1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
|
/*
* linux/arch/arm/mach-omap2/clock.c
*
* Copyright (C) 2005-2008 Texas Instruments, Inc.
* Copyright (C) 2004-2008 Nokia Corporation
*
* Contacts:
* Richard Woodruff <r-woodruff2@ti.com>
* Paul Walmsley
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#undef DEBUG
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/bitops.h>
#include <mach/clock.h>
#include <mach/sram.h>
#include <mach/cpu.h>
#include <asm/div64.h>
#include "memory.h"
#include "sdrc.h"
#include "clock.h"
#include "prm.h"
#include "prm-regbits-24xx.h"
#include "cm.h"
#include "cm-regbits-24xx.h"
#include "cm-regbits-34xx.h"
#define MAX_CLOCK_ENABLE_WAIT 100000
/* DPLL rate rounding: minimum DPLL multiplier, divider values */
#define DPLL_MIN_MULTIPLIER 1
#define DPLL_MIN_DIVIDER 1
/* Possible error results from _dpll_test_mult */
#define DPLL_MULT_UNDERFLOW (1 << 0)
/*
* Scale factor to mitigate roundoff errors in DPLL rate rounding.
* The higher the scale factor, the greater the risk of arithmetic overflow,
* but the closer the rounded rate to the target rate. DPLL_SCALE_FACTOR
* must be a power of DPLL_SCALE_BASE.
*/
#define DPLL_SCALE_FACTOR 64
#define DPLL_SCALE_BASE 2
#define DPLL_ROUNDING_VAL ((DPLL_SCALE_BASE / 2) * \
(DPLL_SCALE_FACTOR / DPLL_SCALE_BASE))
u8 cpu_mask;
/*-------------------------------------------------------------------------
* Omap2 specific clock functions
*-------------------------------------------------------------------------*/
/**
* omap2_init_clksel_parent - set a clksel clk's parent field from the hardware
* @clk: OMAP clock struct ptr to use
*
* Given a pointer to a source-selectable struct clk, read the hardware
* register and determine what its parent is currently set to. Update the
* clk->parent field with the appropriate clk ptr.
*/
void omap2_init_clksel_parent(struct clk *clk)
{
const struct clksel *clks;
const struct clksel_rate *clkr;
u32 r, found = 0;
if (!clk->clksel)
return;
r = __raw_readl(clk->clksel_reg) & clk->clksel_mask;
r >>= __ffs(clk->clksel_mask);
for (clks = clk->clksel; clks->parent && !found; clks++) {
for (clkr = clks->rates; clkr->div && !found; clkr++) {
if ((clkr->flags & cpu_mask) && (clkr->val == r)) {
if (clk->parent != clks->parent) {
pr_debug("clock: inited %s parent "
"to %s (was %s)\n",
clk->name, clks->parent->name,
((clk->parent) ?
clk->parent->name : "NULL"));
clk->parent = clks->parent;
};
found = 1;
}
}
}
if (!found)
printk(KERN_ERR "clock: init parent: could not find "
"regval %0x for clock %s\n", r, clk->name);
return;
}
/* Returns the DPLL rate */
u32 omap2_get_dpll_rate(struct clk *clk)
{
long long dpll_clk;
u32 dpll_mult, dpll_div, dpll;
struct dpll_data *dd;
dd = clk->dpll_data;
/* REVISIT: What do we return on error? */
if (!dd)
return 0;
dpll = __raw_readl(dd->mult_div1_reg);
dpll_mult = dpll & dd->mult_mask;
dpll_mult >>= __ffs(dd->mult_mask);
dpll_div = dpll & dd->div1_mask;
dpll_div >>= __ffs(dd->div1_mask);
dpll_clk = (long long)clk->parent->rate * dpll_mult;
do_div(dpll_clk, dpll_div + 1);
return dpll_clk;
}
/*
* Used for clocks that have the same value as the parent clock,
* divided by some factor
*/
void omap2_fixed_divisor_recalc(struct clk *clk)
{
WARN_ON(!clk->fixed_div);
clk->rate = clk->parent->rate / clk->fixed_div;
if (clk->flags & RATE_PROPAGATES)
propagate_rate(clk);
}
/**
* omap2_wait_clock_ready - wait for clock to enable
* @reg: physical address of clock IDLEST register
* @mask: value to mask against to determine if the clock is active
* @name: name of the clock (for printk)
*
* Returns 1 if the clock enabled in time, or 0 if it failed to enable
* in roughly MAX_CLOCK_ENABLE_WAIT microseconds.
*/
int omap2_wait_clock_ready(void __iomem *reg, u32 mask, const char *name)
{
int i = 0;
int ena = 0;
/*
* 24xx uses 0 to indicate not ready, and 1 to indicate ready.
* 34xx reverses this, just to keep us on our toes
*/
if (cpu_mask & (RATE_IN_242X | RATE_IN_243X)) {
ena = mask;
} else if (cpu_mask & RATE_IN_343X) {
ena = 0;
}
/* Wait for lock */
while (((__raw_readl(reg) & mask) != ena) &&
(i++ < MAX_CLOCK_ENABLE_WAIT)) {
udelay(1);
}
if (i < MAX_CLOCK_ENABLE_WAIT)
pr_debug("Clock %s stable after %d loops\n", name, i);
else
printk(KERN_ERR "Clock %s didn't enable in %d tries\n",
name, MAX_CLOCK_ENABLE_WAIT);
return (i < MAX_CLOCK_ENABLE_WAIT) ? 1 : 0;
};
/*
* Note: We don't need special code here for INVERT_ENABLE
* for the time being since INVERT_ENABLE only applies to clocks enabled by
* CM_CLKEN_PLL
*/
static void omap2_clk_wait_ready(struct clk *clk)
{
void __iomem *reg, *other_reg, *st_reg;
u32 bit;
/*
* REVISIT: This code is pretty ugly. It would be nice to generalize
* it and pull it into struct clk itself somehow.
*/
reg = clk->enable_reg;
if ((((u32)reg & 0xff) >= CM_FCLKEN1) &&
(((u32)reg & 0xff) <= OMAP24XX_CM_FCLKEN2))
other_reg = (void __iomem *)(((u32)reg & ~0xf0) | 0x10); /* CM_ICLKEN* */
else if ((((u32)reg & 0xff) >= CM_ICLKEN1) &&
(((u32)reg & 0xff) <= OMAP24XX_CM_ICLKEN4))
other_reg = (void __iomem *)(((u32)reg & ~0xf0) | 0x00); /* CM_FCLKEN* */
else
return;
/* REVISIT: What are the appropriate exclusions for 34XX? */
/* No check for DSS or cam clocks */
if (cpu_is_omap24xx() && ((u32)reg & 0x0f) == 0) { /* CM_{F,I}CLKEN1 */
if (clk->enable_bit == OMAP24XX_EN_DSS2_SHIFT ||
clk->enable_bit == OMAP24XX_EN_DSS1_SHIFT ||
clk->enable_bit == OMAP24XX_EN_CAM_SHIFT)
return;
}
/* REVISIT: What are the appropriate exclusions for 34XX? */
/* OMAP3: ignore DSS-mod clocks */
if (cpu_is_omap34xx() &&
(((u32)reg & ~0xff) == (u32)OMAP_CM_REGADDR(OMAP3430_DSS_MOD, 0) ||
((((u32)reg & ~0xff) == (u32)OMAP_CM_REGADDR(CORE_MOD, 0)) &&
clk->enable_bit == OMAP3430_EN_SSI_SHIFT)))
return;
/* Check if both functional and interface clocks
* are running. */
bit = 1 << clk->enable_bit;
if (!(__raw_readl(other_reg) & bit))
return;
st_reg = (void __iomem *)(((u32)other_reg & ~0xf0) | 0x20); /* CM_IDLEST* */
omap2_wait_clock_ready(st_reg, bit, clk->name);
}
/* Enables clock without considering parent dependencies or use count
* REVISIT: Maybe change this to use clk->enable like on omap1?
*/
int _omap2_clk_enable(struct clk *clk)
{
u32 regval32;
if (clk->flags & (ALWAYS_ENABLED | PARENT_CONTROLS_CLOCK))
return 0;
if (clk->enable)
return clk->enable(clk);
if (unlikely(clk->enable_reg == 0)) {
printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
clk->name);
return 0; /* REVISIT: -EINVAL */
}
regval32 = __raw_readl(clk->enable_reg);
if (clk->flags & INVERT_ENABLE)
regval32 &= ~(1 << clk->enable_bit);
else
regval32 |= (1 << clk->enable_bit);
__raw_writel(regval32, clk->enable_reg);
wmb();
omap2_clk_wait_ready(clk);
return 0;
}
/* Disables clock without considering parent dependencies or use count */
void _omap2_clk_disable(struct clk *clk)
{
u32 regval32;
if (clk->flags & (ALWAYS_ENABLED | PARENT_CONTROLS_CLOCK))
return;
if (clk->disable) {
clk->disable(clk);
return;
}
if (clk->enable_reg == 0) {
/*
* 'Independent' here refers to a clock which is not
* controlled by its parent.
*/
printk(KERN_ERR "clock: clk_disable called on independent "
"clock %s which has no enable_reg\n", clk->name);
return;
}
regval32 = __raw_readl(clk->enable_reg);
if (clk->flags & INVERT_ENABLE)
regval32 |= (1 << clk->enable_bit);
else
regval32 &= ~(1 << clk->enable_bit);
__raw_writel(regval32, clk->enable_reg);
wmb();
}
void omap2_clk_disable(struct clk *clk)
{
if (clk->usecount > 0 && !(--clk->usecount)) {
_omap2_clk_disable(clk);
if (likely((u32)clk->parent))
omap2_clk_disable(clk->parent);
}
}
int omap2_clk_enable(struct clk *clk)
{
int ret = 0;
if (clk->usecount++ == 0) {
if (likely((u32)clk->parent))
ret = omap2_clk_enable(clk->parent);
if (unlikely(ret != 0)) {
clk->usecount--;
return ret;
}
ret = _omap2_clk_enable(clk);
if (unlikely(ret != 0) && clk->parent) {
omap2_clk_disable(clk->parent);
clk->usecount--;
}
}
return ret;
}
/*
* Used for clocks that are part of CLKSEL_xyz governed clocks.
* REVISIT: Maybe change to use clk->enable() functions like on omap1?
*/
void omap2_clksel_recalc(struct clk *clk)
{
u32 div = 0;
pr_debug("clock: recalc'ing clksel clk %s\n", clk->name);
div = omap2_clksel_get_divisor(clk);
if (div == 0)
return;
if (unlikely(clk->rate == clk->parent->rate / div))
return;
clk->rate = clk->parent->rate / div;
pr_debug("clock: new clock rate is %ld (div %d)\n", clk->rate, div);
if (unlikely(clk->flags & RATE_PROPAGATES))
propagate_rate(clk);
}
/**
* omap2_get_clksel_by_parent - return clksel struct for a given clk & parent
* @clk: OMAP struct clk ptr to inspect
* @src_clk: OMAP struct clk ptr of the parent clk to search for
*
* Scan the struct clksel array associated with the clock to find
* the element associated with the supplied parent clock address.
* Returns a pointer to the struct clksel on success or NULL on error.
*/
const struct clksel *omap2_get_clksel_by_parent(struct clk *clk,
struct clk *src_clk)
{
const struct clksel *clks;
if (!clk->clksel)
return NULL;
for (clks = clk->clksel; clks->parent; clks++) {
if (clks->parent == src_clk)
break; /* Found the requested parent */
}
if (!clks->parent) {
printk(KERN_ERR "clock: Could not find parent clock %s in "
"clksel array of clock %s\n", src_clk->name,
clk->name);
return NULL;
}
return clks;
}
/**
* omap2_clksel_round_rate_div - find divisor for the given clock and rate
* @clk: OMAP struct clk to use
* @target_rate: desired clock rate
* @new_div: ptr to where we should store the divisor
*
* Finds 'best' divider value in an array based on the source and target
* rates. The divider array must be sorted with smallest divider first.
* Note that this will not work for clocks which are part of CONFIG_PARTICIPANT,
* they are only settable as part of virtual_prcm set.
*
* Returns the rounded clock rate or returns 0xffffffff on error.
*/
u32 omap2_clksel_round_rate_div(struct clk *clk, unsigned long target_rate,
u32 *new_div)
{
unsigned long test_rate;
const struct clksel *clks;
const struct clksel_rate *clkr;
u32 last_div = 0;
printk(KERN_INFO "clock: clksel_round_rate_div: %s target_rate %ld\n",
clk->name, target_rate);
*new_div = 1;
clks = omap2_get_clksel_by_parent(clk, clk->parent);
if (clks == NULL)
return ~0;
for (clkr = clks->rates; clkr->div; clkr++) {
if (!(clkr->flags & cpu_mask))
continue;
/* Sanity check */
if (clkr->div <= last_div)
printk(KERN_ERR "clock: clksel_rate table not sorted "
"for clock %s", clk->name);
last_div = clkr->div;
test_rate = clk->parent->rate / clkr->div;
if (test_rate <= target_rate)
break; /* found it */
}
if (!clkr->div) {
printk(KERN_ERR "clock: Could not find divisor for target "
"rate %ld for clock %s parent %s\n", target_rate,
clk->name, clk->parent->name);
return ~0;
}
*new_div = clkr->div;
printk(KERN_INFO "clock: new_div = %d, new_rate = %ld\n", *new_div,
(clk->parent->rate / clkr->div));
return (clk->parent->rate / clkr->div);
}
/**
* omap2_clksel_round_rate - find rounded rate for the given clock and rate
* @clk: OMAP struct clk to use
* @target_rate: desired clock rate
*
* Compatibility wrapper for OMAP clock framework
* Finds best target rate based on the source clock and possible dividers.
* rates. The divider array must be sorted with smallest divider first.
* Note that this will not work for clocks which are part of CONFIG_PARTICIPANT,
* they are only settable as part of virtual_prcm set.
*
* Returns the rounded clock rate or returns 0xffffffff on error.
*/
long omap2_clksel_round_rate(struct clk *clk, unsigned long target_rate)
{
u32 new_div;
return omap2_clksel_round_rate_div(clk, target_rate, &new_div);
}
/* Given a clock and a rate apply a clock specific rounding function */
long omap2_clk_round_rate(struct clk *clk, unsigned long rate)
{
if (clk->round_rate != 0)
return clk->round_rate(clk, rate);
if (clk->flags & RATE_FIXED)
printk(KERN_ERR "clock: generic omap2_clk_round_rate called "
"on fixed-rate clock %s\n", clk->name);
return clk->rate;
}
/**
* omap2_clksel_to_divisor() - turn clksel field value into integer divider
* @clk: OMAP struct clk to use
* @field_val: register field value to find
*
* Given a struct clk of a rate-selectable clksel clock, and a register field
* value to search for, find the corresponding clock divisor. The register
* field value should be pre-masked and shifted down so the LSB is at bit 0
* before calling. Returns 0 on error
*/
u32 omap2_clksel_to_divisor(struct clk *clk, u32 field_val)
{
const struct clksel *clks;
const struct clksel_rate *clkr;
clks = omap2_get_clksel_by_parent(clk, clk->parent);
if (clks == NULL)
return 0;
for (clkr = clks->rates; clkr->div; clkr++) {
if ((clkr->flags & cpu_mask) && (clkr->val == field_val))
break;
}
if (!clkr->div) {
printk(KERN_ERR "clock: Could not find fieldval %d for "
"clock %s parent %s\n", field_val, clk->name,
clk->parent->name);
return 0;
}
return clkr->div;
}
/**
* omap2_divisor_to_clksel() - turn clksel integer divisor into a field value
* @clk: OMAP struct clk to use
* @div: integer divisor to search for
*
* Given a struct clk of a rate-selectable clksel clock, and a clock divisor,
* find the corresponding register field value. The return register value is
* the value before left-shifting. Returns 0xffffffff on error
*/
u32 omap2_divisor_to_clksel(struct clk *clk, u32 div)
{
const struct clksel *clks;
const struct clksel_rate *clkr;
/* should never happen */
WARN_ON(div == 0);
clks = omap2_get_clksel_by_parent(clk, clk->parent);
if (clks == NULL)
return 0;
for (clkr = clks->rates; clkr->div; clkr++) {
if ((clkr->flags & cpu_mask) && (clkr->div == div))
break;
}
if (!clkr->div) {
printk(KERN_ERR "clock: Could not find divisor %d for "
"clock %s parent %s\n", div, clk->name,
clk->parent->name);
return 0;
}
return clkr->val;
}
/**
* omap2_get_clksel - find clksel register addr & field mask for a clk
* @clk: struct clk to use
* @field_mask: ptr to u32 to store the register field mask
*
* Returns the address of the clksel register upon success or NULL on error.
*/
void __iomem *omap2_get_clksel(struct clk *clk, u32 *field_mask)
{
if (unlikely((clk->clksel_reg == 0) || (clk->clksel_mask == 0)))
return NULL;
*field_mask = clk->clksel_mask;
return clk->clksel_reg;
}
/**
* omap2_clksel_get_divisor - get current divider applied to parent clock.
* @clk: OMAP struct clk to use.
*
* Returns the integer divisor upon success or 0 on error.
*/
u32 omap2_clksel_get_divisor(struct clk *clk)
{
u32 field_mask, field_val;
void __iomem *div_addr;
div_addr = omap2_get_clksel(clk, &field_mask);
if (div_addr == 0)
return 0;
field_val = __raw_readl(div_addr) & field_mask;
field_val >>= __ffs(field_mask);
return omap2_clksel_to_divisor(clk, field_val);
}
int omap2_clksel_set_rate(struct clk *clk, unsigned long rate)
{
u32 field_mask, field_val, reg_val, validrate, new_div = 0;
void __iomem *div_addr;
validrate = omap2_clksel_round_rate_div(clk, rate, &new_div);
if (validrate != rate)
return -EINVAL;
div_addr = omap2_get_clksel(clk, &field_mask);
if (div_addr == 0)
return -EINVAL;
field_val = omap2_divisor_to_clksel(clk, new_div);
if (field_val == ~0)
return -EINVAL;
reg_val = __raw_readl(div_addr);
reg_val &= ~field_mask;
reg_val |= (field_val << __ffs(field_mask));
__raw_writel(reg_val, div_addr);
wmb();
clk->rate = clk->parent->rate / new_div;
if (clk->flags & DELAYED_APP && cpu_is_omap24xx()) {
prm_write_mod_reg(OMAP24XX_VALID_CONFIG,
OMAP24XX_GR_MOD, OMAP24XX_PRCM_CLKCFG_CTRL_OFFSET);
wmb();
}
return 0;
}
/* Set the clock rate for a clock source */
int omap2_clk_set_rate(struct clk *clk, unsigned long rate)
{
int ret = -EINVAL;
pr_debug("clock: set_rate for clock %s to rate %ld\n", clk->name, rate);
/* CONFIG_PARTICIPANT clocks are changed only in sets via the
rate table mechanism, driven by mpu_speed */
if (clk->flags & CONFIG_PARTICIPANT)
return -EINVAL;
/* dpll_ck, core_ck, virt_prcm_set; plus all clksel clocks */
if (clk->set_rate != 0)
ret = clk->set_rate(clk, rate);
if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES)))
propagate_rate(clk);
return ret;
}
/*
* Converts encoded control register address into a full address
* On error, *src_addr will be returned as 0.
*/
static u32 omap2_clksel_get_src_field(void __iomem **src_addr,
struct clk *src_clk, u32 *field_mask,
struct clk *clk, u32 *parent_div)
{
const struct clksel *clks;
const struct clksel_rate *clkr;
*parent_div = 0;
*src_addr = 0;
clks = omap2_get_clksel_by_parent(clk, src_clk);
if (clks == NULL)
return 0;
for (clkr = clks->rates; clkr->div; clkr++) {
if (clkr->flags & (cpu_mask | DEFAULT_RATE))
break; /* Found the default rate for this platform */
}
if (!clkr->div) {
printk(KERN_ERR "clock: Could not find default rate for "
"clock %s parent %s\n", clk->name,
src_clk->parent->name);
return 0;
}
/* Should never happen. Add a clksel mask to the struct clk. */
WARN_ON(clk->clksel_mask == 0);
*field_mask = clk->clksel_mask;
*src_addr = clk->clksel_reg;
*parent_div = clkr->div;
return clkr->val;
}
int omap2_clk_set_parent(struct clk *clk, struct clk *new_parent)
{
void __iomem *src_addr;
u32 field_val, field_mask, reg_val, parent_div;
if (unlikely(clk->flags & CONFIG_PARTICIPANT))
return -EINVAL;
if (!clk->clksel)
return -EINVAL;
field_val = omap2_clksel_get_src_field(&src_addr, new_parent,
&field_mask, clk, &parent_div);
if (src_addr == 0)
return -EINVAL;
if (clk->usecount > 0)
_omap2_clk_disable(clk);
/* Set new source value (previous dividers if any in effect) */
reg_val = __raw_readl(src_addr) & ~field_mask;
reg_val |= (field_val << __ffs(field_mask));
__raw_writel(reg_val, src_addr);
wmb();
if (clk->flags & DELAYED_APP && cpu_is_omap24xx()) {
__raw_writel(OMAP24XX_VALID_CONFIG, OMAP24XX_PRCM_CLKCFG_CTRL);
wmb();
}
if (clk->usecount > 0)
_omap2_clk_enable(clk);
clk->parent = new_parent;
/* CLKSEL clocks follow their parents' rates, divided by a divisor */
clk->rate = new_parent->rate;
if (parent_div > 0)
clk->rate /= parent_div;
pr_debug("clock: set parent of %s to %s (new rate %ld)\n",
clk->name, clk->parent->name, clk->rate);
if (unlikely(clk->flags & RATE_PROPAGATES))
propagate_rate(clk);
return 0;
}
/* DPLL rate rounding code */
/**
* omap2_dpll_set_rate_tolerance: set the error tolerance during rate rounding
* @clk: struct clk * of the DPLL
* @tolerance: maximum rate error tolerance
*
* Set the maximum DPLL rate error tolerance for the rate rounding
* algorithm. The rate tolerance is an attempt to balance DPLL power
* saving (the least divider value "n") vs. rate fidelity (the least
* difference between the desired DPLL target rate and the rounded
* rate out of the algorithm). So, increasing the tolerance is likely
* to decrease DPLL power consumption and increase DPLL rate error.
* Returns -EINVAL if provided a null clock ptr or a clk that is not a
* DPLL; or 0 upon success.
*/
int omap2_dpll_set_rate_tolerance(struct clk *clk, unsigned int tolerance)
{
if (!clk || !clk->dpll_data)
return -EINVAL;
clk->dpll_data->rate_tolerance = tolerance;
return 0;
}
static unsigned long _dpll_compute_new_rate(unsigned long parent_rate, unsigned int m, unsigned int n)
{
unsigned long long num;
num = (unsigned long long)parent_rate * m;
do_div(num, n);
return num;
}
/*
* _dpll_test_mult - test a DPLL multiplier value
* @m: pointer to the DPLL m (multiplier) value under test
* @n: current DPLL n (divider) value under test
* @new_rate: pointer to storage for the resulting rounded rate
* @target_rate: the desired DPLL rate
* @parent_rate: the DPLL's parent clock rate
*
* This code tests a DPLL multiplier value, ensuring that the
* resulting rate will not be higher than the target_rate, and that
* the multiplier value itself is valid for the DPLL. Initially, the
* integer pointed to by the m argument should be prescaled by
* multiplying by DPLL_SCALE_FACTOR. The code will replace this with
* a non-scaled m upon return. This non-scaled m will result in a
* new_rate as close as possible to target_rate (but not greater than
* target_rate) given the current (parent_rate, n, prescaled m)
* triple. Returns DPLL_MULT_UNDERFLOW in the event that the
* non-scaled m attempted to underflow, which can allow the calling
* function to bail out early; or 0 upon success.
*/
static int _dpll_test_mult(int *m, int n, unsigned long *new_rate,
unsigned long target_rate,
unsigned long parent_rate)
{
int flags = 0, carry = 0;
/* Unscale m and round if necessary */
if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL)
carry = 1;
*m = (*m / DPLL_SCALE_FACTOR) + carry;
/*
* The new rate must be <= the target rate to avoid programming
* a rate that is impossible for the hardware to handle
*/
*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
if (*new_rate > target_rate) {
(*m)--;
*new_rate = 0;
}
/* Guard against m underflow */
if (*m < DPLL_MIN_MULTIPLIER) {
*m = DPLL_MIN_MULTIPLIER;
*new_rate = 0;
flags = DPLL_MULT_UNDERFLOW;
}
if (*new_rate == 0)
*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
return flags;
}
/**
* omap2_dpll_round_rate - round a target rate for an OMAP DPLL
* @clk: struct clk * for a DPLL
* @target_rate: desired DPLL clock rate
*
* Given a DPLL, a desired target rate, and a rate tolerance, round
* the target rate to a possible, programmable rate for this DPLL.
* Rate tolerance is assumed to be set by the caller before this
* function is called. Attempts to select the minimum possible n
* within the tolerance to reduce power consumption. Stores the
* computed (m, n) in the DPLL's dpll_data structure so set_rate()
* will not need to call this (expensive) function again. Returns ~0
* if the target rate cannot be rounded, either because the rate is
* too low or because the rate tolerance is set too tightly; or the
* rounded rate upon success.
*/
long omap2_dpll_round_rate(struct clk *clk, unsigned long target_rate)
{
int m, n, r, e, scaled_max_m;
unsigned long scaled_rt_rp, new_rate;
int min_e = -1, min_e_m = -1, min_e_n = -1;
if (!clk || !clk->dpll_data)
return ~0;
pr_debug("clock: starting DPLL round_rate for clock %s, target rate "
"%ld\n", clk->name, target_rate);
scaled_rt_rp = target_rate / (clk->parent->rate / DPLL_SCALE_FACTOR);
scaled_max_m = clk->dpll_data->max_multiplier * DPLL_SCALE_FACTOR;
clk->dpll_data->last_rounded_rate = 0;
for (n = clk->dpll_data->max_divider; n >= DPLL_MIN_DIVIDER; n--) {
/* Compute the scaled DPLL multiplier, based on the divider */
m = scaled_rt_rp * n;
/*
* Since we're counting n down, a m overflow means we can
* can immediately skip to the next n
*/
if (m > scaled_max_m)
continue;
r = _dpll_test_mult(&m, n, &new_rate, target_rate,
clk->parent->rate);
e = target_rate - new_rate;
pr_debug("clock: n = %d: m = %d: rate error is %d "
"(new_rate = %ld)\n", n, m, e, new_rate);
if (min_e == -1 ||
min_e >= (int)(abs(e) - clk->dpll_data->rate_tolerance)) {
min_e = e;
min_e_m = m;
min_e_n = n;
pr_debug("clock: found new least error %d\n", min_e);
}
/*
* Since we're counting n down, a m underflow means we
* can bail out completely (since as n decreases in
* the next iteration, there's no way that m can
* increase beyond the current m)
*/
if (r & DPLL_MULT_UNDERFLOW)
break;
}
if (min_e < 0) {
pr_debug("clock: error: target rate or tolerance too low\n");
return ~0;
}
clk->dpll_data->last_rounded_m = min_e_m;
clk->dpll_data->last_rounded_n = min_e_n;
clk->dpll_data->last_rounded_rate =
_dpll_compute_new_rate(clk->parent->rate, min_e_m, min_e_n);
pr_debug("clock: final least error: e = %d, m = %d, n = %d\n",
min_e, min_e_m, min_e_n);
pr_debug("clock: final rate: %ld (target rate: %ld)\n",
clk->dpll_data->last_rounded_rate, target_rate);
return clk->dpll_data->last_rounded_rate;
}
/*-------------------------------------------------------------------------
* Omap2 clock reset and init functions
*-------------------------------------------------------------------------*/
#ifdef CONFIG_OMAP_RESET_CLOCKS
void omap2_clk_disable_unused(struct clk *clk)
{
u32 regval32, v;
v = (clk->flags & INVERT_ENABLE) ? (1 << clk->enable_bit) : 0;
regval32 = __raw_readl(clk->enable_reg);
if ((regval32 & (1 << clk->enable_bit)) == v)
return;
printk(KERN_INFO "Disabling unused clock \"%s\"\n", clk->name);
_omap2_clk_disable(clk);
}
#endif
|