = crypto_alloc_ablkcipher("ecb(aes)", 0, 0); if (IS_ERR(tfm)) { res = PTR_ERR(tfm); tfm = NULL; goto out; } crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY); req = ablkcipher_request_alloc(tfm, GFP_NOFS); if (!req) { res = -ENOMEM; goto out; } ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, derive_crypt_complete, &ecr); res = crypto_ablkcipher_setkey(tfm, deriving_key, EXT4_AES_128_ECB_KEY_SIZE); if (res < 0) goto out; sg_init_one(&src_sg, source_key, EXT4_AES_256_XTS_KEY_SIZE); sg_init_one(&dst_sg, derived_key, EXT4_AES_256_XTS_KEY_SIZE); ablkcipher_request_set_crypt(req, &src_sg, &dst_sg, EXT4_AES_256_XTS_KEY_SIZE, NULL); res = crypto_ablkcipher_encrypt(req); if (res == -EINPROGRESS || res == -EBUSY) { wait_for_completion(&ecr.completion); res = ecr.res; } out: if (req) ablkcipher_request_free(req); if (tfm) crypto_free_ablkcipher(tfm); return res; } /** * ext4_derive_key_v2() - Derive a key non-reversibly * @nonce: the nonce associated with the file * @master_key: the master key referenced by the file * @derived_key: (output) the resulting derived key * * This function computes the following: * derived_key[0:127] = AES-256-ENCRYPT(master_key[0:255], nonce) * derived_key[128:255] = AES-256-ENCRYPT(master_key[0:255], nonce ^ 0x01) * derived_key[256:383] = AES-256-ENCRYPT(master_key[256:511], nonce) * derived_key[384:511] = AES-256-ENCRYPT(master_key[256:511], nonce ^ 0x01) * * 'nonce ^ 0x01' denotes flipping the low order bit of the last byte. * * Unlike the v1 algorithm, the v2 algorithm is "non-reversible", meaning that * compromising a derived key does not also compromise the master key. * * Return: 0 on success, -errno on failure */ static int ext4_derive_key_v2(const char nonce[EXT4_KEY_DERIVATION_NONCE_SIZE], const char master_key[EXT4_MAX_KEY_SIZE], char derived_key[EXT4_MAX_KEY_SIZE]) { const int noncelen = EXT4_KEY_DERIVATION_NONCE_SIZE; struct crypto_cipher *tfm; int err; int i; /* * Since we only use each transform for a small number of encryptions, * requesting just "aes" turns out to be significantly faster than * "ecb(aes)", by about a factor of two. */ tfm = crypto_alloc_cipher("aes", 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); BUILD_BUG_ON(4 * EXT4_KEY_DERIVATION_NONCE_SIZE != EXT4_MAX_KEY_SIZE); BUILD_BUG_ON(2 * EXT4_AES_256_ECB_KEY_SIZE != EXT4_MAX_KEY_SIZE); for (i = 0; i < 2; i++) { memcpy(derived_key, nonce, noncelen); memcpy(derived_key + noncelen, nonce, noncelen); derived_key[2 * noncelen - 1] ^= 0x01; err = crypto_cipher_setkey(tfm, master_key, EXT4_AES_256_ECB_KEY_SIZE); if (err) break; crypto_cipher_encrypt_one(tfm, derived_key, derived_key); crypto_cipher_encrypt_one(tfm, derived_key + noncelen, derived_key + noncelen); master_key += EXT4_AES_256_ECB_KEY_SIZE; derived_key += 2 * noncelen; } crypto_free_cipher(tfm); return err; } /** * ext4_derive_key() - Derive a per-file key from a nonce and master key * @ctx: the encryption context associated with the file * @master_key: the master key referenced by the file * @derived_key: (output) the resulting derived key * * Return: 0 on success, -errno on failure */ static int ext4_derive_key(const struct ext4_encryption_context *ctx, const char master_key[EXT4_MAX_KEY_SIZE], char derived_key[EXT4_MAX_KEY_SIZE]) { BUILD_BUG_ON(EXT4_AES_128_ECB_KEY_SIZE != EXT4_KEY_DERIVATION_NONCE_SIZE); BUILD_BUG_ON(EXT4_AES_256_XTS_KEY_SIZE != EXT4_MAX_KEY_SIZE); /* * Although the key derivation algorithm is logically independent of the * choice of encryption modes, in this kernel it is bundled with HEH * encryption of filenames, which is another crypto improvement that * requires an on-disk format change and requires userspace to specify * different encryption policies. */ if (ctx->filenames_encryption_mode == EXT4_ENCRYPTION_MODE_AES_256_HEH) return ext4_derive_key_v2(ctx->nonce, master_key, derived_key); else return ext4_derive_key_v1(ctx->nonce, master_key, derived_key); } void ext4_free_crypt_info(struct ext4_crypt_info *ci) { if (!ci) return; if (ci->ci_keyring_key) key_put(ci->ci_keyring_key); crypto_free_ablkcipher(ci->ci_ctfm); kmem_cache_free(ext4_crypt_info_cachep, ci); } void ext4_free_encryption_info(struct inode *inode, struct ext4_crypt_info *ci) { struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_crypt_info *prev; if (ci == NULL) ci = ACCESS_ONCE(ei->i_crypt_info); if (ci == NULL) return; prev = cmpxchg(&ei->i_crypt_info, ci, NULL); if (prev != ci) return; ext4_free_crypt_info(ci); } static int ext4_default_data_encryption_mode(void) { return ext4_is_ice_enabled() ? EXT4_ENCRYPTION_MODE_PRIVATE : EXT4_ENCRYPTION_MODE_AES_256_XTS; } int _ext4_get_encryption_info(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_crypt_info *crypt_info; char full_key_descriptor[EXT4_KEY_DESC_PREFIX_SIZE + (EXT4_KEY_DESCRIPTOR_SIZE * 2) + 1]; struct key *keyring_key = NULL; struct ext4_encryption_key *master_key; struct ext4_encryption_context ctx; const struct user_key_payload *ukp; struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); struct crypto_ablkcipher *ctfm; const char *cipher_str; int for_fname = 0; int mode; int res; res = ext4_init_crypto(); if (res) return res; retry: crypt_info = ACCESS_ONCE(ei->i_crypt_info); if (crypt_info) { if (!crypt_info->ci_keyring_key || key_validate(crypt_info->ci_keyring_key) == 0) return 0; ext4_free_encryption_info(inode, crypt_info); goto retry; } res = ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, &ctx, sizeof(ctx)); if (res < 0) { if (!DUMMY_ENCRYPTION_ENABLED(sbi)) return res; ctx.contents_encryption_mode = ext4_default_data_encryption_mode(); ctx.filenames_encryption_mode = EXT4_ENCRYPTION_MODE_AES_256_CTS; ctx.flags = 0; } else if (res != sizeof(ctx)) return -EINVAL; res = 0; crypt_info = kmem_cache_alloc(ext4_crypt_info_cachep, GFP_KERNEL); if (!crypt_info) return -ENOMEM; crypt_info->ci_flags = ctx.flags; crypt_info->ci_data_mode = ctx.contents_encryption_mode; crypt_info->ci_filename_mode = ctx.filenames_encryption_mode; crypt_info->ci_ctfm = NULL; crypt_info->ci_keyring_key = NULL; memcpy(crypt_info->ci_master_key, ctx.master_key_descriptor, sizeof(crypt_info->ci_master_key)); if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) for_fname = 1; else if (!S_ISREG(inode->i_mode)) BUG(); mode = for_fname ? crypt_info->ci_filename_mode : crypt_info->ci_data_mode; switch (mode) { case EXT4_ENCRYPTION_MODE_AES_256_XTS: cipher_str = "xts(aes)"; break; case EXT4_ENCRYPTION_MODE_AES_256_CTS: cipher_str = "cts(cbc(aes))"; break; case EXT4_ENCRYPTION_MODE_PRIVATE: cipher_str = "bugon"; case EXT4_ENCRYPTION_MODE_AES_256_HEH: cipher_str = "heh(aes)"; break; case EXT4_ENCRYPTION_MODE_SPECK128_256_XTS: cipher_str = "xts(speck128)"; break; case EXT4_ENCRYPTION_MODE_SPECK128_256_CTS: cipher_str = "cts(cbc(speck128))"; break; default: printk_once(KERN_WARNING "ext4: unsupported key mode %d (ino %u)\n", mode, (unsigned) inode->i_ino); res = -ENOKEY; goto out; } if (DUMMY_ENCRYPTION_ENABLED(sbi)) { memset(crypt_info->ci_raw_key, 0x42, EXT4_AES_256_XTS_KEY_SIZE); goto got_key; } memcpy(full_key_descriptor, EXT4_KEY_DESC_PREFIX, EXT4_KEY_DESC_PREFIX_SIZE); sprintf(full_key_descriptor + EXT4_KEY_DESC_PREFIX_SIZE, "%*phN", EXT4_KEY_DESCRIPTOR_SIZE, ctx.master_key_descriptor); full_key_descriptor[EXT4_KEY_DESC_PREFIX_SIZE + (2 * EXT4_KEY_DESCRIPTOR_SIZE)] = '\0'; keyring_key = request_key(&key_type_logon, full_key_descriptor, NULL); if (IS_ERR(keyring_key)) { res = PTR_ERR(keyring_key); keyring_key = NULL; goto out; } crypt_info->ci_keyring_key = keyring_key; if (keyring_key->type != &key_type_logon) { printk_once(KERN_WARNING "ext4: key type must be logon\n"); res = -ENOKEY; goto out; } down_read(&keyring_key->sem); ukp = user_key_payload(keyring_key); if (!ukp) { /* key was revoked before we acquired its semaphore */ res = -EKEYREVOKED; up_read(&keyring_key->sem); goto out; } if (ukp->datalen != sizeof(struct ext4_encryption_key)) { res = -EINVAL; up_read(&keyring_key->sem); goto out; } master_key = (struct ext4_encryption_key *)ukp->data; BUILD_BUG_ON(EXT4_AES_128_ECB_KEY_SIZE != EXT4_KEY_DERIVATION_NONCE_SIZE); if (master_key->size != EXT4_AES_256_XTS_KEY_SIZE) { printk_once(KERN_WARNING "ext4: key size incorrect: %d\n", master_key->size); res = -ENOKEY; up_read(&keyring_key->sem); goto out; } res = ext4_derive_key(&ctx, master_key->raw, crypt_info->ci_raw_key); up_read(&keyring_key->sem); if (res) goto out; got_key: if (for_fname || (crypt_info->ci_data_mode != EXT4_ENCRYPTION_MODE_PRIVATE)) { ctfm = crypto_alloc_ablkcipher(cipher_str, 0, 0); if (!ctfm || IS_ERR(ctfm)) { res = ctfm ? PTR_ERR(ctfm) : -ENOMEM; pr_debug("%s: error %d (inode %u) allocating crypto tfm\n", __func__, res, (unsigned) inode->i_ino); goto out; } crypt_info->ci_ctfm = ctfm; crypto_ablkcipher_clear_flags(ctfm, ~0); crypto_tfm_set_flags(crypto_ablkcipher_tfm(ctfm), CRYPTO_TFM_REQ_WEAK_KEY); res = crypto_ablkcipher_setkey(ctfm, crypt_info->ci_raw_key, ext4_encryption_key_size(mode)); if (res) goto out; memzero_explicit(crypt_info->ci_raw_key, sizeof(crypt_info->ci_raw_key)); } else if (!ext4_is_ice_enabled()) { pr_warn("%s: ICE support not available\n", __func__); res = -EINVAL; goto out; } if (cmpxchg(&ei->i_crypt_info, NULL, crypt_info) != NULL) { ext4_free_crypt_info(crypt_info); goto retry; } return 0; out: if (res == -ENOKEY) res = 0; memzero_explicit(crypt_info->ci_raw_key, sizeof(crypt_info->ci_raw_key)); ext4_free_crypt_info(crypt_info); return res; } int ext4_has_encryption_key(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); return (ei->i_crypt_info != NULL); }