/* * linux/mm/swap.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ /* * This file contains the default values for the operation of the * Linux VM subsystem. Fine-tuning documentation can be found in * Documentation/sysctl/vm.txt. * Started 18.12.91 * Swap aging added 23.2.95, Stephen Tweedie. * Buffermem limits added 12.3.98, Rik van Riel. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #define CREATE_TRACE_POINTS #include /* How many pages do we try to swap or page in/out together? */ int page_cluster; static DEFINE_PER_CPU(struct pagevec, lru_add_pvec); static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs); /* * This path almost never happens for VM activity - pages are normally * freed via pagevecs. But it gets used by networking. */ static void __page_cache_release(struct page *page) { if (PageLRU(page)) { struct zone *zone = page_zone(page); struct lruvec *lruvec; unsigned long flags; spin_lock_irqsave(&zone->lru_lock, flags); lruvec = mem_cgroup_page_lruvec(page, zone); VM_BUG_ON_PAGE(!PageLRU(page), page); __ClearPageLRU(page); del_page_from_lru_list(page, lruvec, page_off_lru(page)); spin_unlock_irqrestore(&zone->lru_lock, flags); } mem_cgroup_uncharge(page); } static void __put_single_page(struct page *page) { __page_cache_release(page); free_hot_cold_page(page, false); } static void __put_compound_page(struct page *page) { compound_page_dtor *dtor; /* * __page_cache_release() is supposed to be called for thp, not for * hugetlb. This is because hugetlb page does never have PageLRU set * (it's never listed to any LRU lists) and no memcg routines should * be called for hugetlb (it has a separate hugetlb_cgroup.) */ if (!PageHuge(page)) __page_cache_release(page); dtor = get_compound_page_dtor(page); (*dtor)(page); } /** * Two special cases here: we could avoid taking compound_lock_irqsave * and could skip the tail refcounting(in _mapcount). * * 1. Hugetlbfs page: * * PageHeadHuge will remain true until the compound page * is released and enters the buddy allocator, and it could * not be split by __split_huge_page_refcount(). * * So if we see PageHeadHuge set, and we have the tail page pin, * then we could safely put head page. * * 2. Slab THP page: * * PG_slab is cleared before the slab frees the head page, and * tail pin cannot be the last reference left on the head page, * because the slab code is free to reuse the compound page * after a kfree/kmem_cache_free without having to check if * there's any tail pin left. In turn all tail pinsmust be always * released while the head is still pinned by the slab code * and so we know PG_slab will be still set too. * * So if we see PageSlab set, and we have the tail page pin, * then we could safely put head page. */ static __always_inline void put_unrefcounted_compound_page(struct page *page_head, struct page *page) { /* * If @page is a THP tail, we must read the tail page * flags after the head page flags. The * __split_huge_page_refcount side enforces write memory barriers * between clearing PageTail and before the head page * can be freed and reallocated. */ smp_rmb(); if (likely(PageTail(page))) { /* * __split_huge_page_refcount cannot race * here, see the comment above this function. */ VM_BUG_ON_PAGE(!PageHead(page_head), page_head); if (put_page_testzero(page_head)) { /* * If this is the tail of a slab THP page, * the tail pin must not be the last reference * held on the page, because the PG_slab cannot * be cleared before all tail pins (which skips * the _mapcount tail refcounting) have been * released. * * If this is the tail of a hugetlbfs page, * the tail pin may be the last reference on * the page instead, because PageHeadHuge will * not go away until the compound page enters * the buddy allocator. */ VM_BUG_ON_PAGE(PageSlab(page_head), page_head); __put_compound_page(page_head); } } else /* * __split_huge_page_refcount run before us, * @page was a THP tail. The split @page_head * has been freed and reallocated as slab or * hugetlbfs page of smaller order (only * possible if reallocated as slab on x86). */ if (put_page_testzero(page)) __put_single_page(page); } static __always_inline void put_refcounted_compound_page(struct page *page_head, struct page *page) { if (likely(page != page_head && get_page_unless_zero(page_head))) { unsigned long flags; /* * @page_head wasn't a dangling pointer but it may not * be a head page anymore by the time we obtain the * lock. That is ok as long as it can't be freed from * under us. */ flags = compound_lock_irqsave(page_head); if (unlikely(!PageTail(page))) { /* __split_huge_page_refcount run before us */ compound_unlock_irqrestore(page_head, flags); if (put_page_testzero(page_head)) { /* * The @page_head may have been freed * and reallocated as a compound page * of smaller order and then freed * again. All we know is that it * cannot have become: a THP page, a * compound page of higher order, a * tail page. That is because we * still hold the refcount of the * split THP tail and page_head was * the THP head before the split. */ if (PageHead(page_head)) __put_compound_page(page_head); else __put_single_page(page_head); } out_put_single: if (put_page_testzero(page)) __put_single_page(page); return; } VM_BUG_ON_PAGE(page_head != compound_head(page), page); /* * We can release the refcount taken by * get_page_unless_zero() now that * __split_huge_page_refcount() is blocked on the * compound_lock. */ if (put_page_testzero(page_head)) VM_BUG_ON_PAGE(1, page_head); /* __split_huge_page_refcount will wait now */ VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page); atomic_dec(&page->_mapcount); VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head); VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); compound_unlock_irqrestore(page_head, flags); if (put_page_testzero(page_head)) { if (PageHead(page_head)) __put_compound_page(page_head); else __put_single_page(page_head); } } else { /* @page_head is a dangling pointer */ VM_BUG_ON_PAGE(PageTail(page), page); goto out_put_single; } } static void put_compound_page(struct page *page) { struct page *page_head; /* * We see the PageCompound set and PageTail not set, so @page maybe: * 1. hugetlbfs head page, or * 2. THP head page. */ if (likely(!PageTail(page))) { if (put_page_testzero(page)) { /* * By the time all refcounts have been released * split_huge_page cannot run anymore from under us. */ if (PageHead(page)) __put_compound_page(page); else __put_single_page(page); } return; } /* * We see the PageCompound set and PageTail set, so @page maybe: * 1. a tail hugetlbfs page, or * 2. a tail THP page, or * 3. a split THP page. * * Case 3 is possible, as we may race with * __split_huge_page_refcount tearing down a THP page. */ page_head = compound_head(page); if (!__compound_tail_refcounted(page_head)) put_unrefcounted_compound_page(page_head, page); else put_refcounted_compound_page(page_head, page); } void put_page(struct page *page) { if (unlikely(PageCompound(page))) put_compound_page(page); else if (put_page_testzero(page)) __put_single_page(page); } EXPORT_SYMBOL(put_page); /* * This function is exported but must not be called by anything other * than get_page(). It implements the slow path of get_page(). */ bool __get_page_tail(struct page *page) { /* * This takes care of get_page() if run on a tail page * returned by one of the get_user_pages/follow_page variants. * get_user_pages/follow_page itself doesn't need the compound * lock because it runs __get_page_tail_foll() under the * proper PT lock that already serializes against * split_huge_page(). */ unsigned long flags; bool got; struct page *page_head = compound_head(page); /* Ref to put_compound_page() comment. */ if (!__compound_tail_refcounted(page_head)) { smp_rmb(); if (likely(PageTail(page))) { /* * This is a hugetlbfs page or a slab * page. __split_huge_page_refcount * cannot race here. */ VM_BUG_ON_PAGE(!PageHead(page_head), page_head); __get_page_tail_foll(page, true); return true; } else { /* * __split_huge_page_refcount run * before us, "page" was a THP * tail. The split page_head has been * freed and reallocated as slab or * hugetlbfs page of smaller order * (only possible if reallocated as * slab on x86). */ return false; } } got = false; if (likely(page != page_head && get_page_unless_zero(page_head))) { /* * page_head wasn't a dangling pointer but it * may not be a head page anymore by the time * we obtain the lock. That is ok as long as it * can't be freed from under us. */ flags = compound_lock_irqsave(page_head); /* here __split_huge_page_refcount won't run anymore */ if (likely(PageTail(page))) { __get_page_tail_foll(page, false); got = true; } compound_unlock_irqrestore(page_head, flags); if (unlikely(!got)) put_page(page_head); } return got; } EXPORT_SYMBOL(__get_page_tail); /** * put_pages_list() - release a list of pages * @pages: list of pages threaded on page->lru * * Release a list of pages which are strung together on page.lru. Currently * used by read_cache_pages() and related error recovery code. */ void put_pages_list(struct list_head *pages) { while (!list_empty(pages)) { struct page *victim; victim = list_entry(pages->prev, struct page, lru); list_del(&victim->lru); page_cache_release(victim); } } EXPORT_SYMBOL(put_pages_list); /* * get_kernel_pages() - pin kernel pages in memory * @kiov: An array of struct kvec structures * @nr_segs: number of segments to pin * @write: pinning for read/write, currently ignored * @pages: array that receives pointers to the pages pinned. * Should be at least nr_segs long. * * Returns number of pages pinned. This may be fewer than the number * requested. If nr_pages is 0 or negative, returns 0. If no pages * were pinned, returns -errno. Each page returned must be released * with a put_page() call when it is finished with. */ int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, struct page **pages) { int seg; for (seg = 0; seg < nr_segs; seg++) { if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) return seg; pages[seg] = kmap_to_page(kiov[seg].iov_base); page_cache_get(pages[seg]); } return seg; } EXPORT_SYMBOL_GPL(get_kernel_pages); /* * get_kernel_page() - pin a kernel page in memory * @start: starting kernel address * @write: pinning for read/write, currently ignored * @pages: array that receives pointer to the page pinned. * Must be at least nr_segs long. * * Returns 1 if page is pinned. If the page was not pinned, returns * -errno. The page returned must be released with a put_page() call * when it is finished with. */ int get_kernel_page(unsigned long start, int write, struct page **pages) { const struct kvec kiov = { .iov_base = (void *)start, .iov_len = PAGE_SIZE }; return get_kernel_pages(&kiov, 1, write, pages); } EXPORT_SYMBOL_GPL(get_kernel_page); static void pagevec_lru_move_fn(struct pagevec *pvec, void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), void *arg) { int i; struct zone *zone = NULL; struct lruvec *lruvec; unsigned long flags = 0; for (i = 0; i < pagevec_count(pvec); i++) { struct page *page = pvec->pages[i]; struct zone *pagezone = page_zone(page); if (pagezone != zone) { if (zone) spin_unlock_irqrestore(&zone->lru_lock, flags); zone = pagezone; spin_lock_irqsave(&zone->lru_lock, flags); } lruvec = mem_cgroup_page_lruvec(page, zone); (*move_fn)(page, lruvec, arg); } if (zone) spin_unlock_irqrestore(&zone->lru_lock, flags); release_pages(pvec->pages, pvec->nr, pvec->cold); pagevec_reinit(pvec); } static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, void *arg) { int *pgmoved = arg; if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { enum lru_list lru = page_lru_base_type(page); list_move_tail(&page->lru, &lruvec->lists[lru]); (*pgmoved)++; } } /* * pagevec_move_tail() must be called with IRQ disabled. * Otherwise this may cause nasty races. */ static void pagevec_move_tail(struct pagevec *pvec) { int pgmoved = 0; pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); __count_vm_events(PGROTATED, pgmoved); } /* * Writeback is about to end against a page which has been marked for immediate * reclaim. If it still appears to be reclaimable, move it to the tail of the * inactive list. */ void rotate_reclaimable_page(struct page *page) { if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && !PageUnevictable(page) && PageLRU(page)) { struct pagevec *pvec; unsigned long flags; page_cache_get(page); local_irq_save(flags); pvec = this_cpu_ptr(&lru_rotate_pvecs); if (!pagevec_add(pvec, page)) pagevec_move_tail(pvec); local_irq_restore(flags); } } static void update_page_reclaim_stat(struct lruvec *lruvec, int file, int rotated) { struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; reclaim_stat->recent_scanned[file]++; if (rotated) reclaim_stat->recent_rotated[file]++; } static void __activate_page(struct page *page, struct lruvec *lruvec, void *arg) { if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { int file = page_is_file_cache(page); int lru = page_lru_base_type(page); del_page_from_lru_list(page, lruvec, lru); SetPageActive(page); lru += LRU_ACTIVE; add_page_to_lru_list(page, lruvec, lru); trace_mm_lru_activate(page); __count_vm_event(PGACTIVATE); update_page_reclaim_stat(lruvec, file, 1); } } #ifdef CONFIG_SMP static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); static void activate_page_drain(int cpu) { struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); if (pagevec_count(pvec)) pagevec_lru_move_fn(pvec, __activate_page, NULL); } static bool need_activate_page_drain(int cpu) { return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0; } void activate_page(struct page *page) { if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); page_cache_get(page); if (!pagevec_add(pvec, page)) pagevec_lru_move_fn(pvec, __activate_page, NULL); put_cpu_var(activate_page_pvecs); } } #else static inline void activate_page_drain(int cpu) { } static bool need_activate_page_drain(int cpu) { return false; } void activate_page(struct page *page) { struct zone *zone = page_zone(page); spin_lock_irq(&zone->lru_lock); __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL); spin_unlock_irq(&zone->lru_lock); } #endif static void __lru_cache_activate_page(struct page *page) { struct pagevec *pvec = &get_cpu_var(lru_add_pvec); int i; /* * Search backwards on the optimistic assumption that the page being * activated has just been added to this pagevec. Note that only * the local pagevec is examined as a !PageLRU page could be in the * process of being released, reclaimed, migrated or on a remote * pagevec that is currently being drained. Furthermore, marking * a remote pagevec's page PageActive potentially hits a race where * a page is marked PageActive just after it is added to the inactive * list causing accounting errors and BUG_ON checks to trigger. */ for (i = pagevec_count(pvec) - 1; i >= 0; i--) { struct page *pagevec_page = pvec->pages[i]; if (pagevec_page == page) { SetPageActive(page); break; } } put_cpu_var(lru_add_pvec); } /* * Mark a page as having seen activity. * * inactive,unreferenced -> inactive,referenced * inactive,referenced -> active,unreferenced * active,unreferenced -> active,referenced * * When a newly allocated page is not yet visible, so safe for non-atomic ops, * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). */ void mark_page_accessed(struct page *page) { if (!PageActive(page) && !PageUnevictable(page) && PageReferenced(page)) { /* * If the page is on the LRU, queue it for activation via * activate_page_pvecs. Otherwise, assume the page is on a * pagevec, mark it active and it'll be moved to the active * LRU on the next drain. */ if (PageLRU(page)) activate_page(page); else __lru_cache_activate_page(page); ClearPageReferenced(page); if (page_is_file_cache(page)) workingset_activation(page); } else if (!PageReferenced(page)) { SetPageReferenced(page); } if (page_is_idle(page)) clear_page_idle(page); } EXPORT_SYMBOL(mark_page_accessed); static void __lru_cache_add(struct page *page) { struct pagevec *pvec = &get_cpu_var(lru_add_pvec); page_cache_get(page); if (!pagevec_space(pvec)) __pagevec_lru_add(pvec); pagevec_add(pvec, page); put_cpu_var(lru_add_pvec); } /** * lru_cache_add: add a page to the page lists * @page: the page to add */ void lru_cache_add_anon(struct page *page) { if (PageActive(page)) ClearPageActive(page); __lru_cache_add(page); } void lru_cache_add_file(struct page *page) { if (PageActive(page)) ClearPageActive(page); __lru_cache_add(page); } EXPORT_SYMBOL(lru_cache_add_file); /** * lru_cache_add - add a page to a page list * @page: the page to be added to the LRU. * * Queue the page for addition to the LRU via pagevec. The decision on whether * to add the page to the [in]active [file|anon] list is deferred until the * pagevec is drained. This gives a chance for the caller of lru_cache_add() * have the page added to the active list using mark_page_accessed(). */ void lru_cache_add(struct page *page) { VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); VM_BUG_ON_PAGE(PageLRU(page), page); __lru_cache_add(page); } /** * add_page_to_unevictable_list - add a page to the unevictable list * @page: the page to be added to the unevictable list * * Add page directly to its zone's unevictable list. To avoid races with * tasks that might be making the page evictable, through eg. munlock, * munmap or exit, while it's not on the lru, we want to add the page * while it's locked or otherwise "invisible" to other tasks. This is * difficult to do when using the pagevec cache, so bypass that. */ void add_page_to_unevictable_list(struct page *page) { struct zone *zone = page_zone(page); struct lruvec *lruvec; spin_lock_irq(&zone->lru_lock); lruvec = mem_cgroup_page_lruvec(page, zone); ClearPageActive(page); SetPageUnevictable(page); SetPageLRU(page); add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE); spin_unlock_irq(&zone->lru_lock); } /** * lru_cache_add_active_or_unevictable * @page: the page to be added to LRU * @vma: vma in which page is mapped for determining reclaimability * * Place @page on the active or unevictable LRU list, depending on its * evictability. Note that if the page is not evictable, it goes * directly back onto it's zone's unevictable list, it does NOT use a * per cpu pagevec. */ void lru_cache_add_active_or_unevictable(struct page *page, struct vm_area_struct *vma) { VM_BUG_ON_PAGE(PageLRU(page), page); if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) { SetPageActive(page); lru_cache_add(page); return; } if (!TestSetPageMlocked(page)) { /* * We use the irq-unsafe __mod_zone_page_stat because this * counter is not modified from interrupt context, and the pte * lock is held(spinlock), which implies preemption disabled. */ __mod_zone_page_state(page_zone(page), NR_MLOCK, hpage_nr_pages(page)); count_vm_event(UNEVICTABLE_PGMLOCKED); } add_page_to_unevictable_list(page); } /* * If the page can not be invalidated, it is moved to the * inactive list to speed up its reclaim. It is moved to the * head of the list, rather than the tail, to give the flusher * threads some time to write it out, as this is much more * effective than the single-page writeout from reclaim. * * If the page isn't page_mapped and dirty/writeback, the page * could reclaim asap using PG_reclaim. * * 1. active, mapped page -> none * 2. active, dirty/writeback page -> inactive, head, PG_reclaim * 3. inactive, mapped page -> none * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim * 5. inactive, clean -> inactive, tail * 6. Others -> none * * In 4, why it moves inactive's head, the VM expects the page would * be write it out by flusher threads as this is much more effective * than the single-page writeout from reclaim. */ static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec, void *arg) { int lru, file; bool active; if (!PageLRU(page)) return; if (PageUnevictable(page)) return; /* Some processes are using the page */ if (page_mapped(page)) return; active = PageActive(page); file = page_is_file_cache(page); lru = page_lru_base_type(page); del_page_from_lru_list(page, lruvec, lru + active); ClearPageActive(page); ClearPageReferenced(page); add_page_to_lru_list(page, lruvec, lru); if (PageWriteback(page) || PageDirty(page)) { /* * PG_reclaim could be raced with end_page_writeback * It can make readahead confusing. But race window * is _really_ small and it's non-critical problem. */ SetPageReclaim(page); } else { /* * The page's writeback ends up during pagevec * We moves tha page into tail of inactive. */ list_move_tail(&page->lru, &lruvec->lists[lru]); __count_vm_event(PGROTATED); } if (active) __count_vm_event(PGDEACTIVATE); update_page_reclaim_stat(lruvec, file, 0); } /* * Drain pages out of the cpu's pagevecs. * Either "cpu" is the current CPU, and preemption has already been * disabled; or "cpu" is being hot-unplugged, and is already dead. */ void lru_add_drain_cpu(int cpu) { struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu); if (pagevec_count(pvec)) __pagevec_lru_add(pvec); pvec = &per_cpu(lru_rotate_pvecs, cpu); if (pagevec_count(pvec)) { unsigned long flags; /* No harm done if a racing interrupt already did this */ local_irq_save(flags); pagevec_move_tail(pvec); local_irq_restore(flags); } pvec = &per_cpu(lru_deactivate_file_pvecs, cpu); if (pagevec_count(pvec)) pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); activate_page_drain(cpu); } /** * deactivate_file_page - forcefully deactivate a file page * @page: page to deactivate * * This function hints the VM that @page is a good reclaim candidate, * for example if its invalidation fails due to the page being dirty * or under writeback. */ void deactivate_file_page(struct page *page) { /* * In a workload with many unevictable page such as mprotect, * unevictable page deactivation for accelerating reclaim is pointless. */ if (PageUnevictable(page)) return; if (likely(get_page_unless_zero(page))) { struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs); if (!pagevec_add(pvec, page)) pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); put_cpu_var(lru_deactivate_file_pvecs); } } void lru_add_drain(void) { lru_add_drain_cpu(get_cpu()); put_cpu(); } static void lru_add_drain_per_cpu(struct work_struct *dummy) { lru_add_drain(); } static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); void lru_add_drain_all(void) { static DEFINE_MUTEX(lock); static struct cpumask has_work; int cpu; mutex_lock(&lock); get_online_cpus(); cpumask_clear(&has_work); for_each_online_cpu(cpu) { struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) || pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) || pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) || need_activate_page_drain(cpu)) { INIT_WORK(work, lru_add_drain_per_cpu); schedule_work_on(cpu, work); cpumask_set_cpu(cpu, &has_work); } } for_each_cpu(cpu, &has_work) flush_work(&per_cpu(lru_add_drain_work, cpu)); put_online_cpus(); mutex_unlock(&lock); } /** * release_pages - batched page_cache_release() * @pages: array of pages to release * @nr: number of pages * @cold: whether the pages are cache cold * * Decrement the reference count on all the pages in @pages. If it * fell to zero, remove the page from the LRU and free it. */ void release_pages(struct page **pages, int nr, bool cold) { int i; LIST_HEAD(pages_to_free); struct zone *zone = NULL; struct lruvec *lruvec; unsigned long uninitialized_var(flags); unsigned int uninitialized_var(lock_batch); for (i = 0; i < nr; i++) { struct page *page = pages[i]; if (unlikely(PageCompound(page))) { if (zone) { spin_unlock_irqrestore(&zone->lru_lock, flags); zone = NULL; } put_compound_page(page); continue; } /* * Make sure the IRQ-safe lock-holding time does not get * excessive with a continuous string of pages from the * same zone. The lock is held only if zone != NULL. */ if (zone && ++lock_batch == SWAP_CLUSTER_MAX) { spin_unlock_irqrestore(&zone->lru_lock, flags); zone = NULL; } if (!put_page_testzero(page)) continue; if (PageLRU(page)) { struct zone *pagezone = page_zone(page); if (pagezone != zone) { if (zone) spin_unlock_irqrestore(&zone->lru_lock, flags); lock_batch = 0; zone = pagezone; spin_lock_irqsave(&zone->lru_lock, flags); } lruvec = mem_cgroup_page_lruvec(page, zone); VM_BUG_ON_PAGE(!PageLRU(page), page); __ClearPageLRU(page); del_page_from_lru_list(page, lruvec, page_off_lru(page)); } /* Clear Active bit in case of parallel mark_page_accessed */ __ClearPageActive(page); list_add(&page->lru, &pages_to_free); } if (zone) spin_unlock_irqrestore(&zone->lru_lock, flags); mem_cgroup_uncharge_list(&pages_to_free); free_hot_cold_page_list(&pages_to_free, cold); } EXPORT_SYMBOL(release_pages); /* * The pages which we're about to release may be in the deferred lru-addition * queues. That would prevent them from really being freed right now. That's * OK from a correctness point of view but is inefficient - those pages may be * cache-warm and we want to give them back to the page allocator ASAP. * * So __pagevec_release() will drain those queues here. __pagevec_lru_add() * and __pagevec_lru_add_active() call release_pages() directly to avoid * mutual recursion. */ void __pagevec_release(struct pagevec *pvec) { lru_add_drain(); release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); pagevec_reinit(pvec); } EXPORT_SYMBOL(__pagevec_release); #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* used by __split_huge_page_refcount() */ void lru_add_page_tail(struct page *page, struct page *page_tail, struct lruvec *lruvec, struct list_head *list) { const int file = 0; VM_BUG_ON_PAGE(!PageHead(page), page); VM_BUG_ON_PAGE(PageCompound(page_tail), page); VM_BUG_ON_PAGE(PageLRU(page_tail), page); VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&lruvec_zone(lruvec)->lru_lock)); if (!list) SetPageLRU(page_tail); if (likely(PageLRU(page))) list_add_tail(&page_tail->lru, &page->lru); else if (list) { /* page reclaim is reclaiming a huge page */ get_page(page_tail); list_add_tail(&page_tail->lru, list); } else { struct list_head *list_head; /* * Head page has not yet been counted, as an hpage, * so we must account for each subpage individually. * * Use the standard add function to put page_tail on the list, * but then correct its position so they all end up in order. */ add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail)); list_head = page_tail->lru.prev; list_move_tail(&page_tail->lru, list_head); } if (!PageUnevictable(page)) update_page_reclaim_stat(lruvec, file, PageActive(page_tail)); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, void *arg) { int file = page_is_file_cache(page); int active = PageActive(page); enum lru_list lru = page_lru(page); VM_BUG_ON_PAGE(PageLRU(page), page); SetPageLRU(page); add_page_to_lru_list(page, lruvec, lru); update_page_reclaim_stat(lruvec, file, active); trace_mm_lru_insertion(page, lru); } /* * Add the passed pages to the LRU, then drop the caller's refcount * on them. Reinitialises the caller's pagevec. */ void __pagevec_lru_add(struct pagevec *pvec) { pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL); } EXPORT_SYMBOL(__pagevec_lru_add); /** * pagevec_lookup_entries - gang pagecache lookup * @pvec: Where the resulting entries are placed * @mapping: The address_space to search * @start: The starting entry index * @nr_entries: The maximum number of entries * @indices: The cache indices corresponding to the entries in @pvec * * pagevec_lookup_entries() will search for and return a group of up * to @nr_entries pages and shadow entries in the mapping. All * entries are placed in @pvec. pagevec_lookup_entries() takes a * reference against actual pages in @pvec. * * The search returns a group of mapping-contiguous entries with * ascending indexes. There may be holes in the indices due to * not-present entries. * * pagevec_lookup_entries() returns the number of entries which were * found. */ unsigned pagevec_lookup_entries(struct pagevec *pvec, struct address_space *mapping, pgoff_t start, unsigned nr_pages, pgoff_t *indices) { pvec->nr = find_get_entries(mapping, start, nr_pages, pvec->pages, indices); return pagevec_count(pvec); } /** * pagevec_remove_exceptionals - pagevec exceptionals pruning * @pvec: The pagevec to prune * * pagevec_lookup_entries() fills both pages and exceptional radix * tree entries into the pagevec. This function prunes all * exceptionals from @pvec without leaving holes, so that it can be * passed on to page-only pagevec operations. */ void pagevec_remove_exceptionals(struct pagevec *pvec) { int i, j; for (i = 0, j = 0; i < pagevec_count(pvec); i++) { struct page *page = pvec->pages[i]; if (!radix_tree_exceptional_entry(page)) pvec->pages[j++] = page; } pvec->nr = j; } /** * pagevec_lookup - gang pagecache lookup * @pvec: Where the resulting pages are placed * @mapping: The address_space to search * @start: The starting page index * @nr_pages: The maximum number of pages * * pagevec_lookup() will search for and return a group of up to @nr_pages pages * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a * reference against the pages in @pvec. * * The search returns a group of mapping-contiguous pages with ascending * indexes. There may be holes in the indices due to not-present pages. * * pagevec_lookup() returns the number of pages which were found. */ unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, pgoff_t start, unsigned nr_pages) { pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); return pagevec_count(pvec); } EXPORT_SYMBOL(pagevec_lookup); unsigned pagevec_lookup_range_tag(struct pagevec *pvec, struct address_space *mapping, pgoff_t *index, pgoff_t end, int tag, unsigned nr_pages) { pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, nr_pages, pvec->pages); return pagevec_count(pvec); } EXPORT_SYMBOL(pagevec_lookup_range_tag); unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec, struct address_space *mapping, pgoff_t *index, pgoff_t end, int tag, unsigned max_pages) { pvec->nr = find_get_pages_range_tag(mapping, index, end, tag, min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages); return pagevec_count(pvec); } EXPORT_SYMBOL(pagevec_lookup_range_nr_tag); /* * Perform any setup for the swap system */ void __init swap_setup(void) { unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); #ifdef CONFIG_SWAP int i; for (i = 0; i < MAX_SWAPFILES; i++) spin_lock_init(&swapper_spaces[i].tree_lock); #endif /* Use a smaller cluster for small-memory machines */ if (megs < 16) page_cluster = 2; else page_cluster = 3; /* * Right now other parts of the system means that we * _really_ don't want to cluster much more */ }