summaryrefslogtreecommitdiff
path: root/drivers/spi/spi_qsd.c
blob: 73396072a05280e3d8e10ae04899112f89a7a34d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
/* Copyright (c) 2008-2017, The Linux Foundation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 and
 * only version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 */
/*
 * SPI driver for Qualcomm MSM platforms
 *
 */

#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/irq.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/interrupt.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <linux/io.h>
#include <linux/debugfs.h>
#include <linux/gpio.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/dma-mapping.h>
#include <linux/sched.h>
#include <linux/mutex.h>
#include <linux/atomic.h>
#include <linux/pm_runtime.h>
#include <linux/spi/qcom-spi.h>
#include <linux/msm-sps.h>
#include <linux/msm-bus.h>
#include <linux/msm-bus-board.h>
#include "spi_qsd.h"

#define SPI_MAX_BYTES_PER_WORD			(4)

static int msm_spi_pm_resume_runtime(struct device *device);
static int msm_spi_pm_suspend_runtime(struct device *device);
static inline void msm_spi_dma_unmap_buffers(struct msm_spi *dd);
static int get_local_resources(struct msm_spi *dd);
static void put_local_resources(struct msm_spi *dd);
static void msm_spi_slv_setup(struct msm_spi *dd);

static inline int msm_spi_configure_gsbi(struct msm_spi *dd,
					struct platform_device *pdev)
{
	struct resource *resource;
	unsigned long   gsbi_mem_phys_addr;
	size_t          gsbi_mem_size;
	void __iomem    *gsbi_base;

	resource  = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	if (!resource)
		return 0;

	gsbi_mem_phys_addr = resource->start;
	gsbi_mem_size = resource_size(resource);
	if (!devm_request_mem_region(&pdev->dev, gsbi_mem_phys_addr,
					gsbi_mem_size, SPI_DRV_NAME))
		return -ENXIO;

	gsbi_base = devm_ioremap(&pdev->dev, gsbi_mem_phys_addr,
					gsbi_mem_size);
	if (!gsbi_base)
		return -ENXIO;

	/* Set GSBI to SPI mode */
	writel_relaxed(GSBI_SPI_CONFIG, gsbi_base + GSBI_CTRL_REG);

	return 0;
}

static inline void msm_spi_register_init(struct msm_spi *dd)
{
	if (dd->pdata->is_slv_ctrl)
		writel_relaxed(0x00000002, dd->base + SPI_SW_RESET);
	else
		writel_relaxed(0x00000001, dd->base + SPI_SW_RESET);
	msm_spi_set_state(dd, SPI_OP_STATE_RESET);
	writel_relaxed(0x00000000, dd->base + SPI_OPERATIONAL);
	writel_relaxed(0x00000000, dd->base + SPI_CONFIG);
	writel_relaxed(0x00000000, dd->base + SPI_IO_MODES);
	if (dd->qup_ver)
		writel_relaxed(0x00000000, dd->base + QUP_OPERATIONAL_MASK);
}

static int msm_spi_pinctrl_init(struct msm_spi *dd)
{
	dd->pinctrl = devm_pinctrl_get(dd->dev);
	if (IS_ERR_OR_NULL(dd->pinctrl)) {
		dev_err(dd->dev, "Failed to get pin ctrl\n");
		return PTR_ERR(dd->pinctrl);
	}
	dd->pins_active = pinctrl_lookup_state(dd->pinctrl,
				SPI_PINCTRL_STATE_DEFAULT);
	if (IS_ERR_OR_NULL(dd->pins_active)) {
		dev_err(dd->dev, "Failed to lookup pinctrl default state\n");
		return PTR_ERR(dd->pins_active);
	}

	dd->pins_sleep = pinctrl_lookup_state(dd->pinctrl,
				SPI_PINCTRL_STATE_SLEEP);
	if (IS_ERR_OR_NULL(dd->pins_sleep)) {
		dev_err(dd->dev, "Failed to lookup pinctrl sleep state\n");
		return PTR_ERR(dd->pins_sleep);
	}

	return 0;
}

static inline int msm_spi_request_gpios(struct msm_spi *dd)
{
	int i = 0;
	int result = 0;

	if (!dd->pdata->use_pinctrl) {
		for (i = 0; i < ARRAY_SIZE(spi_rsrcs); ++i) {
			if (dd->spi_gpios[i] >= 0) {
				result = gpio_request(dd->spi_gpios[i],
						spi_rsrcs[i]);
				if (result) {
					dev_err(dd->dev,
					"%s: gpio_request for pin %d "
					"failed with error %d\n"
					, __func__, dd->spi_gpios[i], result);
					goto error;
				}
			}
		}
	} else {
		result = pinctrl_select_state(dd->pinctrl, dd->pins_active);
		if (result) {
			dev_err(dd->dev, "%s: Can not set %s pins\n",
			__func__, SPI_PINCTRL_STATE_DEFAULT);
			goto error;
		}
	}
	return 0;
error:
	if (!dd->pdata->use_pinctrl) {
		for (; --i >= 0;) {
			if (dd->spi_gpios[i] >= 0)
				gpio_free(dd->spi_gpios[i]);
		}
	}
	return result;
}

static inline void msm_spi_free_gpios(struct msm_spi *dd)
{
	int i;
	int result = 0;

	if (!dd->pdata->use_pinctrl) {
		for (i = 0; i < ARRAY_SIZE(spi_rsrcs); ++i) {
			if (dd->spi_gpios[i] >= 0)
				gpio_free(dd->spi_gpios[i]);
			}

		for (i = 0; i < ARRAY_SIZE(spi_cs_rsrcs); ++i) {
			if (dd->cs_gpios[i].valid) {
				gpio_free(dd->cs_gpios[i].gpio_num);
				dd->cs_gpios[i].valid = 0;
			}
		}
	} else {
		result = pinctrl_select_state(dd->pinctrl, dd->pins_sleep);
		if (result)
			dev_err(dd->dev, "%s: Can not set %s pins\n",
			__func__, SPI_PINCTRL_STATE_SLEEP);
	}
}

static inline int msm_spi_request_cs_gpio(struct msm_spi *dd)
{
	int cs_num;
	int rc;

	cs_num = dd->spi->chip_select;
	if (!(dd->spi->mode & SPI_LOOP)) {
		if (!dd->pdata->use_pinctrl) {
			if ((!(dd->cs_gpios[cs_num].valid)) &&
				(dd->cs_gpios[cs_num].gpio_num >= 0)) {
				rc = gpio_request(dd->cs_gpios[cs_num].gpio_num,
					spi_cs_rsrcs[cs_num]);

				if (rc) {
					dev_err(dd->dev,
					"gpio_request for pin %d failed,error %d\n",
					dd->cs_gpios[cs_num].gpio_num, rc);
					return rc;
				}
				dd->cs_gpios[cs_num].valid = 1;
			}
		}
	}
	return 0;
}

static inline void msm_spi_free_cs_gpio(struct msm_spi *dd)
{
	int cs_num;

	cs_num = dd->spi->chip_select;
	if (!dd->pdata->use_pinctrl) {
		if (dd->cs_gpios[cs_num].valid) {
			gpio_free(dd->cs_gpios[cs_num].gpio_num);
			dd->cs_gpios[cs_num].valid = 0;
		}
	}
}


/**
 * msm_spi_clk_max_rate: finds the nearest lower rate for a clk
 * @clk the clock for which to find nearest lower rate
 * @rate clock frequency in Hz
 * @return nearest lower rate or negative error value
 *
 * Public clock API extends clk_round_rate which is a ceiling function. This
 * function is a floor function implemented as a binary search using the
 * ceiling function.
 */
static long msm_spi_clk_max_rate(struct clk *clk, unsigned long rate)
{
	long lowest_available, nearest_low, step_size, cur;
	long step_direction = -1;
	long guess = rate;
	int  max_steps = 10;

	cur =  clk_round_rate(clk, rate);
	if (cur == rate)
		return rate;

	/* if we got here then: cur > rate */
	lowest_available =  clk_round_rate(clk, 0);
	if (lowest_available > rate)
		return -EINVAL;

	step_size = (rate - lowest_available) >> 1;
	nearest_low = lowest_available;

	while (max_steps-- && step_size) {
		guess += step_size * step_direction;

		cur =  clk_round_rate(clk, guess);

		if ((cur < rate) && (cur > nearest_low))
			nearest_low = cur;

		/*
		 * if we stepped too far, then start stepping in the other
		 * direction with half the step size
		 */
		if (((cur > rate) && (step_direction > 0))
		 || ((cur < rate) && (step_direction < 0))) {
			step_direction = -step_direction;
			step_size >>= 1;
		 }
	}
	return nearest_low;
}

static void msm_spi_clock_set(struct msm_spi *dd, int speed)
{
	long rate;
	int rc;

	rate = msm_spi_clk_max_rate(dd->clk, speed);
	if (rate < 0) {
		dev_err(dd->dev,
		"%s: no match found for requested clock frequency:%d",
			__func__, speed);
		return;
	}

	rc = clk_set_rate(dd->clk, rate);
	if (!rc)
		dd->clock_speed = rate;
}

static void msm_spi_clk_path_vote(struct msm_spi *dd, u32 rate)
{
	if (dd->bus_cl_hdl) {
		u64 ib = rate * dd->pdata->bus_width;

		msm_bus_scale_update_bw(dd->bus_cl_hdl, 0, ib);
	}
}

static void msm_spi_clk_path_teardown(struct msm_spi *dd)
{
	msm_spi_clk_path_vote(dd, 0);

	if (dd->bus_cl_hdl) {
		msm_bus_scale_unregister(dd->bus_cl_hdl);
		dd->bus_cl_hdl = NULL;
	}
}

/**
 * msm_spi_clk_path_postponed_register: reg with bus-scaling after it is probed
 *
 * @return zero on success
 *
 * Workaround: SPI driver may be probed before the bus scaling driver. Calling
 * msm_bus_scale_register_client() will fail if the bus scaling driver is not
 * ready yet. Thus, this function should be called not from probe but from a
 * later context. Also, this function may be called more then once before
 * register succeed. At this case only one error message will be logged. At boot
 * time all clocks are on, so earlier SPI transactions should succeed.
 */
static int msm_spi_clk_path_postponed_register(struct msm_spi *dd)
{
	int ret = 0;

	dd->bus_cl_hdl = msm_bus_scale_register(dd->pdata->master_id,
						MSM_BUS_SLAVE_EBI_CH0,
						(char *)dev_name(dd->dev),
						false);

	if (IS_ERR_OR_NULL(dd->bus_cl_hdl)) {
		ret = (dd->bus_cl_hdl ? PTR_ERR(dd->bus_cl_hdl) : -EAGAIN);
		dev_err(dd->dev, "Failed bus registration Err %d", ret);
	}

	return ret;
}

static void msm_spi_clk_path_init(struct msm_spi *dd)
{
	/*
	 * bail out if path voting is diabled (master_id == 0) or if it is
	 * already registered (client_hdl != 0)
	 */
	if (!dd->pdata->master_id || dd->bus_cl_hdl)
		return;

	/* on failure try again later */
	if (msm_spi_clk_path_postponed_register(dd))
		return;

}

static int msm_spi_calculate_size(int *fifo_size,
				  int *block_size,
				  int block,
				  int mult)
{
	int words;

	switch (block) {
	case 0:
		words = 1; /* 4 bytes */
		break;
	case 1:
		words = 4; /* 16 bytes */
		break;
	case 2:
		words = 8; /* 32 bytes */
		break;
	default:
		return -EINVAL;
	}

	switch (mult) {
	case 0:
		*fifo_size = words * 2;
		break;
	case 1:
		*fifo_size = words * 4;
		break;
	case 2:
		*fifo_size = words * 8;
		break;
	case 3:
		*fifo_size = words * 16;
		break;
	default:
		return -EINVAL;
	}

	*block_size = words * sizeof(u32); /* in bytes */
	return 0;
}

static void msm_spi_calculate_fifo_size(struct msm_spi *dd)
{
	u32 spi_iom;
	int block;
	int mult;

	spi_iom = readl_relaxed(dd->base + SPI_IO_MODES);

	block = (spi_iom & SPI_IO_M_INPUT_BLOCK_SIZE) >> INPUT_BLOCK_SZ_SHIFT;
	mult = (spi_iom & SPI_IO_M_INPUT_FIFO_SIZE) >> INPUT_FIFO_SZ_SHIFT;
	if (msm_spi_calculate_size(&dd->input_fifo_size, &dd->input_block_size,
				   block, mult)) {
		goto fifo_size_err;
	}

	block = (spi_iom & SPI_IO_M_OUTPUT_BLOCK_SIZE) >> OUTPUT_BLOCK_SZ_SHIFT;
	mult = (spi_iom & SPI_IO_M_OUTPUT_FIFO_SIZE) >> OUTPUT_FIFO_SZ_SHIFT;
	if (msm_spi_calculate_size(&dd->output_fifo_size,
				   &dd->output_block_size, block, mult)) {
		goto fifo_size_err;
	}
	if (dd->qup_ver == SPI_QUP_VERSION_NONE) {
		/* DM mode is not available for this block size */
		if (dd->input_block_size == 4 || dd->output_block_size == 4)
			dd->use_dma = 0;

		if (dd->use_dma) {
			dd->input_burst_size = max(dd->input_block_size,
						DM_BURST_SIZE);
			dd->output_burst_size = max(dd->output_block_size,
						DM_BURST_SIZE);
		}
	}

	return;

fifo_size_err:
	dd->use_dma = 0;
	pr_err("%s: invalid FIFO size, SPI_IO_MODES=0x%x\n", __func__, spi_iom);
	return;
}

static void msm_spi_read_word_from_fifo(struct msm_spi *dd)
{
	u32   data_in;
	int   i;
	int   shift;
	int   read_bytes = (dd->pack_words ?
				SPI_MAX_BYTES_PER_WORD : dd->bytes_per_word);

	data_in = readl_relaxed(dd->base + SPI_INPUT_FIFO);
	if (dd->read_buf) {
		for (i = 0; (i < read_bytes) &&
			     dd->rx_bytes_remaining; i++) {
			/* The data format depends on bytes_per_word:
			   4 bytes: 0x12345678
			   3 bytes: 0x00123456
			   2 bytes: 0x00001234
			   1 byte : 0x00000012
			*/
			shift = BITS_PER_BYTE * i;
			*dd->read_buf++ = (data_in & (0xFF << shift)) >> shift;
			dd->rx_bytes_remaining--;
		}
	} else {
		if (dd->rx_bytes_remaining >= read_bytes)
			dd->rx_bytes_remaining -= read_bytes;
		else
			dd->rx_bytes_remaining = 0;
	}

	dd->read_xfr_cnt++;
}

static inline bool msm_spi_is_valid_state(struct msm_spi *dd)
{
	u32 spi_op = readl_relaxed(dd->base + SPI_STATE);

	return spi_op & SPI_OP_STATE_VALID;
}

static inline void msm_spi_udelay(unsigned int delay_usecs)
{
	/*
	 * For smaller values of delay, context switch time
	 * would negate the usage of usleep
	 */
	if (delay_usecs > 20)
		usleep_range(delay_usecs, delay_usecs);
	else if (delay_usecs)
		udelay(delay_usecs);
}

static inline int msm_spi_wait_valid(struct msm_spi *dd)
{
	unsigned int delay = 0;
	unsigned long timeout = 0;

	if (dd->clock_speed == 0)
		return -EINVAL;
	/*
	 * Based on the SPI clock speed, sufficient time
	 * should be given for the SPI state transition
	 * to occur
	 */
	delay = (10 * USEC_PER_SEC) / dd->clock_speed;
	/*
	 * For small delay values, the default timeout would
	 * be one jiffy
	 */
	if (delay < SPI_DELAY_THRESHOLD)
		delay = SPI_DELAY_THRESHOLD;

	/* Adding one to round off to the nearest jiffy */
	timeout = jiffies + msecs_to_jiffies(delay * SPI_DEFAULT_TIMEOUT) + 1;
	while (!msm_spi_is_valid_state(dd)) {
		if (time_after(jiffies, timeout)) {
			if (!msm_spi_is_valid_state(dd)) {
				dev_err(dd->dev, "%s: SPI operational state"
					"not valid\n", __func__);
				return -ETIMEDOUT;
			} else
				return 0;
		}
		msm_spi_udelay(delay);
	}
	return 0;
}

static inline int msm_spi_set_state(struct msm_spi *dd,
				    enum msm_spi_state state)
{
	enum msm_spi_state cur_state;
	if (msm_spi_wait_valid(dd))
		return -EIO;
	cur_state = readl_relaxed(dd->base + SPI_STATE);
	/* Per spec:
	   For PAUSE_STATE to RESET_STATE, two writes of (10) are required */
	if (((cur_state & SPI_OP_STATE) == SPI_OP_STATE_PAUSE) &&
			(state == SPI_OP_STATE_RESET)) {
		writel_relaxed(SPI_OP_STATE_CLEAR_BITS, dd->base + SPI_STATE);
		writel_relaxed(SPI_OP_STATE_CLEAR_BITS, dd->base + SPI_STATE);
	} else {
		writel_relaxed((cur_state & ~SPI_OP_STATE) | state,
		       dd->base + SPI_STATE);
	}
	if (msm_spi_wait_valid(dd))
		return -EIO;

	return 0;
}

/**
 * msm_spi_set_bpw_and_no_io_flags: configure N, and no-input/no-output flags
 */
static inline void
msm_spi_set_bpw_and_no_io_flags(struct msm_spi *dd, u32 *config, int n)
{
	*config &= ~(SPI_NO_INPUT|SPI_NO_OUTPUT);

	if (n != (*config & SPI_CFG_N))
		*config = (*config & ~SPI_CFG_N) | n;

	if (dd->tx_mode == SPI_BAM_MODE) {
		if (dd->read_buf == NULL)
			*config |= SPI_NO_INPUT;
		if (dd->write_buf == NULL)
			*config |= SPI_NO_OUTPUT;
	}
}

/**
 * msm_spi_calc_spi_config_loopback_and_input_first: Calculate the values that
 * should be updated into SPI_CONFIG's LOOPBACK and INPUT_FIRST flags
 * @return calculatd value for SPI_CONFIG
 */
static u32
msm_spi_calc_spi_config_loopback_and_input_first(u32 spi_config, u8 mode)
{
	if (mode & SPI_LOOP)
		spi_config |= SPI_CFG_LOOPBACK;
	else
		spi_config &= ~SPI_CFG_LOOPBACK;

	if (mode & SPI_CPHA)
		spi_config &= ~SPI_CFG_INPUT_FIRST;
	else
		spi_config |= SPI_CFG_INPUT_FIRST;

	return spi_config;
}

/**
 * msm_spi_set_spi_config: prepares register SPI_CONFIG to process the
 * next transfer
 */
static void msm_spi_set_spi_config(struct msm_spi *dd, int bpw)
{
	u32 spi_config = readl_relaxed(dd->base + SPI_CONFIG);
	spi_config = msm_spi_calc_spi_config_loopback_and_input_first(
					spi_config, dd->spi->mode);

	if (dd->qup_ver == SPI_QUP_VERSION_NONE)
		/* flags removed from SPI_CONFIG in QUP version-2 */
		msm_spi_set_bpw_and_no_io_flags(dd, &spi_config, bpw-1);

	/*
	 * HS_MODE improves signal stability for spi-clk high rates
	 * but is invalid in LOOPBACK mode.
	 */
	if ((dd->clock_speed >= SPI_HS_MIN_RATE) &&
	   !(dd->spi->mode & SPI_LOOP))
		spi_config |= SPI_CFG_HS_MODE;
	else
		spi_config &= ~SPI_CFG_HS_MODE;

	writel_relaxed(spi_config, dd->base + SPI_CONFIG);
}

/**
 * msm_spi_set_mx_counts: set SPI_MX_INPUT_COUNT and SPI_MX_INPUT_COUNT
 * for FIFO-mode. set SPI_MX_INPUT_COUNT and SPI_MX_OUTPUT_COUNT for
 * BAM and DMOV modes.
 * @n_words The number of reads/writes of size N.
 */
static void msm_spi_set_mx_counts(struct msm_spi *dd, u32 n_words)
{
	/*
	 * For FIFO mode:
	 *   - Set the MX_OUTPUT_COUNT/MX_INPUT_COUNT registers to 0
	 *   - Set the READ/WRITE_COUNT registers to 0 (infinite mode)
	 *     or num bytes (finite mode) if less than fifo worth of data.
	 * For Block mode:
	 *  - Set the MX_OUTPUT/MX_INPUT_COUNT registers to num xfer bytes.
	 *  - Set the READ/WRITE_COUNT registers to 0.
	 */
	if (dd->tx_mode != SPI_BAM_MODE) {
		if (dd->tx_mode == SPI_FIFO_MODE) {
			if (n_words <= dd->input_fifo_size)
				msm_spi_set_write_count(dd, n_words);
			else
				msm_spi_set_write_count(dd, 0);
			writel_relaxed(0, dd->base + SPI_MX_OUTPUT_COUNT);
		} else
			writel_relaxed(n_words, dd->base + SPI_MX_OUTPUT_COUNT);

		if (dd->rx_mode == SPI_FIFO_MODE) {
			if (n_words <= dd->input_fifo_size)
				writel_relaxed(n_words,
						dd->base + SPI_MX_READ_COUNT);
			else
				writel_relaxed(0,
						dd->base + SPI_MX_READ_COUNT);
			writel_relaxed(0, dd->base + SPI_MX_INPUT_COUNT);
		} else
			writel_relaxed(n_words, dd->base + SPI_MX_INPUT_COUNT);
	} else {
		/* must be zero for BAM and DMOV */
		writel_relaxed(0, dd->base + SPI_MX_READ_COUNT);
		msm_spi_set_write_count(dd, 0);

		/*
		 * for DMA transfers, both QUP_MX_INPUT_COUNT and
		 * QUP_MX_OUTPUT_COUNT must be zero to all cases but one.
		 * That case is a non-balanced transfer when there is
		 * only a read_buf.
		 */
		if (dd->qup_ver == SPI_QUP_VERSION_BFAM) {
			if (dd->write_buf)
				writel_relaxed(0,
						dd->base + SPI_MX_INPUT_COUNT);
			else
				writel_relaxed(n_words,
						dd->base + SPI_MX_INPUT_COUNT);

			writel_relaxed(0, dd->base + SPI_MX_OUTPUT_COUNT);
		}
	}
}

static int msm_spi_bam_pipe_disconnect(struct msm_spi *dd,
						struct msm_spi_bam_pipe  *pipe)
{
	int ret = sps_disconnect(pipe->handle);
	if (ret) {
		dev_dbg(dd->dev, "%s disconnect bam %s pipe failed\n",
							__func__, pipe->name);
		return ret;
	}
	return 0;
}

static int msm_spi_bam_pipe_connect(struct msm_spi *dd,
		struct msm_spi_bam_pipe  *pipe, struct sps_connect *config)
{
	int ret;
	struct sps_register_event event  = {
		.mode      = SPS_TRIGGER_WAIT,
		.options   = SPS_O_EOT,
	};

	if (pipe == &dd->bam.prod)
		event.xfer_done = &dd->rx_transfer_complete;
	else if (pipe == &dd->bam.cons)
		event.xfer_done = &dd->tx_transfer_complete;

	ret = sps_connect(pipe->handle, config);
	if (ret) {
		dev_err(dd->dev, "%s: sps_connect(%s:0x%p):%d",
				__func__, pipe->name, pipe->handle, ret);
		return ret;
	}

	ret = sps_register_event(pipe->handle, &event);
	if (ret) {
		dev_err(dd->dev, "%s sps_register_event(hndl:0x%p %s):%d",
				__func__, pipe->handle, pipe->name, ret);
		msm_spi_bam_pipe_disconnect(dd, pipe);
		return ret;
	}

	pipe->teardown_required = true;
	return 0;
}


static void msm_spi_bam_pipe_flush(struct msm_spi *dd,
					enum msm_spi_pipe_direction pipe_dir)
{
	struct msm_spi_bam_pipe *pipe = (pipe_dir == SPI_BAM_CONSUMER_PIPE) ?
					(&dd->bam.prod) : (&dd->bam.cons);
	struct sps_connect           config  = pipe->config;
	int    ret;

	ret = msm_spi_bam_pipe_disconnect(dd, pipe);
	if (ret)
		return;

	ret = msm_spi_bam_pipe_connect(dd, pipe, &config);
	if (ret)
		return;
}

static void msm_spi_bam_flush(struct msm_spi *dd)
{
	dev_dbg(dd->dev, "%s flushing bam for recovery\n" , __func__);

	msm_spi_bam_pipe_flush(dd, SPI_BAM_CONSUMER_PIPE);
	msm_spi_bam_pipe_flush(dd, SPI_BAM_PRODUCER_PIPE);
}

static int
msm_spi_bam_process_rx(struct msm_spi *dd, u32 *bytes_to_send, u32 desc_cnt)
{
	int ret = 0;
	u32 data_xfr_size = 0, rem_bc = 0;
	u32 prod_flags = 0;

	rem_bc = dd->cur_rx_transfer->len - dd->bam.curr_rx_bytes_recvd;
	data_xfr_size = (rem_bc < *bytes_to_send) ? rem_bc : *bytes_to_send;

	/*
	 * set flags for last descriptor only
	 */
	if ((desc_cnt == 1)
		|| (*bytes_to_send == data_xfr_size))
		prod_flags = (dd->write_buf)
			? 0 : (SPS_IOVEC_FLAG_EOT | SPS_IOVEC_FLAG_NWD);

	/*
	 * enqueue read buffer in BAM
	 */
	ret = sps_transfer_one(dd->bam.prod.handle,
			dd->cur_rx_transfer->rx_dma
				+ dd->bam.curr_rx_bytes_recvd,
			data_xfr_size, dd, prod_flags);
	if (ret < 0) {
		dev_err(dd->dev,
		"%s: Failed to queue producer BAM transfer",
		__func__);
		return ret;
	}

	dd->bam.curr_rx_bytes_recvd += data_xfr_size;
	*bytes_to_send -= data_xfr_size;
	dd->bam.bam_rx_len -= data_xfr_size;
	return data_xfr_size;
}

static int
msm_spi_bam_process_tx(struct msm_spi *dd, u32 *bytes_to_send, u32 desc_cnt)
{
	int ret = 0;
	u32 data_xfr_size = 0, rem_bc = 0;
	u32 cons_flags = 0;

	rem_bc = dd->cur_tx_transfer->len - dd->bam.curr_tx_bytes_sent;
	data_xfr_size = (rem_bc < *bytes_to_send) ? rem_bc : *bytes_to_send;

	/*
	 * set flags for last descriptor only
	*/
	if ((desc_cnt == 1)
		|| (*bytes_to_send == data_xfr_size))
		cons_flags = SPS_IOVEC_FLAG_EOT | SPS_IOVEC_FLAG_NWD;

	/*
	 * enqueue write buffer in BAM
	 */
	ret = sps_transfer_one(dd->bam.cons.handle,
			dd->cur_tx_transfer->tx_dma
				+ dd->bam.curr_tx_bytes_sent,
			data_xfr_size, dd, cons_flags);
	if (ret < 0) {
		dev_err(dd->dev,
		"%s: Failed to queue consumer BAM transfer",
		__func__);
		return ret;
	}

	dd->bam.curr_tx_bytes_sent	+= data_xfr_size;
	*bytes_to_send	-= data_xfr_size;
	dd->bam.bam_tx_len -= data_xfr_size;
	return data_xfr_size;
}


/**
 * msm_spi_bam_begin_transfer: transfer dd->tx_bytes_remaining bytes
 * using BAM.
 * @brief BAM can transfer SPI_MAX_TRFR_BTWN_RESETS byte at a single
 * transfer. Between transfer QUP must change to reset state. A loop is
 * issuing a single BAM transfer at a time.
 * @return zero on success
 */
static int
msm_spi_bam_begin_transfer(struct msm_spi *dd)
{
	u32 tx_bytes_to_send = 0, rx_bytes_to_recv = 0;
	u32 n_words_xfr;
	s32 ret = 0;
	u32 prod_desc_cnt = SPI_BAM_MAX_DESC_NUM - 1;
	u32 cons_desc_cnt = SPI_BAM_MAX_DESC_NUM - 1;
	u32 byte_count = 0;

	rx_bytes_to_recv = min_t(u32, dd->bam.bam_rx_len,
				SPI_MAX_TRFR_BTWN_RESETS);
	tx_bytes_to_send = min_t(u32, dd->bam.bam_tx_len,
				SPI_MAX_TRFR_BTWN_RESETS);
	n_words_xfr = DIV_ROUND_UP(rx_bytes_to_recv,
				dd->bytes_per_word);

	msm_spi_set_mx_counts(dd, n_words_xfr);
	ret = msm_spi_set_state(dd, SPI_OP_STATE_RUN);
	if (ret < 0) {
		dev_err(dd->dev,
			"%s: Failed to set QUP state to run",
			__func__);
		goto xfr_err;
	}

	while ((rx_bytes_to_recv + tx_bytes_to_send) &&
		((cons_desc_cnt + prod_desc_cnt) > 0)) {
		struct spi_transfer *t = NULL;

		if (dd->read_buf && (prod_desc_cnt > 0)) {
			ret = msm_spi_bam_process_rx(dd, &rx_bytes_to_recv,
							prod_desc_cnt);
			if (ret < 0)
				goto xfr_err;

			if (!(dd->cur_rx_transfer->len
				- dd->bam.curr_rx_bytes_recvd))
				t = dd->cur_rx_transfer;
			prod_desc_cnt--;
		}

		if (dd->write_buf && (cons_desc_cnt > 0)) {
			ret = msm_spi_bam_process_tx(dd, &tx_bytes_to_send,
							cons_desc_cnt);
			if (ret < 0)
				goto xfr_err;

			if (!(dd->cur_tx_transfer->len
				- dd->bam.curr_tx_bytes_sent))
				t = dd->cur_tx_transfer;
			cons_desc_cnt--;
		}

		byte_count += ret;
	}

	dd->tx_bytes_remaining -= min_t(u32, byte_count,
						SPI_MAX_TRFR_BTWN_RESETS);
	return 0;
xfr_err:
	return ret;
}

static int
msm_spi_bam_next_transfer(struct msm_spi *dd)
{
	if (dd->tx_mode != SPI_BAM_MODE)
		return 0;

	if (dd->tx_bytes_remaining > 0) {
		if (msm_spi_set_state(dd, SPI_OP_STATE_RESET))
			return 0;
		if ((msm_spi_bam_begin_transfer(dd)) < 0) {
			dev_err(dd->dev, "%s: BAM transfer setup failed\n",
				__func__);
			return 0;
		}
		return 1;
	}
	return 0;
}

static int msm_spi_dma_send_next(struct msm_spi *dd)
{
	int ret = 0;
	if (dd->tx_mode == SPI_BAM_MODE)
		ret = msm_spi_bam_next_transfer(dd);
	return ret;
}

static inline void msm_spi_ack_transfer(struct msm_spi *dd)
{
	writel_relaxed(SPI_OP_MAX_INPUT_DONE_FLAG |
		       SPI_OP_MAX_OUTPUT_DONE_FLAG,
		       dd->base + SPI_OPERATIONAL);
	/* Ensure done flag was cleared before proceeding further */
	mb();
}

/* Figure which irq occured and call the relevant functions */
static inline irqreturn_t msm_spi_qup_irq(int irq, void *dev_id)
{
	u32 op, ret = IRQ_NONE;
	u32 slv;
	struct msm_spi *dd = dev_id;

	if (pm_runtime_suspended(dd->dev)) {
		dev_warn(dd->dev, "QUP: pm runtime suspend, irq:%d\n", irq);
		return ret;
	}
	if (readl_relaxed(dd->base + SPI_ERROR_FLAGS) ||
	    readl_relaxed(dd->base + QUP_ERROR_FLAGS)) {
		struct spi_master *master = dev_get_drvdata(dd->dev);
		ret |= msm_spi_error_irq(irq, master);
	}

	op = readl_relaxed(dd->base + SPI_OPERATIONAL);
	slv = readl_relaxed(dd->base + SPI_SLAVE_IRQ_STATUS);
	writel_relaxed(op, dd->base + SPI_OPERATIONAL);
	writel_relaxed(slv, dd->base + SPI_SLAVE_IRQ_STATUS);
	/*
	 * Ensure service flag was cleared before further
	 * processing of interrupt.
	 */
	mb();
	if (op & SPI_OP_INPUT_SERVICE_FLAG) {
		ret |= msm_spi_input_irq(irq, dev_id);
	}

	if (op & SPI_OP_OUTPUT_SERVICE_FLAG) {
		ret |= msm_spi_output_irq(irq, dev_id);
	}

	if (dd->tx_mode != SPI_BAM_MODE) {
		if (!dd->rx_done) {
			if (dd->rx_bytes_remaining == 0)
				dd->rx_done = true;
		}
		if (!dd->tx_done) {
			if (!dd->tx_bytes_remaining &&
					(op & SPI_OP_IP_FIFO_NOT_EMPTY)) {
				dd->tx_done = true;
			}
		}
	}
	if (dd->tx_done && dd->rx_done) {
		msm_spi_set_state(dd, SPI_OP_STATE_RESET);
		dd->tx_done = false;
		dd->rx_done = false;
		complete(&dd->rx_transfer_complete);
		complete(&dd->tx_transfer_complete);
	}
	return ret;
}

static irqreturn_t msm_spi_input_irq(int irq, void *dev_id)
{
	struct msm_spi	       *dd = dev_id;

	dd->stat_rx++;

	if (dd->rx_mode == SPI_MODE_NONE)
		return IRQ_HANDLED;

	if (dd->rx_mode == SPI_FIFO_MODE) {
		while ((readl_relaxed(dd->base + SPI_OPERATIONAL) &
			SPI_OP_IP_FIFO_NOT_EMPTY) &&
			(dd->rx_bytes_remaining > 0)) {
			msm_spi_read_word_from_fifo(dd);
		}
	} else if (dd->rx_mode == SPI_BLOCK_MODE) {
		int count = 0;

		while (dd->rx_bytes_remaining &&
				(count < dd->input_block_size)) {
			msm_spi_read_word_from_fifo(dd);
			count += SPI_MAX_BYTES_PER_WORD;
		}
	}

	return IRQ_HANDLED;
}

static void msm_spi_write_word_to_fifo(struct msm_spi *dd)
{
	u32    word;
	u8     byte;
	int    i;
	int   write_bytes =
		(dd->pack_words ? SPI_MAX_BYTES_PER_WORD : dd->bytes_per_word);

	word = 0;
	if (dd->write_buf) {
		for (i = 0; (i < write_bytes) &&
			     dd->tx_bytes_remaining; i++) {
			dd->tx_bytes_remaining--;
			byte = *dd->write_buf++;
			word |= (byte << (BITS_PER_BYTE * i));
		}
	} else
		if (dd->tx_bytes_remaining > write_bytes)
			dd->tx_bytes_remaining -= write_bytes;
		else
			dd->tx_bytes_remaining = 0;
	dd->write_xfr_cnt++;

	writel_relaxed(word, dd->base + SPI_OUTPUT_FIFO);
}

static inline void msm_spi_write_rmn_to_fifo(struct msm_spi *dd)
{
	int count = 0;

	if (dd->tx_mode == SPI_FIFO_MODE) {
		while ((dd->tx_bytes_remaining > 0) &&
			(count < dd->input_fifo_size) &&
		       !(readl_relaxed(dd->base + SPI_OPERATIONAL)
						& SPI_OP_OUTPUT_FIFO_FULL)) {
			msm_spi_write_word_to_fifo(dd);
			count++;
		}
	}

	if (dd->tx_mode == SPI_BLOCK_MODE) {
		while (dd->tx_bytes_remaining &&
				(count < dd->output_block_size)) {
			msm_spi_write_word_to_fifo(dd);
			count += SPI_MAX_BYTES_PER_WORD;
		}
	}
}

static irqreturn_t msm_spi_output_irq(int irq, void *dev_id)
{
	struct msm_spi	       *dd = dev_id;

	dd->stat_tx++;

	if (dd->tx_mode == SPI_MODE_NONE)
		return IRQ_HANDLED;

	/* Output FIFO is empty. Transmit any outstanding write data. */
	if ((dd->tx_mode == SPI_FIFO_MODE) || (dd->tx_mode == SPI_BLOCK_MODE))
		msm_spi_write_rmn_to_fifo(dd);

	return IRQ_HANDLED;
}

static irqreturn_t msm_spi_error_irq(int irq, void *dev_id)
{
	struct spi_master	*master = dev_id;
	struct msm_spi          *dd = spi_master_get_devdata(master);
	u32                      spi_err;

	spi_err = readl_relaxed(dd->base + SPI_ERROR_FLAGS);
	if (spi_err & SPI_ERR_OUTPUT_OVER_RUN_ERR)
		dev_warn(master->dev.parent, "SPI output overrun error\n");
	if (spi_err & SPI_ERR_INPUT_UNDER_RUN_ERR)
		dev_warn(master->dev.parent, "SPI input underrun error\n");
	if (spi_err & SPI_ERR_OUTPUT_UNDER_RUN_ERR)
		dev_warn(master->dev.parent, "SPI output underrun error\n");
	msm_spi_get_clk_err(dd, &spi_err);
	if (spi_err & SPI_ERR_CLK_OVER_RUN_ERR)
		dev_warn(master->dev.parent, "SPI clock overrun error\n");
	if (spi_err & SPI_ERR_CLK_UNDER_RUN_ERR)
		dev_warn(master->dev.parent, "SPI clock underrun error\n");
	msm_spi_clear_error_flags(dd);
	msm_spi_ack_clk_err(dd);
	/* Ensure clearing of QUP_ERROR_FLAGS was completed */
	mb();
	return IRQ_HANDLED;
}

static int msm_spi_bam_map_buffers(struct msm_spi *dd)
{
	int ret = -EINVAL;
	struct device *dev;
	struct spi_transfer *xfr;
	void *tx_buf, *rx_buf;
	u32 tx_len, rx_len;

	dev = dd->dev;
	xfr = dd->cur_transfer;

	tx_buf = (void *)xfr->tx_buf;
	rx_buf = xfr->rx_buf;
	tx_len = rx_len = xfr->len;
	if (tx_buf != NULL) {
		xfr->tx_dma = dma_map_single(dev, tx_buf,
						tx_len, DMA_TO_DEVICE);
		if (dma_mapping_error(dev, xfr->tx_dma)) {
			ret = -ENOMEM;
			goto error;
		}
	}

	if (rx_buf != NULL) {
		xfr->rx_dma = dma_map_single(dev, rx_buf, rx_len,
						DMA_FROM_DEVICE);
		if (dma_mapping_error(dev, xfr->rx_dma)) {
			if (tx_buf != NULL)
				dma_unmap_single(dev,
						xfr->tx_dma,
						tx_len, DMA_TO_DEVICE);
			ret = -ENOMEM;
			goto error;
		}
	}

	return 0;
error:
	msm_spi_dma_unmap_buffers(dd);
	return ret;
}

static int msm_spi_dma_map_buffers(struct msm_spi *dd)
{
	int ret = 0;
	if (dd->tx_mode == SPI_BAM_MODE)
		ret = msm_spi_bam_map_buffers(dd);
	return ret;
}

static void msm_spi_bam_unmap_buffers(struct msm_spi *dd)
{
	struct device *dev;
	struct spi_transfer *xfr;
	void *tx_buf, *rx_buf;
	u32  tx_len, rx_len;

	dev = dd->dev;
	xfr = dd->cur_transfer;

	tx_buf = (void *)xfr->tx_buf;
	rx_buf = xfr->rx_buf;
	tx_len = rx_len = xfr->len;
	if (tx_buf != NULL)
		dma_unmap_single(dev, xfr->tx_dma,
				tx_len, DMA_TO_DEVICE);

	if (rx_buf != NULL)
		dma_unmap_single(dev, xfr->rx_dma,
				rx_len, DMA_FROM_DEVICE);
}

static inline void msm_spi_dma_unmap_buffers(struct msm_spi *dd)
{
	if (dd->tx_mode == SPI_BAM_MODE)
		msm_spi_bam_unmap_buffers(dd);
}

/**
 * msm_spi_use_dma - decides whether to use Data-Mover or BAM for
 * the given transfer
 * @dd:       device
 * @tr:       transfer
 *
 * Start using DMA if:
 * 1. Is supported by HW
 * 2. Is not diabled by platfrom data
 * 3. Transfer size is greater than 3*block size.
 * 4. Buffers are aligned to cache line.
 * 5. Bytes-per-word is 8,16 or 32.
  */
static inline bool
msm_spi_use_dma(struct msm_spi *dd, struct spi_transfer *tr, u8 bpw)
{
	if (!dd->use_dma)
		return false;

	/* check constraints from platform data */
	if ((dd->qup_ver == SPI_QUP_VERSION_BFAM) && !dd->pdata->use_bam)
		return false;

	if (dd->cur_msg_len < 3*dd->input_block_size)
		return false;

	if ((dd->qup_ver != SPI_QUP_VERSION_BFAM) &&
		 !dd->read_len && !dd->write_len)
		return false;

	if (dd->qup_ver == SPI_QUP_VERSION_NONE) {
		u32 cache_line = dma_get_cache_alignment();

		if (tr->tx_buf) {
			if (!IS_ALIGNED((size_t)tr->tx_buf, cache_line))
				return 0;
		}
		if (tr->rx_buf) {
			if (!IS_ALIGNED((size_t)tr->rx_buf, cache_line))
				return false;
		}

		if (tr->cs_change &&
		   ((bpw != 8) && (bpw != 16) && (bpw != 32)))
			return false;
	}

	return true;
}

/**
 * msm_spi_set_transfer_mode: Chooses optimal transfer mode. Sets dd->mode and
 * prepares to process a transfer.
 */
static void
msm_spi_set_transfer_mode(struct msm_spi *dd, u8 bpw, u32 read_count)
{
	if (dd->pdata->is_slv_ctrl) {
		dd->tx_mode = SPI_BAM_MODE;
		dd->rx_mode = SPI_BAM_MODE;
	} else if (msm_spi_use_dma(dd, dd->cur_transfer, bpw)) {
		dd->tx_mode = SPI_BAM_MODE;
		dd->rx_mode = SPI_BAM_MODE;
	} else {
		dd->rx_mode = SPI_FIFO_MODE;
		dd->tx_mode = SPI_FIFO_MODE;
		dd->read_len = dd->cur_transfer->len;
		dd->write_len = dd->cur_transfer->len;
	}
}

/**
 * msm_spi_set_qup_io_modes: prepares register QUP_IO_MODES to process a
 * transfer
 */
static void msm_spi_set_qup_io_modes(struct msm_spi *dd)
{
	u32 spi_iom;
	spi_iom = readl_relaxed(dd->base + SPI_IO_MODES);
	/* Set input and output transfer mode: FIFO, DMOV, or BAM */
	spi_iom &= ~(SPI_IO_M_INPUT_MODE | SPI_IO_M_OUTPUT_MODE);
	spi_iom = (spi_iom | (dd->tx_mode << OUTPUT_MODE_SHIFT));
	spi_iom = (spi_iom | (dd->rx_mode << INPUT_MODE_SHIFT));

	/* Always enable packing for the BAM mode and for non BAM mode only
	 * if bpw is % 8 and transfer length is % 4 Bytes.
	 */
	if (dd->tx_mode == SPI_BAM_MODE ||
		((dd->cur_msg_len % SPI_MAX_BYTES_PER_WORD == 0) &&
		(dd->cur_transfer->bits_per_word) &&
		(dd->cur_transfer->bits_per_word <= 32) &&
		(dd->cur_transfer->bits_per_word % 8 == 0))) {
		spi_iom |= SPI_IO_M_PACK_EN | SPI_IO_M_UNPACK_EN;
		dd->pack_words = true;
	} else {
		spi_iom &= ~(SPI_IO_M_PACK_EN | SPI_IO_M_UNPACK_EN);
		spi_iom |= SPI_IO_M_OUTPUT_BIT_SHIFT_EN;
		dd->pack_words = false;
	}

	/*if (dd->mode == SPI_BAM_MODE) {
		spi_iom |= SPI_IO_C_NO_TRI_STATE;
		spi_iom &= ~(SPI_IO_C_CS_SELECT | SPI_IO_C_CS_N_POLARITY);
	}*/
	writel_relaxed(spi_iom, dd->base + SPI_IO_MODES);
}

static u32 msm_spi_calc_spi_ioc_clk_polarity(u32 spi_ioc, u8 mode)
{
	if (mode & SPI_CPOL)
		spi_ioc |= SPI_IO_C_CLK_IDLE_HIGH;
	else
		spi_ioc &= ~SPI_IO_C_CLK_IDLE_HIGH;
	return spi_ioc;
}

/**
 * msm_spi_set_spi_io_control: prepares register SPI_IO_CONTROL to process the
 * next transfer
 * @return the new set value of SPI_IO_CONTROL
 */
static u32 msm_spi_set_spi_io_control(struct msm_spi *dd)
{
	u32 spi_ioc, spi_ioc_orig, chip_select;

	spi_ioc = readl_relaxed(dd->base + SPI_IO_CONTROL);
	spi_ioc_orig = spi_ioc;
	spi_ioc = msm_spi_calc_spi_ioc_clk_polarity(spi_ioc
						, dd->spi->mode);
	/* Set chip-select */
	chip_select = dd->spi->chip_select << 2;
	if ((spi_ioc & SPI_IO_C_CS_SELECT) != chip_select)
		spi_ioc = (spi_ioc & ~SPI_IO_C_CS_SELECT) | chip_select;
	if (!dd->cur_transfer->cs_change)
		spi_ioc |= SPI_IO_C_MX_CS_MODE;

	if (spi_ioc != spi_ioc_orig)
		writel_relaxed(spi_ioc, dd->base + SPI_IO_CONTROL);

	/*
	 * Ensure that the IO control mode register gets written
	 * before proceeding with the transfer.
	 */
	mb();
	return spi_ioc;
}

/**
 * msm_spi_set_qup_op_mask: prepares register QUP_OPERATIONAL_MASK to process
 * the next transfer
 */
static void msm_spi_set_qup_op_mask(struct msm_spi *dd)
{
	/* mask INPUT and OUTPUT service flags in to prevent IRQs on FIFO status
	 * change in BAM mode */
	u32 mask = (dd->tx_mode == SPI_BAM_MODE) ?
		QUP_OP_MASK_OUTPUT_SERVICE_FLAG | QUP_OP_MASK_INPUT_SERVICE_FLAG
		: 0;
	writel_relaxed(mask, dd->base + QUP_OPERATIONAL_MASK);
}

static void get_transfer_length(struct msm_spi *dd)
{
	struct spi_transfer *xfer = dd->cur_transfer;

	dd->cur_msg_len = 0;
	dd->read_len = dd->write_len = 0;
	dd->bam.bam_tx_len = dd->bam.bam_rx_len = 0;

	if (xfer->tx_buf)
		dd->bam.bam_tx_len = dd->write_len = xfer->len;
	if (xfer->rx_buf)
		dd->bam.bam_rx_len = dd->read_len = xfer->len;
	dd->cur_msg_len = xfer->len;
}

static int msm_spi_process_transfer(struct msm_spi *dd)
{
	u8  bpw;
	u32 max_speed = 0;
	u32 read_count;
	u32 timeout;
	u32 spi_ioc;
	u32 int_loopback = 0;
	int ret;
	int status = 0;

	get_transfer_length(dd);
	dd->cur_tx_transfer = dd->cur_transfer;
	dd->cur_rx_transfer = dd->cur_transfer;
	dd->bam.curr_rx_bytes_recvd = dd->bam.curr_tx_bytes_sent = 0;
	dd->write_xfr_cnt = dd->read_xfr_cnt = 0;
	dd->tx_bytes_remaining = dd->cur_msg_len;
	dd->rx_bytes_remaining = dd->cur_msg_len;
	dd->read_buf           = dd->cur_transfer->rx_buf;
	dd->write_buf          = dd->cur_transfer->tx_buf;
	dd->tx_done = false;
	dd->rx_done = false;
	init_completion(&dd->tx_transfer_complete);
	init_completion(&dd->rx_transfer_complete);
	if (dd->cur_transfer->bits_per_word)
		bpw = dd->cur_transfer->bits_per_word;
	else
		bpw = 8;
	dd->bytes_per_word = (bpw + 7) / 8;

	if (dd->cur_transfer->speed_hz)
		max_speed = dd->cur_transfer->speed_hz;
	else
		max_speed = dd->spi->max_speed_hz;
	if (!dd->clock_speed || max_speed != dd->clock_speed)
		msm_spi_clock_set(dd, max_speed);

	timeout = 100 * msecs_to_jiffies(
			DIV_ROUND_UP(dd->cur_msg_len * 8,
			DIV_ROUND_UP(max_speed, MSEC_PER_SEC)));

	read_count = DIV_ROUND_UP(dd->cur_msg_len, dd->bytes_per_word);
	if (dd->spi->mode & SPI_LOOP && !dd->pdata->is_slv_ctrl)
		int_loopback = 1;

	if (msm_spi_set_state(dd, SPI_OP_STATE_RESET))
		dev_err(dd->dev,
			"%s: Error setting QUP to reset-state",
			__func__);

	msm_spi_set_transfer_mode(dd, bpw, read_count);
	msm_spi_set_mx_counts(dd, read_count);
	if (dd->tx_mode == SPI_BAM_MODE) {
		ret = msm_spi_dma_map_buffers(dd);
		if (ret < 0) {
			pr_err("Mapping DMA buffers\n");
			dd->tx_mode = SPI_MODE_NONE;
			dd->rx_mode = SPI_MODE_NONE;
			return ret;
		}
	}
	msm_spi_set_qup_io_modes(dd);
	msm_spi_set_spi_config(dd, bpw);
	msm_spi_set_qup_config(dd, bpw);
	if (!dd->pdata->is_slv_ctrl)
		spi_ioc = msm_spi_set_spi_io_control(dd);
	msm_spi_set_qup_op_mask(dd);
	if (dd->pdata->is_slv_ctrl)
		msm_spi_slv_setup(dd);

	/* The output fifo interrupt handler will handle all writes after
	   the first. Restricting this to one write avoids contention
	   issues and race conditions between this thread and the int handler
	*/
	if (dd->tx_mode != SPI_BAM_MODE) {
		if (msm_spi_prepare_for_write(dd))
			goto transfer_end;
		msm_spi_start_write(dd, read_count);
	} else {
		if ((msm_spi_bam_begin_transfer(dd)) < 0) {
			dev_err(dd->dev, "%s: BAM transfer setup failed\n",
				__func__);
			status = -EIO;
			goto transfer_end;
		}
	}

	/*
	 * On BAM mode, current state here is run.
	 * Only enter the RUN state after the first word is written into
	 * the output FIFO. Otherwise, the output FIFO EMPTY interrupt
	 * might fire before the first word is written resulting in a
	 * possible race condition.
	 */
	if (dd->tx_mode != SPI_BAM_MODE)
		if (msm_spi_set_state(dd, SPI_OP_STATE_RUN)) {
			dev_warn(dd->dev,
				"%s: Failed to set QUP to run-state. Mode:%d",
				__func__, dd->tx_mode);
			goto transfer_end;
		}

	/* Assume success, this might change later upon transaction result */
	do {
		if (dd->write_buf &&
			!wait_for_completion_timeout(&dd->tx_transfer_complete,
						 timeout)) {
				dev_err(dd->dev,
					"%s: SPI Tx transaction timeout\n",
					__func__);
				status = -EIO;
				break;
		}

		if (dd->read_buf &&
			!wait_for_completion_timeout(&dd->rx_transfer_complete,
						 timeout)) {
				dev_err(dd->dev,
					"%s: SPI Rx transaction timeout\n",
					__func__);
				status = -EIO;
				break;
		}
	} while (msm_spi_dma_send_next(dd));

	msm_spi_udelay(dd->xfrs_delay_usec);

transfer_end:
	if ((dd->tx_mode == SPI_BAM_MODE) && status)
		msm_spi_bam_flush(dd);
	msm_spi_dma_unmap_buffers(dd);
	dd->tx_mode = SPI_MODE_NONE;
	dd->rx_mode = SPI_MODE_NONE;

	msm_spi_set_state(dd, SPI_OP_STATE_RESET);
	if (!dd->cur_transfer->cs_change && !dd->pdata->is_slv_ctrl)
		writel_relaxed(spi_ioc & ~SPI_IO_C_MX_CS_MODE,
		       dd->base + SPI_IO_CONTROL);
	return status;
}

static int msm_spi_slv_abort(struct spi_master *spi)
{
	struct msm_spi *dd = spi_master_get_devdata(spi);

	complete_all(&dd->tx_transfer_complete);
	complete_all(&dd->rx_transfer_complete);
	return 0;
}

static inline void msm_spi_set_cs(struct spi_device *spi, bool set_flag)
{
	struct msm_spi *dd = spi_master_get_devdata(spi->master);
	u32 spi_ioc;
	u32 spi_ioc_orig;
	int rc = 0;

	rc = pm_runtime_get_sync(dd->dev);
	if (rc < 0) {
		dev_err(dd->dev, "Failure during runtime get,rc=%d", rc);
		return;
	}

	if (dd->pdata->is_shared) {
		rc = get_local_resources(dd);
		if (rc)
			return;
	}

	msm_spi_clk_path_vote(dd, spi->max_speed_hz);

	if (!(spi->mode & SPI_CS_HIGH))
		set_flag = !set_flag;

	/* Serve only under mutex lock as RT suspend may cause a race */
	mutex_lock(&dd->core_lock);
	if (dd->suspended) {
		dev_err(dd->dev, "%s: SPI operational state=%d Invalid\n",
			__func__, dd->suspended);
		mutex_unlock(&dd->core_lock);
		return;
	}

	spi_ioc = readl_relaxed(dd->base + SPI_IO_CONTROL);
	spi_ioc_orig = spi_ioc;
	if (set_flag)
		spi_ioc |= SPI_IO_C_FORCE_CS;
	else
		spi_ioc &= ~SPI_IO_C_FORCE_CS;

	if (spi_ioc != spi_ioc_orig)
		writel_relaxed(spi_ioc, dd->base + SPI_IO_CONTROL);
	if (dd->pdata->is_shared)
		put_local_resources(dd);
	mutex_unlock(&dd->core_lock);

	pm_runtime_mark_last_busy(dd->dev);
	pm_runtime_put_autosuspend(dd->dev);
}

static void reset_core(struct msm_spi *dd)
{
	u32 spi_ioc;
	msm_spi_register_init(dd);
	/*
	 * The SPI core generates a bogus input overrun error on some targets,
	 * when a transition from run to reset state occurs and if the FIFO has
	 * an odd number of entries. Hence we disable the INPUT_OVER_RUN_ERR_EN
	 * bit.
	 */
	msm_spi_enable_error_flags(dd);

	spi_ioc = readl_relaxed(dd->base + SPI_IO_CONTROL);
	spi_ioc |= SPI_IO_C_NO_TRI_STATE;
	writel_relaxed(spi_ioc , dd->base + SPI_IO_CONTROL);
	/*
	 * Ensure that the IO control is written to before returning.
	 */
	mb();
	msm_spi_set_state(dd, SPI_OP_STATE_RESET);
}

static void put_local_resources(struct msm_spi *dd)
{

	if (IS_ERR_OR_NULL(dd->clk) || IS_ERR_OR_NULL(dd->pclk)) {
		dev_err(dd->dev,
			"%s: error clk put\n",
				__func__);
		return;
	}
	msm_spi_disable_irqs(dd);
	clk_disable_unprepare(dd->clk);
	dd->clock_speed = 0;
	clk_disable_unprepare(dd->pclk);

	/* Free  the spi clk, miso, mosi, cs gpio */
	if (dd->pdata && dd->pdata->gpio_release)
		dd->pdata->gpio_release();

	msm_spi_free_gpios(dd);
}

static int get_local_resources(struct msm_spi *dd)
{
	int ret = -EINVAL;

	if (IS_ERR_OR_NULL(dd->clk) || IS_ERR_OR_NULL(dd->pclk)) {
		dev_err(dd->dev,
			"%s: error clk put\n",
				__func__);
		return ret;
	}

	/* Configure the spi clk, miso, mosi and cs gpio */
	if (dd->pdata->gpio_config) {
		ret = dd->pdata->gpio_config();
		if (ret) {
			dev_err(dd->dev,
					"%s: error configuring GPIOs\n",
					__func__);
			return ret;
		}
	}

	ret = msm_spi_request_gpios(dd);
	if (ret)
		return ret;

	ret = clk_prepare_enable(dd->clk);
	if (ret)
		goto clk0_err;
	ret = clk_prepare_enable(dd->pclk);
	if (ret)
		goto clk1_err;
	msm_spi_enable_irqs(dd);

	return 0;

clk1_err:
	clk_disable_unprepare(dd->clk);
clk0_err:
	msm_spi_free_gpios(dd);
	return ret;
}

/**
 * msm_spi_transfer_one: To process one spi transfer at a time
 * @master: spi master controller reference
 * @msg: one multi-segment SPI transaction
 * @return zero on success or negative error value
 *
 */
static int msm_spi_transfer_one(struct spi_master *master,
				struct spi_device *spi,
				struct spi_transfer *xfer)
{
	struct msm_spi	*dd;
	unsigned long        flags;
	u32	status_error = 0;

	dd = spi_master_get_devdata(master);

	/* Check message parameters */
	if (xfer->speed_hz > dd->pdata->max_clock_speed ||
	    (xfer->bits_per_word &&
	     (xfer->bits_per_word < 4 || xfer->bits_per_word > 32)) ||
	    (xfer->tx_buf == NULL && xfer->rx_buf == NULL)) {
		dev_err(dd->dev,
			"Invalid transfer: %d Hz, %d bpw tx=%p, rx=%p\n",
			xfer->speed_hz, xfer->bits_per_word,
			xfer->tx_buf, xfer->rx_buf);
		return -EINVAL;
	}
	dd->spi = spi;
	dd->cur_transfer = xfer;

	mutex_lock(&dd->core_lock);

	spin_lock_irqsave(&dd->queue_lock, flags);
	dd->transfer_pending = 1;
	spin_unlock_irqrestore(&dd->queue_lock, flags);
	/*
	 * get local resources for each transfer to ensure we're in a good
	 * state and not interfering with other EE's using this device
	 */
	if (dd->pdata->is_shared) {
		if (get_local_resources(dd)) {
			mutex_unlock(&dd->core_lock);
			spi_finalize_current_message(master);
			return -EINVAL;
		}

		reset_core(dd);
		if (dd->use_dma) {
			msm_spi_bam_pipe_connect(dd, &dd->bam.prod,
					&dd->bam.prod.config);
			msm_spi_bam_pipe_connect(dd, &dd->bam.cons,
					&dd->bam.cons.config);
		}
	}

	if (dd->suspended || !msm_spi_is_valid_state(dd)) {
		dev_err(dd->dev, "%s: SPI operational state not valid\n",
			__func__);
		status_error = 1;
	}


	if (!status_error)
		status_error =
			msm_spi_process_transfer(dd);

	spin_lock_irqsave(&dd->queue_lock, flags);
	dd->transfer_pending = 0;
	spin_unlock_irqrestore(&dd->queue_lock, flags);

	/*
	 * Put local resources prior to calling finalize to ensure the hw
	 * is in a known state before notifying the calling thread (which is a
	 * different context since we're running in the spi kthread here) to
	 * prevent race conditions between us and any other EE's using this hw.
	 */
	if (dd->pdata->is_shared) {
		if (dd->use_dma) {
			msm_spi_bam_pipe_disconnect(dd, &dd->bam.prod);
			msm_spi_bam_pipe_disconnect(dd, &dd->bam.cons);
		}
		put_local_resources(dd);
	}
	mutex_unlock(&dd->core_lock);
	if (dd->suspended)
		wake_up_interruptible(&dd->continue_suspend);
	return status_error;
}

static int msm_spi_prepare_transfer_hardware(struct spi_master *master)
{
	struct msm_spi	*dd = spi_master_get_devdata(master);
	int resume_state = 0;

	resume_state = pm_runtime_get_sync(dd->dev);
	if (resume_state < 0)
		goto spi_finalize;

	/*
	 * Counter-part of system-suspend when runtime-pm is not enabled.
	 * This way, resume can be left empty and device will be put in
	 * active mode only if client requests anything on the bus
	 */
	if (!pm_runtime_enabled(dd->dev))
		resume_state = msm_spi_pm_resume_runtime(dd->dev);
	if (resume_state < 0)
		goto spi_finalize;
	if (dd->suspended) {
		resume_state = -EBUSY;
		goto spi_finalize;
	}
	return 0;

spi_finalize:
	spi_finalize_current_message(master);
	return resume_state;
}

static int msm_spi_unprepare_transfer_hardware(struct spi_master *master)
{
	struct msm_spi	*dd = spi_master_get_devdata(master);

	pm_runtime_mark_last_busy(dd->dev);
	pm_runtime_put_autosuspend(dd->dev);
	return 0;
}

static void msm_spi_slv_setup(struct msm_spi *dd)
{
	u32 spi_config = readl_relaxed(dd->base + SPI_CONFIG);
	u32 qup_config = readl_relaxed(dd->base + QUP_CONFIG);
	u32 irq_en = GENMASK(6, 0);

	qup_config &= ~QUP_CFG_MODE;
	qup_config |= QUP_CONFIG_SPI_SLAVE;
	qup_config |= (SPI_EN_EXT_OUT_FLAG | APP_CLK_ON_EN | CORE_CLK_ON_EN
		| FIFO_CLK_ON_EN | CORE_EX_CLK_ON_EN);
	spi_config |= SPI_CFG_SLAVE_OP;
	writel_relaxed(qup_config, dd->base + QUP_CONFIG);
	writel_relaxed(spi_config, dd->base + SPI_CONFIG);
	writel_relaxed(irq_en, (dd->base + SPI_SLAVE_IRQ_EN));
	if (dd->read_buf && !dd->write_buf) {
		u32 slv_cfg =
			readl_relaxed(dd->base + SPI_SLAVE_CONFIG);
		slv_cfg |= (RX_UNBALANCED_MASK | SPI_S_CGC_EN);
		writel_relaxed(slv_cfg, (dd->base + SPI_SLAVE_CONFIG));
	}
	/*
	 * Ensure Slave setup completes before returning.
	 */
	mb();
}

static int msm_spi_setup(struct spi_device *spi)
{
	struct msm_spi	*dd;
	int              rc = 0;
	u32              spi_ioc;
	u32              spi_config;
	u32              mask;

	if (spi->bits_per_word < 4 || spi->bits_per_word > 32) {
		dev_err(&spi->dev, "%s: invalid bits_per_word %d\n",
			__func__, spi->bits_per_word);
		return -EINVAL;
	}
	if (spi->chip_select > SPI_NUM_CHIPSELECTS-1) {
		dev_err(&spi->dev, "%s, chip select %d exceeds max value %d\n",
			__func__, spi->chip_select, SPI_NUM_CHIPSELECTS - 1);
		return -EINVAL;
	}

	dd = spi_master_get_devdata(spi->master);

	rc = pm_runtime_get_sync(dd->dev);
	if (rc < 0 && !dd->is_init_complete &&
			pm_runtime_enabled(dd->dev)) {
		pm_runtime_set_suspended(dd->dev);
		pm_runtime_put_sync(dd->dev);
		rc = 0;
		goto err_setup_exit;
	} else
		rc = 0;

	mutex_lock(&dd->core_lock);

	/* Counter-part of system-suspend when runtime-pm is not enabled. */
	if (!pm_runtime_enabled(dd->dev)) {
		rc = msm_spi_pm_resume_runtime(dd->dev);
		if (rc < 0 && !dd->is_init_complete) {
			rc = 0;
			mutex_unlock(&dd->core_lock);
			goto err_setup_exit;
		}
	}

	if (dd->suspended) {
		rc = -EBUSY;
		mutex_unlock(&dd->core_lock);
		goto err_setup_exit;
	}

	if (dd->pdata->is_shared) {
		rc = get_local_resources(dd);
		if (rc)
			goto no_resources;
	}

	spi_ioc = readl_relaxed(dd->base + SPI_IO_CONTROL);
	mask = SPI_IO_C_CS_N_POLARITY_0 << spi->chip_select;
	if (spi->mode & SPI_CS_HIGH)
		spi_ioc |= mask;
	else
		spi_ioc &= ~mask;
	spi_ioc = msm_spi_calc_spi_ioc_clk_polarity(spi_ioc, spi->mode);

	writel_relaxed(spi_ioc, dd->base + SPI_IO_CONTROL);

	spi_config = readl_relaxed(dd->base + SPI_CONFIG);
	spi_config = msm_spi_calc_spi_config_loopback_and_input_first(
							spi_config, spi->mode);
	writel_relaxed(spi_config, dd->base + SPI_CONFIG);

	/* Ensure previous write completed before disabling the clocks */
	mb();
	if (dd->pdata->is_shared)
		put_local_resources(dd);

no_resources:
	mutex_unlock(&dd->core_lock);
	/* Counter-part of system-resume when runtime-pm is not enabled. */
	if (!pm_runtime_enabled(dd->dev)) {
		msm_spi_pm_suspend_runtime(dd->dev);
	} else {
		pm_runtime_mark_last_busy(dd->dev);
		pm_runtime_put_autosuspend(dd->dev);
	}

err_setup_exit:
	return rc;
}

#ifdef CONFIG_DEBUG_FS


static int debugfs_iomem_x32_set(void *data, u64 val)
{
	struct msm_spi_debugfs_data *reg = (struct msm_spi_debugfs_data *)data;
	struct msm_spi *dd = reg->dd;
	int ret;

	ret = pm_runtime_get_sync(dd->dev);
	if (ret < 0)
		return ret;

	writel_relaxed(val, (dd->base + reg->offset));
	/* Ensure the previous write completed. */
	mb();

	pm_runtime_mark_last_busy(dd->dev);
	pm_runtime_put_autosuspend(dd->dev);
	return 0;
}

static int debugfs_iomem_x32_get(void *data, u64 *val)
{
	struct msm_spi_debugfs_data *reg = (struct msm_spi_debugfs_data *)data;
	struct msm_spi *dd = reg->dd;
	int ret;

	ret = pm_runtime_get_sync(dd->dev);
	if (ret < 0)
		return ret;
	*val = readl_relaxed(dd->base + reg->offset);
	/* Ensure the previous read completed. */
	mb();

	pm_runtime_mark_last_busy(dd->dev);
	pm_runtime_put_autosuspend(dd->dev);
	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(fops_iomem_x32, debugfs_iomem_x32_get,
			debugfs_iomem_x32_set, "0x%08llx\n");

static void spi_debugfs_init(struct msm_spi *dd)
{
	char dir_name[20];

	scnprintf(dir_name, sizeof(dir_name), "%s_dbg", dev_name(dd->dev));
	dd->dent_spi = debugfs_create_dir(dir_name, NULL);
	if (dd->dent_spi) {
		int i;

		for (i = 0; i < ARRAY_SIZE(debugfs_spi_regs); i++) {
			dd->reg_data[i].offset = debugfs_spi_regs[i].offset;
			dd->reg_data[i].dd = dd;
			dd->debugfs_spi_regs[i] =
			   debugfs_create_file(
			       debugfs_spi_regs[i].name,
			       debugfs_spi_regs[i].mode,
			       dd->dent_spi, &dd->reg_data[i],
			       &fops_iomem_x32);
		}
	}
}

static void spi_debugfs_exit(struct msm_spi *dd)
{
	if (dd->dent_spi) {
		int i;

		debugfs_remove_recursive(dd->dent_spi);
		dd->dent_spi = NULL;
		for (i = 0; i < ARRAY_SIZE(debugfs_spi_regs); i++)
			dd->debugfs_spi_regs[i] = NULL;
	}
}
#else
static void spi_debugfs_init(struct msm_spi *dd) {}
static void spi_debugfs_exit(struct msm_spi *dd) {}
#endif

/* ===Device attributes begin=== */
static ssize_t show_stats(struct device *dev, struct device_attribute *attr,
			  char *buf)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct msm_spi *dd =  spi_master_get_devdata(master);

	return snprintf(buf, PAGE_SIZE,
			"Device       %s\n"
			"rx fifo_size = %d spi words\n"
			"tx fifo_size = %d spi words\n"
			"use_dma ?    %s\n"
			"rx block size = %d bytes\n"
			"tx block size = %d bytes\n"
			"input burst size = %d bytes\n"
			"output burst size = %d bytes\n"
			"DMA configuration:\n"
			"tx_ch=%d, rx_ch=%d, tx_crci= %d, rx_crci=%d\n"
			"--statistics--\n"
			"Rx isrs  = %d\n"
			"Tx isrs  = %d\n"
			"--debug--\n"
			"NA yet\n",
			dev_name(dev),
			dd->input_fifo_size,
			dd->output_fifo_size,
			dd->use_dma ? "yes" : "no",
			dd->input_block_size,
			dd->output_block_size,
			dd->input_burst_size,
			dd->output_burst_size,
			dd->tx_dma_chan,
			dd->rx_dma_chan,
			dd->tx_dma_crci,
			dd->rx_dma_crci,
			dd->stat_rx,
			dd->stat_tx
			);
}

/* Reset statistics on write */
static ssize_t set_stats(struct device *dev, struct device_attribute *attr,
			 const char *buf, size_t count)
{
	struct msm_spi *dd = dev_get_drvdata(dev);
	dd->stat_rx = 0;
	dd->stat_tx = 0;
	return count;
}

static DEVICE_ATTR(stats, S_IRUGO | S_IWUSR, show_stats, set_stats);

static struct attribute *dev_attrs[] = {
	&dev_attr_stats.attr,
	NULL,
};

static struct attribute_group dev_attr_grp = {
	.attrs = dev_attrs,
};
/* ===Device attributes end=== */

static void msm_spi_bam_pipe_teardown(struct msm_spi *dd,
					enum msm_spi_pipe_direction pipe_dir)
{
	struct msm_spi_bam_pipe *pipe = (pipe_dir == SPI_BAM_CONSUMER_PIPE) ?
					(&dd->bam.prod) : (&dd->bam.cons);
	if (!pipe->teardown_required)
		return;

	msm_spi_bam_pipe_disconnect(dd, pipe);
	dma_free_coherent(dd->dev, pipe->config.desc.size,
		pipe->config.desc.base, pipe->config.desc.phys_base);
	sps_free_endpoint(pipe->handle);
	pipe->handle = 0;
	pipe->teardown_required = false;
}

static int msm_spi_bam_pipe_init(struct msm_spi *dd,
					enum msm_spi_pipe_direction pipe_dir)
{
	int rc = 0;
	struct sps_pipe *pipe_handle;
	struct msm_spi_bam_pipe *pipe = (pipe_dir == SPI_BAM_CONSUMER_PIPE) ?
					(&dd->bam.prod) : (&dd->bam.cons);
	struct sps_connect *pipe_conf = &pipe->config;

	pipe->name   = (pipe_dir == SPI_BAM_CONSUMER_PIPE) ? "cons" : "prod";
	pipe->handle = 0;
	pipe_handle  = sps_alloc_endpoint();
	if (!pipe_handle) {
		dev_err(dd->dev, "%s: Failed to allocate BAM endpoint\n"
								, __func__);
		return -ENOMEM;
	}

	memset(pipe_conf, 0, sizeof(*pipe_conf));
	rc = sps_get_config(pipe_handle, pipe_conf);
	if (rc) {
		dev_err(dd->dev, "%s: Failed to get BAM pipe config\n"
			, __func__);
		goto config_err;
	}

	if (pipe_dir == SPI_BAM_CONSUMER_PIPE) {
		pipe_conf->source          = dd->bam.handle;
		pipe_conf->destination     = SPS_DEV_HANDLE_MEM;
		pipe_conf->mode            = SPS_MODE_SRC;
		pipe_conf->src_pipe_index  =
					dd->pdata->bam_producer_pipe_index;
		pipe_conf->dest_pipe_index = 0;
	} else {
		pipe_conf->source          = SPS_DEV_HANDLE_MEM;
		pipe_conf->destination     = dd->bam.handle;
		pipe_conf->mode            = SPS_MODE_DEST;
		pipe_conf->src_pipe_index  = 0;
		pipe_conf->dest_pipe_index =
					dd->pdata->bam_consumer_pipe_index;
	}
	pipe_conf->options = SPS_O_EOT | SPS_O_AUTO_ENABLE;
	pipe_conf->desc.size = SPI_BAM_MAX_DESC_NUM * sizeof(struct sps_iovec);
	pipe_conf->desc.base = dma_alloc_coherent(dd->dev,
				pipe_conf->desc.size,
				&pipe_conf->desc.phys_base,
				GFP_KERNEL);
	if (!pipe_conf->desc.base) {
		dev_err(dd->dev, "%s: Failed allocate BAM pipe memory"
			, __func__);
		rc = -ENOMEM;
		goto config_err;
	}
	/* zero descriptor FIFO for convenient debugging of first descs */
	memset(pipe_conf->desc.base, 0x00, pipe_conf->desc.size);

	pipe->handle = pipe_handle;

	return 0;

config_err:
	sps_free_endpoint(pipe_handle);

	return rc;
}

static void msm_spi_bam_teardown(struct msm_spi *dd)
{
	msm_spi_bam_pipe_teardown(dd, SPI_BAM_PRODUCER_PIPE);
	msm_spi_bam_pipe_teardown(dd, SPI_BAM_CONSUMER_PIPE);

	if (dd->bam.deregister_required) {
		sps_deregister_bam_device(dd->bam.handle);
		dd->bam.deregister_required = false;
	}
}

static int msm_spi_bam_init(struct msm_spi *dd)
{
	struct sps_bam_props bam_props = {0};
	uintptr_t bam_handle;
	int rc = 0;

	rc = sps_phy2h(dd->bam.phys_addr, &bam_handle);
	if (rc || !bam_handle) {
		bam_props.phys_addr = dd->bam.phys_addr;
		bam_props.virt_addr = dd->bam.base;
		bam_props.irq       = dd->bam.irq;
		bam_props.manage    = SPS_BAM_MGR_DEVICE_REMOTE;
		bam_props.summing_threshold = 0x10;

		rc = sps_register_bam_device(&bam_props, &bam_handle);
		if (rc) {
			dev_err(dd->dev,
				"%s: Failed to register BAM device",
				__func__);
			return rc;
		}
		dd->bam.deregister_required = true;
	}

	dd->bam.handle = bam_handle;

	rc = msm_spi_bam_pipe_init(dd, SPI_BAM_PRODUCER_PIPE);
	if (rc) {
		dev_err(dd->dev,
			"%s: Failed to init producer BAM-pipe",
			__func__);
		goto bam_init_error;
	}

	rc = msm_spi_bam_pipe_init(dd, SPI_BAM_CONSUMER_PIPE);
	if (rc) {
		dev_err(dd->dev,
			"%s: Failed to init consumer BAM-pipe",
			__func__);
		goto bam_init_error;
	}

	return 0;

bam_init_error:
	msm_spi_bam_teardown(dd);
	return rc;
}

enum msm_spi_dt_entry_status {
	DT_REQ,  /* Required:  fail if missing */
	DT_SGST, /* Suggested: warn if missing */
	DT_OPT,  /* Optional:  don't warn if missing */
};

enum msm_spi_dt_entry_type {
	DT_U32,
	DT_GPIO,
	DT_BOOL,
};

struct msm_spi_dt_to_pdata_map {
	const char                  *dt_name;
	void                        *ptr_data;
	enum msm_spi_dt_entry_status status;
	enum msm_spi_dt_entry_type   type;
	int                          default_val;
};

static int msm_spi_dt_to_pdata_populate(struct platform_device *pdev,
					struct msm_spi_platform_data *pdata,
					struct msm_spi_dt_to_pdata_map  *itr)
{
	int  ret, err = 0;
	struct device_node *node = pdev->dev.of_node;

	for (; itr->dt_name; ++itr) {
		switch (itr->type) {
		case DT_GPIO:
			ret = of_get_named_gpio(node, itr->dt_name, 0);
			if (ret >= 0) {
				*((int *) itr->ptr_data) = ret;
				ret = 0;
			}
			break;
		case DT_U32:
			ret = of_property_read_u32(node, itr->dt_name,
							 (u32 *) itr->ptr_data);
			break;
		case DT_BOOL:
			*((bool *) itr->ptr_data) =
				of_property_read_bool(node, itr->dt_name);
			ret = 0;
			break;
		default:
			dev_err(&pdev->dev, "%d is an unknown DT entry type\n",
								itr->type);
			ret = -EBADE;
		}

		dev_dbg(&pdev->dev, "DT entry ret:%d name:%s val:%d\n",
				ret, itr->dt_name, *((int *)itr->ptr_data));

		if (ret) {
			*((int *)itr->ptr_data) = itr->default_val;

			if (itr->status < DT_OPT) {
				dev_err(&pdev->dev, "Missing '%s' DT entry\n",
								itr->dt_name);

				/* cont on err to dump all missing entries */
				if (itr->status == DT_REQ && !err)
					err = ret;
			}
		}
	}

	return err;
}

/**
 * msm_spi_dt_to_pdata: create pdata and read gpio config from device tree
 */
struct msm_spi_platform_data *msm_spi_dt_to_pdata(
			struct platform_device *pdev, struct msm_spi *dd)
{
	struct msm_spi_platform_data *pdata;

	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
	if (!pdata) {
		pr_err("Unable to allocate platform data\n");
		return NULL;
	} else {
		struct msm_spi_dt_to_pdata_map map[] = {
		{"spi-max-frequency",
			&pdata->max_clock_speed,         DT_SGST, DT_U32,   0},
		{"qcom,infinite-mode",
			&pdata->infinite_mode,           DT_OPT,  DT_U32,   0},
		{"qcom,master-id",
			&pdata->master_id,               DT_SGST, DT_U32,   0},
		{"qcom,bus-width",
			&pdata->bus_width,               DT_OPT, DT_U32,   8},
		{"qcom,ver-reg-exists",
			&pdata->ver_reg_exists,          DT_OPT,  DT_BOOL,  0},
		{"qcom,use-bam",
			&pdata->use_bam,                 DT_OPT,  DT_BOOL,  0},
		{"qcom,use-pinctrl",
			&pdata->use_pinctrl,             DT_OPT,  DT_BOOL,  0},
		{"qcom,bam-consumer-pipe-index",
			&pdata->bam_consumer_pipe_index, DT_OPT,  DT_U32,   0},
		{"qcom,bam-producer-pipe-index",
			&pdata->bam_producer_pipe_index, DT_OPT,  DT_U32,   0},
		{"qcom,gpio-clk",
			&dd->spi_gpios[0],               DT_OPT,  DT_GPIO, -1},
		{"qcom,gpio-miso",
			&dd->spi_gpios[1],               DT_OPT,  DT_GPIO, -1},
		{"qcom,gpio-mosi",
			&dd->spi_gpios[2],               DT_OPT,  DT_GPIO, -1},
		{"qcom,gpio-cs0",
			&dd->cs_gpios[0].gpio_num,       DT_OPT,  DT_GPIO, -1},
		{"qcom,gpio-cs1",
			&dd->cs_gpios[1].gpio_num,       DT_OPT,  DT_GPIO, -1},
		{"qcom,gpio-cs2",
			&dd->cs_gpios[2].gpio_num,       DT_OPT,  DT_GPIO, -1},
		{"qcom,gpio-cs3",
			&dd->cs_gpios[3].gpio_num,       DT_OPT,  DT_GPIO, -1},
		{"qcom,rt-priority",
			&pdata->rt_priority,		 DT_OPT,  DT_BOOL,  0},
		{"qcom,shared",
			&pdata->is_shared,		 DT_OPT,  DT_BOOL,  0},
		{"qcom,slv-ctrl",
			&pdata->is_slv_ctrl,		DT_OPT,  DT_BOOL,  0},
		{NULL,  NULL,                            0,       0,        0},
		};

		if (msm_spi_dt_to_pdata_populate(pdev, pdata, map)) {
			devm_kfree(&pdev->dev, pdata);
			return NULL;
		}
	}

	if (pdata->use_bam) {
		if (!pdata->bam_consumer_pipe_index) {
			dev_warn(&pdev->dev,
			"missing qcom,bam-consumer-pipe-index entry in device-tree\n");
			pdata->use_bam = false;
		}

		if (!pdata->bam_producer_pipe_index) {
			dev_warn(&pdev->dev,
			"missing qcom,bam-producer-pipe-index entry in device-tree\n");
			pdata->use_bam = false;
		}
	}
	return pdata;
}

static int msm_spi_get_qup_hw_ver(struct device *dev, struct msm_spi *dd)
{
	u32 data = readl_relaxed(dd->base + QUP_HARDWARE_VER);
	return (data >= QUP_HARDWARE_VER_2_1_1) ? SPI_QUP_VERSION_BFAM
						: SPI_QUP_VERSION_NONE;
}

static int msm_spi_bam_get_resources(struct msm_spi *dd,
	struct platform_device *pdev, struct spi_master *master)
{
	struct resource *resource;
	size_t bam_mem_size;

	resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
						"spi_bam_physical");
	if (!resource) {
		dev_warn(&pdev->dev,
			"%s: Missing spi_bam_physical entry in DT",
			__func__);
		return -ENXIO;
	}

	dd->bam.phys_addr = resource->start;
	bam_mem_size = resource_size(resource);
	dd->bam.base = devm_ioremap(&pdev->dev, dd->bam.phys_addr,
					bam_mem_size);
	if (!dd->bam.base) {
		dev_warn(&pdev->dev,
			"%s: Failed to ioremap(spi_bam_physical)",
			__func__);
		return -ENXIO;
	}

	dd->bam.irq = platform_get_irq_byname(pdev, "spi_bam_irq");
	if (dd->bam.irq < 0) {
		dev_warn(&pdev->dev, "%s: Missing spi_bam_irq entry in DT",
			__func__);
		return -EINVAL;
	}

	dd->dma_init = msm_spi_bam_init;
	dd->dma_teardown = msm_spi_bam_teardown;
	return 0;
}

static int init_resources(struct platform_device *pdev)
{
	struct spi_master *master = platform_get_drvdata(pdev);
	struct msm_spi	  *dd;
	int               rc = -ENXIO;
	int               clk_enabled = 0;
	int               pclk_enabled = 0;

	dd = spi_master_get_devdata(master);

	if (dd->pdata && dd->pdata->use_pinctrl) {
		rc = msm_spi_pinctrl_init(dd);
		if (rc) {
			dev_err(&pdev->dev, "%s: pinctrl init failed\n",
					 __func__);
			return rc;
		}
	}

	mutex_lock(&dd->core_lock);

	dd->clk = clk_get(&pdev->dev, "core_clk");
	if (IS_ERR(dd->clk)) {
		dev_err(&pdev->dev, "%s: unable to get core_clk\n", __func__);
		rc = PTR_ERR(dd->clk);
		goto err_clk_get;
	}

	dd->pclk = clk_get(&pdev->dev, "iface_clk");
	if (IS_ERR(dd->pclk)) {
		dev_err(&pdev->dev, "%s: unable to get iface_clk\n", __func__);
		rc = PTR_ERR(dd->pclk);
		goto err_pclk_get;
	}

	if (dd->pdata && dd->pdata->max_clock_speed)
		msm_spi_clock_set(dd, dd->pdata->max_clock_speed);

	rc = clk_prepare_enable(dd->clk);
	if (rc) {
		dev_err(&pdev->dev, "%s: unable to enable core_clk\n",
			__func__);
		goto err_clk_enable;
	}

	clk_enabled = 1;
	rc = clk_prepare_enable(dd->pclk);
	if (rc) {
		dev_err(&pdev->dev, "%s: unable to enable iface_clk\n",
		__func__);
		goto err_pclk_enable;
	}

	pclk_enabled = 1;

	if (dd->pdata && dd->pdata->ver_reg_exists) {
		enum msm_spi_qup_version ver =
					msm_spi_get_qup_hw_ver(&pdev->dev, dd);
		if (dd->qup_ver != ver)
			dev_warn(&pdev->dev,
			"%s: HW version different then initially assumed by probe",
			__func__);
	}

	/* GSBI dose not exists on B-family MSM-chips */
	if (dd->qup_ver != SPI_QUP_VERSION_BFAM) {
		rc = msm_spi_configure_gsbi(dd, pdev);
		if (rc)
			goto err_config_gsbi;
	}

	msm_spi_calculate_fifo_size(dd);
	if (dd->use_dma) {
		rc = dd->dma_init(dd);
		if (rc) {
			dev_err(&pdev->dev,
				"%s: failed to init DMA. Disabling DMA mode\n",
				__func__);
			dd->use_dma = 0;
		}
	}

	msm_spi_register_init(dd);
	/*
	 * The SPI core generates a bogus input overrun error on some targets,
	 * when a transition from run to reset state occurs and if the FIFO has
	 * an odd number of entries. Hence we disable the INPUT_OVER_RUN_ERR_EN
	 * bit.
	 */
	msm_spi_enable_error_flags(dd);

	writel_relaxed(SPI_IO_C_NO_TRI_STATE, dd->base + SPI_IO_CONTROL);
	rc = msm_spi_set_state(dd, SPI_OP_STATE_RESET);
	if (rc)
		goto err_spi_state;

	clk_disable_unprepare(dd->clk);
	clk_disable_unprepare(dd->pclk);
	clk_enabled = 0;
	pclk_enabled = 0;

	dd->transfer_pending = 0;
	dd->tx_mode = SPI_MODE_NONE;
	dd->rx_mode = SPI_MODE_NONE;

	rc = msm_spi_request_irq(dd, pdev, master);
	if (rc)
		goto err_irq;

	msm_spi_disable_irqs(dd);

	mutex_unlock(&dd->core_lock);
	return 0;

err_irq:
err_spi_state:
	if (dd->use_dma && dd->dma_teardown)
		dd->dma_teardown(dd);
err_config_gsbi:
	if (pclk_enabled)
		clk_disable_unprepare(dd->pclk);
err_pclk_enable:
	if (clk_enabled)
		clk_disable_unprepare(dd->clk);
err_clk_enable:
	clk_put(dd->pclk);
err_pclk_get:
	clk_put(dd->clk);
err_clk_get:
	mutex_unlock(&dd->core_lock);
	return rc;
}

static const struct of_device_id msm_spi_dt_match[] = {
	{ .compatible = "qcom,spi-qup-v2", },
	{ .compatible = "qcom,qup-v26", },
	{}
};

static int msm_spi_probe(struct platform_device *pdev)
{
	struct spi_master      *master;
	struct msm_spi	       *dd;
	struct resource	       *resource;
	int			i = 0;
	int                     rc = -ENXIO;
	struct msm_spi_platform_data *pdata;

	master = spi_alloc_master(&pdev->dev, sizeof(struct msm_spi));
	if (!master) {
		rc = -ENOMEM;
		dev_err(&pdev->dev, "master allocation failed\n");
		goto err_probe_exit;
	}

	master->bus_num        = pdev->id;
	master->mode_bits      = SPI_SUPPORTED_MODES;
	master->num_chipselect = SPI_NUM_CHIPSELECTS;
	master->set_cs	       = msm_spi_set_cs;
	master->setup          = msm_spi_setup;
	master->prepare_transfer_hardware = msm_spi_prepare_transfer_hardware;
	master->transfer_one = msm_spi_transfer_one;
	master->unprepare_transfer_hardware
			= msm_spi_unprepare_transfer_hardware;

	platform_set_drvdata(pdev, master);
	dd = spi_master_get_devdata(master);

	if (pdev->dev.of_node) {
		const struct of_device_id *dev_id;
		enum msm_spi_qup_version ver;

		dd->qup_ver = SPI_QUP_VERSION_BFAM;
		master->dev.of_node = pdev->dev.of_node;
		pdata = msm_spi_dt_to_pdata(pdev, dd);
		if (!pdata) {
			rc = -ENOMEM;
			goto err_probe_exit;
		}

		rc = of_alias_get_id(pdev->dev.of_node, "spi");
		if (rc < 0)
			dev_warn(&pdev->dev,
				"using default bus_num %d\n", pdev->id);
		else
			master->bus_num = pdev->id = rc;

		dev_id = of_match_device(msm_spi_dt_match, &pdev->dev);
		if (dev_id)
			ver = SPI_QUP_VERSION_SPI_SLV;
		else
			ver = SPI_QUP_VERSION_BFAM;

		if (ver >= SPI_QUP_VERSION_SPI_SLV)
			dd->slv_support = true;
		else
			dd->slv_support = false;
	} else {
		pdata = pdev->dev.platform_data;
		dd->qup_ver = SPI_QUP_VERSION_NONE;

		for (i = 0; i < ARRAY_SIZE(spi_rsrcs); ++i) {
			resource = platform_get_resource(pdev, IORESOURCE_IO,
							i);
			dd->spi_gpios[i] = resource ? resource->start : -1;
		}

		for (i = 0; i < ARRAY_SIZE(spi_cs_rsrcs); ++i) {
			resource = platform_get_resource(pdev, IORESOURCE_IO,
						i + ARRAY_SIZE(spi_rsrcs));
			dd->cs_gpios[i].gpio_num = resource ?
							resource->start : -1;
		}
	}

	for (i = 0; i < ARRAY_SIZE(spi_cs_rsrcs); ++i)
		dd->cs_gpios[i].valid = 0;

	dd->pdata = pdata;
	resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!resource) {
		rc = -ENXIO;
		goto err_probe_res;
	}

	dd->mem_phys_addr = resource->start;
	dd->mem_size = resource_size(resource);
	dd->dev = &pdev->dev;

	if (pdata) {
		master->rt = pdata->rt_priority;
		if (pdata->dma_config) {
			rc = pdata->dma_config();
			if (rc) {
				dev_warn(&pdev->dev,
					"%s: DM mode not supported\n",
					__func__);
				dd->use_dma = 0;
				goto skip_dma_resources;
			}
		}
		if (!dd->pdata->use_bam)
			goto skip_dma_resources;

		rc = msm_spi_bam_get_resources(dd, pdev, master);
		if (rc) {
			dev_warn(dd->dev,
					"%s: Faild to get BAM resources",
					__func__);
			goto skip_dma_resources;
		}
		dd->use_dma = 1;
	}

	spi_dma_mask(&pdev->dev);

	if (pdata && pdata->is_slv_ctrl) {
		if (!dd->slv_support) {
			rc = -ENXIO;
			dev_err(&pdev->dev, "QUP ver %d, no slv support\n",
								dd->qup_ver);
			goto err_probe_res;
		}

		master->slave		= true;
		master->set_cs		= NULL;
		master->setup		= NULL;
		master->slave_abort	= msm_spi_slv_abort;
	}

skip_dma_resources:

	spin_lock_init(&dd->queue_lock);
	mutex_init(&dd->core_lock);
	init_waitqueue_head(&dd->continue_suspend);

	if (!devm_request_mem_region(&pdev->dev, dd->mem_phys_addr,
					dd->mem_size, SPI_DRV_NAME)) {
		rc = -ENXIO;
		goto err_probe_reqmem;
	}

	dd->base = devm_ioremap(&pdev->dev, dd->mem_phys_addr, dd->mem_size);
	if (!dd->base) {
		rc = -ENOMEM;
		goto err_probe_reqmem;
	}

	pm_runtime_set_autosuspend_delay(&pdev->dev, MSEC_PER_SEC);
	pm_runtime_use_autosuspend(&pdev->dev);
	pm_runtime_enable(&pdev->dev);

	dd->suspended = 1;
	rc = spi_register_master(master);
	if (rc)
		goto err_probe_reg_master;

	rc = sysfs_create_group(&(dd->dev->kobj), &dev_attr_grp);
	if (rc) {
		dev_err(&pdev->dev, "failed to create dev. attrs : %d\n", rc);
		goto err_attrs;
	}
	spi_debugfs_init(dd);

	return 0;

err_attrs:
	spi_unregister_master(master);
err_probe_reg_master:
	pm_runtime_disable(&pdev->dev);
err_probe_reqmem:
err_probe_res:
	spi_master_put(master);
err_probe_exit:
	return rc;
}

static int msm_spi_pm_suspend_runtime(struct device *device)
{
	struct platform_device *pdev = to_platform_device(device);
	struct spi_master *master = platform_get_drvdata(pdev);
	struct msm_spi	  *dd;
	unsigned long	   flags;

	dev_dbg(device, "pm_runtime: suspending...\n");
	if (!master)
		goto suspend_exit;
	dd = spi_master_get_devdata(master);
	if (!dd)
		goto suspend_exit;

	if (dd->suspended)
		return 0;

	/*
	 * Make sure nothing is added to the queue while we're
	 * suspending
	 */
	spin_lock_irqsave(&dd->queue_lock, flags);
	dd->suspended = 1;
	spin_unlock_irqrestore(&dd->queue_lock, flags);

	/* Wait for transactions to end, or time out */
	wait_event_interruptible(dd->continue_suspend,
		!dd->transfer_pending);

	mutex_lock(&dd->core_lock);
	if (dd->pdata && !dd->pdata->is_shared && dd->use_dma) {
		msm_spi_bam_pipe_disconnect(dd, &dd->bam.prod);
		msm_spi_bam_pipe_disconnect(dd, &dd->bam.cons);
	}
	if (dd->pdata && !dd->pdata->is_shared)
		put_local_resources(dd);

	if (dd->pdata)
		msm_spi_clk_path_vote(dd, 0);
	mutex_unlock(&dd->core_lock);

suspend_exit:
	return 0;
}

static int msm_spi_pm_resume_runtime(struct device *device)
{
	struct platform_device *pdev = to_platform_device(device);
	struct spi_master *master = platform_get_drvdata(pdev);
	struct msm_spi	  *dd;
	int               ret = 0;

	dev_dbg(device, "pm_runtime: resuming...\n");
	if (!master)
		goto resume_exit;
	dd = spi_master_get_devdata(master);
	if (!dd)
		goto resume_exit;

	if (!dd->suspended)
		return 0;
	if (!dd->is_init_complete) {
		ret = init_resources(pdev);
		if (ret != 0)
			return ret;
		else
			dd->is_init_complete = true;
	}
	msm_spi_clk_path_init(dd);
	msm_spi_clk_path_vote(dd, dd->pdata->max_clock_speed);

	if (!dd->pdata->is_shared) {
		ret = get_local_resources(dd);
		if (ret)
			return ret;
	}
	if (!dd->pdata->is_shared && dd->use_dma) {
		msm_spi_bam_pipe_connect(dd, &dd->bam.prod,
				&dd->bam.prod.config);
		msm_spi_bam_pipe_connect(dd, &dd->bam.cons,
				&dd->bam.cons.config);
	}
	dd->suspended = 0;

resume_exit:
	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int msm_spi_suspend(struct device *device)
{
	if (!pm_runtime_enabled(device) || !pm_runtime_suspended(device)) {
		struct platform_device *pdev = to_platform_device(device);
		struct spi_master *master = platform_get_drvdata(pdev);
		struct msm_spi   *dd;

		dev_dbg(device, "system suspend");
		if (!master)
			goto suspend_exit;
		dd = spi_master_get_devdata(master);
		if (!dd)
			goto suspend_exit;
		msm_spi_pm_suspend_runtime(device);

		/*
		 * set the device's runtime PM status to 'suspended'
		 */
		pm_runtime_disable(device);
		pm_runtime_set_suspended(device);
		pm_runtime_enable(device);
	}
suspend_exit:
	return 0;
}

static int msm_spi_resume(struct device *device)
{
	/*
	 * Rely on runtime-PM to call resume in case it is enabled
	 * Even if it's not enabled, rely on 1st client transaction to do
	 * clock ON and gpio configuration
	 */
	dev_dbg(device, "system resume");
	return 0;
}
#else
#define msm_spi_suspend NULL
#define msm_spi_resume NULL
#endif


static int msm_spi_remove(struct platform_device *pdev)
{
	struct spi_master *master = platform_get_drvdata(pdev);
	struct msm_spi    *dd = spi_master_get_devdata(master);

	spi_debugfs_exit(dd);
	sysfs_remove_group(&pdev->dev.kobj, &dev_attr_grp);

	if (dd->dma_teardown)
		dd->dma_teardown(dd);
	pm_runtime_disable(&pdev->dev);
	pm_runtime_set_suspended(&pdev->dev);
	clk_put(dd->clk);
	clk_put(dd->pclk);
	msm_spi_clk_path_teardown(dd);
	platform_set_drvdata(pdev, 0);
	spi_unregister_master(master);
	spi_master_put(master);

	return 0;
}

static const struct dev_pm_ops msm_spi_dev_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(msm_spi_suspend, msm_spi_resume)
	SET_RUNTIME_PM_OPS(msm_spi_pm_suspend_runtime,
			msm_spi_pm_resume_runtime, NULL)
};

static struct platform_driver msm_spi_driver = {
	.driver		= {
		.name	= SPI_DRV_NAME,
		.owner	= THIS_MODULE,
		.pm		= &msm_spi_dev_pm_ops,
		.of_match_table = msm_spi_dt_match,
	},
	.probe		= msm_spi_probe,
	.remove		= msm_spi_remove,
	.probe		= msm_spi_probe,
};

module_platform_driver(msm_spi_driver);

MODULE_LICENSE("GPL v2");
MODULE_VERSION("0.4");
MODULE_ALIAS("platform:"SPI_DRV_NAME);