1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
|
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Implementation credits: Srivatsa Vaddagiri, Steve Muckle
* Syed Rameez Mustafa, Olav haugan, Joonwoo Park, Pavan Kumar Kondeti
* and Vikram Mulukutla
*/
#include <linux/cpufreq.h>
#include <linux/list_sort.h>
#include <linux/syscore_ops.h>
#include "sched.h"
#include <trace/events/sched.h>
#define CSTATE_LATENCY_GRANULARITY_SHIFT (6)
const char *task_event_names[] = {"PUT_PREV_TASK", "PICK_NEXT_TASK",
"TASK_WAKE", "TASK_MIGRATE", "TASK_UPDATE",
"IRQ_UPDATE"};
const char *migrate_type_names[] = {"GROUP_TO_RQ", "RQ_TO_GROUP"};
static ktime_t ktime_last;
static bool sched_ktime_suspended;
static bool use_cycle_counter;
static struct cpu_cycle_counter_cb cpu_cycle_counter_cb;
u64 sched_ktime_clock(void)
{
if (unlikely(sched_ktime_suspended))
return ktime_to_ns(ktime_last);
return ktime_get_ns();
}
static void sched_resume(void)
{
sched_ktime_suspended = false;
}
static int sched_suspend(void)
{
ktime_last = ktime_get();
sched_ktime_suspended = true;
return 0;
}
static struct syscore_ops sched_syscore_ops = {
.resume = sched_resume,
.suspend = sched_suspend
};
static int __init sched_init_ops(void)
{
register_syscore_ops(&sched_syscore_ops);
return 0;
}
late_initcall(sched_init_ops);
inline void clear_ed_task(struct task_struct *p, struct rq *rq)
{
if (p == rq->ed_task)
rq->ed_task = NULL;
}
inline void set_task_last_switch_out(struct task_struct *p, u64 wallclock)
{
p->last_switch_out_ts = wallclock;
}
/*
* Note C-state for (idle) cpus.
*
* @cstate = cstate index, 0 -> active state
* @wakeup_energy = energy spent in waking up cpu
* @wakeup_latency = latency to wakeup from cstate
*
*/
void
sched_set_cpu_cstate(int cpu, int cstate, int wakeup_energy, int wakeup_latency)
{
struct rq *rq = cpu_rq(cpu);
rq->cstate = cstate; /* C1, C2 etc */
rq->wakeup_energy = wakeup_energy;
/* disregard small latency delta (64 us). */
rq->wakeup_latency = ((wakeup_latency >>
CSTATE_LATENCY_GRANULARITY_SHIFT) <<
CSTATE_LATENCY_GRANULARITY_SHIFT);
}
/*
* Note D-state for (idle) cluster.
*
* @dstate = dstate index, 0 -> active state
* @wakeup_energy = energy spent in waking up cluster
* @wakeup_latency = latency to wakeup from cluster
*
*/
void sched_set_cluster_dstate(const cpumask_t *cluster_cpus, int dstate,
int wakeup_energy, int wakeup_latency)
{
struct sched_cluster *cluster =
cpu_rq(cpumask_first(cluster_cpus))->cluster;
cluster->dstate = dstate;
cluster->dstate_wakeup_energy = wakeup_energy;
cluster->dstate_wakeup_latency = wakeup_latency;
}
u32 __weak get_freq_max_load(int cpu, u32 freq)
{
/* 100% by default */
return 100;
}
struct freq_max_load_entry {
/* The maximum load which has accounted governor's headroom. */
u64 hdemand;
};
struct freq_max_load {
struct rcu_head rcu;
int length;
struct freq_max_load_entry freqs[0];
};
static DEFINE_PER_CPU(struct freq_max_load *, freq_max_load);
static DEFINE_SPINLOCK(freq_max_load_lock);
struct cpu_pwr_stats __weak *get_cpu_pwr_stats(void)
{
return NULL;
}
int sched_update_freq_max_load(const cpumask_t *cpumask)
{
int i, cpu, ret;
unsigned int freq;
struct cpu_pstate_pwr *costs;
struct cpu_pwr_stats *per_cpu_info = get_cpu_pwr_stats();
struct freq_max_load *max_load, *old_max_load;
struct freq_max_load_entry *entry;
u64 max_demand_capacity, max_demand;
unsigned long flags;
u32 hfreq;
int hpct;
if (!per_cpu_info)
return 0;
spin_lock_irqsave(&freq_max_load_lock, flags);
max_demand_capacity = div64_u64(max_task_load(), max_possible_capacity);
for_each_cpu(cpu, cpumask) {
if (!per_cpu_info[cpu].ptable) {
ret = -EINVAL;
goto fail;
}
old_max_load = rcu_dereference(per_cpu(freq_max_load, cpu));
/*
* allocate len + 1 and leave the last power cost as 0 for
* power_cost() can stop iterating index when
* per_cpu_info[cpu].len > len of max_load due to race between
* cpu power stats update and get_cpu_pwr_stats().
*/
max_load = kzalloc(sizeof(struct freq_max_load) +
sizeof(struct freq_max_load_entry) *
(per_cpu_info[cpu].len + 1), GFP_ATOMIC);
if (unlikely(!max_load)) {
ret = -ENOMEM;
goto fail;
}
max_load->length = per_cpu_info[cpu].len;
max_demand = max_demand_capacity *
cpu_max_possible_capacity(cpu);
i = 0;
costs = per_cpu_info[cpu].ptable;
while (costs[i].freq) {
entry = &max_load->freqs[i];
freq = costs[i].freq;
hpct = get_freq_max_load(cpu, freq);
if (hpct <= 0 || hpct > 100)
hpct = 100;
hfreq = div64_u64((u64)freq * hpct, 100);
entry->hdemand =
div64_u64(max_demand * hfreq,
cpu_max_possible_freq(cpu));
i++;
}
rcu_assign_pointer(per_cpu(freq_max_load, cpu), max_load);
if (old_max_load)
kfree_rcu(old_max_load, rcu);
}
spin_unlock_irqrestore(&freq_max_load_lock, flags);
return 0;
fail:
for_each_cpu(cpu, cpumask) {
max_load = rcu_dereference(per_cpu(freq_max_load, cpu));
if (max_load) {
rcu_assign_pointer(per_cpu(freq_max_load, cpu), NULL);
kfree_rcu(max_load, rcu);
}
}
spin_unlock_irqrestore(&freq_max_load_lock, flags);
return ret;
}
unsigned int max_possible_efficiency = 1;
unsigned int min_possible_efficiency = UINT_MAX;
unsigned long __weak arch_get_cpu_efficiency(int cpu)
{
return SCHED_LOAD_SCALE;
}
/* Keep track of max/min capacity possible across CPUs "currently" */
static void __update_min_max_capacity(void)
{
int i;
int max_cap = 0, min_cap = INT_MAX;
for_each_online_cpu(i) {
max_cap = max(max_cap, cpu_capacity(i));
min_cap = min(min_cap, cpu_capacity(i));
}
max_capacity = max_cap;
min_capacity = min_cap;
}
static void update_min_max_capacity(void)
{
unsigned long flags;
int i;
local_irq_save(flags);
for_each_possible_cpu(i)
raw_spin_lock(&cpu_rq(i)->lock);
__update_min_max_capacity();
for_each_possible_cpu(i)
raw_spin_unlock(&cpu_rq(i)->lock);
local_irq_restore(flags);
}
/*
* Return 'capacity' of a cpu in reference to "least" efficient cpu, such that
* least efficient cpu gets capacity of 1024
*/
static unsigned long
capacity_scale_cpu_efficiency(struct sched_cluster *cluster)
{
return (1024 * cluster->efficiency) / min_possible_efficiency;
}
/*
* Return 'capacity' of a cpu in reference to cpu with lowest max_freq
* (min_max_freq), such that one with lowest max_freq gets capacity of 1024.
*/
static unsigned long capacity_scale_cpu_freq(struct sched_cluster *cluster)
{
return (1024 * cluster_max_freq(cluster)) / min_max_freq;
}
/*
* Return load_scale_factor of a cpu in reference to "most" efficient cpu, so
* that "most" efficient cpu gets a load_scale_factor of 1
*/
static inline unsigned long
load_scale_cpu_efficiency(struct sched_cluster *cluster)
{
return DIV_ROUND_UP(1024 * max_possible_efficiency,
cluster->efficiency);
}
/*
* Return load_scale_factor of a cpu in reference to cpu with best max_freq
* (max_possible_freq), so that one with best max_freq gets a load_scale_factor
* of 1.
*/
static inline unsigned long load_scale_cpu_freq(struct sched_cluster *cluster)
{
return DIV_ROUND_UP(1024 * max_possible_freq,
cluster_max_freq(cluster));
}
static int compute_capacity(struct sched_cluster *cluster)
{
int capacity = 1024;
capacity *= capacity_scale_cpu_efficiency(cluster);
capacity >>= 10;
capacity *= capacity_scale_cpu_freq(cluster);
capacity >>= 10;
return capacity;
}
static int compute_max_possible_capacity(struct sched_cluster *cluster)
{
int capacity = 1024;
capacity *= capacity_scale_cpu_efficiency(cluster);
capacity >>= 10;
capacity *= (1024 * cluster->max_possible_freq) / min_max_freq;
capacity >>= 10;
return capacity;
}
static int compute_load_scale_factor(struct sched_cluster *cluster)
{
int load_scale = 1024;
/*
* load_scale_factor accounts for the fact that task load
* is in reference to "best" performing cpu. Task's load will need to be
* scaled (up) by a factor to determine suitability to be placed on a
* (little) cpu.
*/
load_scale *= load_scale_cpu_efficiency(cluster);
load_scale >>= 10;
load_scale *= load_scale_cpu_freq(cluster);
load_scale >>= 10;
return load_scale;
}
struct list_head cluster_head;
static DEFINE_MUTEX(cluster_lock);
static cpumask_t all_cluster_cpus = CPU_MASK_NONE;
DECLARE_BITMAP(all_cluster_ids, NR_CPUS);
struct sched_cluster *sched_cluster[NR_CPUS];
int num_clusters;
unsigned int max_power_cost = 1;
struct sched_cluster init_cluster = {
.list = LIST_HEAD_INIT(init_cluster.list),
.id = 0,
.max_power_cost = 1,
.min_power_cost = 1,
.capacity = 1024,
.max_possible_capacity = 1024,
.efficiency = 1,
.load_scale_factor = 1024,
.cur_freq = 1,
.max_freq = 1,
.max_mitigated_freq = UINT_MAX,
.min_freq = 1,
.max_possible_freq = 1,
.dstate = 0,
.dstate_wakeup_energy = 0,
.dstate_wakeup_latency = 0,
.exec_scale_factor = 1024,
.notifier_sent = 0,
.wake_up_idle = 0,
};
static void update_all_clusters_stats(void)
{
struct sched_cluster *cluster;
u64 highest_mpc = 0, lowest_mpc = U64_MAX;
pre_big_task_count_change(cpu_possible_mask);
for_each_sched_cluster(cluster) {
u64 mpc;
cluster->capacity = compute_capacity(cluster);
mpc = cluster->max_possible_capacity =
compute_max_possible_capacity(cluster);
cluster->load_scale_factor = compute_load_scale_factor(cluster);
cluster->exec_scale_factor =
DIV_ROUND_UP(cluster->efficiency * 1024,
max_possible_efficiency);
if (mpc > highest_mpc)
highest_mpc = mpc;
if (mpc < lowest_mpc)
lowest_mpc = mpc;
}
max_possible_capacity = highest_mpc;
min_max_possible_capacity = lowest_mpc;
__update_min_max_capacity();
sched_update_freq_max_load(cpu_possible_mask);
post_big_task_count_change(cpu_possible_mask);
}
static void assign_cluster_ids(struct list_head *head)
{
struct sched_cluster *cluster;
int pos = 0;
list_for_each_entry(cluster, head, list) {
cluster->id = pos;
sched_cluster[pos++] = cluster;
}
}
static void
move_list(struct list_head *dst, struct list_head *src, bool sync_rcu)
{
struct list_head *first, *last;
first = src->next;
last = src->prev;
if (sync_rcu) {
INIT_LIST_HEAD_RCU(src);
synchronize_rcu();
}
first->prev = dst;
dst->prev = last;
last->next = dst;
/* Ensure list sanity before making the head visible to all CPUs. */
smp_mb();
dst->next = first;
}
static int
compare_clusters(void *priv, struct list_head *a, struct list_head *b)
{
struct sched_cluster *cluster1, *cluster2;
int ret;
cluster1 = container_of(a, struct sched_cluster, list);
cluster2 = container_of(b, struct sched_cluster, list);
/*
* Don't assume higher capacity means higher power. If the
* power cost is same, sort the higher capacity cluster before
* the lower capacity cluster to start placing the tasks
* on the higher capacity cluster.
*/
ret = cluster1->max_power_cost > cluster2->max_power_cost ||
(cluster1->max_power_cost == cluster2->max_power_cost &&
cluster1->max_possible_capacity <
cluster2->max_possible_capacity);
return ret;
}
static void sort_clusters(void)
{
struct sched_cluster *cluster;
struct list_head new_head;
unsigned int tmp_max = 1;
INIT_LIST_HEAD(&new_head);
for_each_sched_cluster(cluster) {
cluster->max_power_cost = power_cost(cluster_first_cpu(cluster),
max_task_load());
cluster->min_power_cost = power_cost(cluster_first_cpu(cluster),
0);
if (cluster->max_power_cost > tmp_max)
tmp_max = cluster->max_power_cost;
}
max_power_cost = tmp_max;
move_list(&new_head, &cluster_head, true);
list_sort(NULL, &new_head, compare_clusters);
assign_cluster_ids(&new_head);
/*
* Ensure cluster ids are visible to all CPUs before making
* cluster_head visible.
*/
move_list(&cluster_head, &new_head, false);
}
static void
insert_cluster(struct sched_cluster *cluster, struct list_head *head)
{
struct sched_cluster *tmp;
struct list_head *iter = head;
list_for_each_entry(tmp, head, list) {
if (cluster->max_power_cost < tmp->max_power_cost)
break;
iter = &tmp->list;
}
list_add(&cluster->list, iter);
}
static struct sched_cluster *alloc_new_cluster(const struct cpumask *cpus)
{
struct sched_cluster *cluster = NULL;
cluster = kzalloc(sizeof(struct sched_cluster), GFP_ATOMIC);
if (!cluster) {
__WARN_printf("Cluster allocation failed. \
Possible bad scheduling\n");
return NULL;
}
INIT_LIST_HEAD(&cluster->list);
cluster->max_power_cost = 1;
cluster->min_power_cost = 1;
cluster->capacity = 1024;
cluster->max_possible_capacity = 1024;
cluster->efficiency = 1;
cluster->load_scale_factor = 1024;
cluster->cur_freq = 1;
cluster->max_freq = 1;
cluster->max_mitigated_freq = UINT_MAX;
cluster->min_freq = 1;
cluster->max_possible_freq = 1;
cluster->dstate = 0;
cluster->dstate_wakeup_energy = 0;
cluster->dstate_wakeup_latency = 0;
cluster->freq_init_done = false;
raw_spin_lock_init(&cluster->load_lock);
cluster->cpus = *cpus;
cluster->efficiency = arch_get_cpu_efficiency(cpumask_first(cpus));
if (cluster->efficiency > max_possible_efficiency)
max_possible_efficiency = cluster->efficiency;
if (cluster->efficiency < min_possible_efficiency)
min_possible_efficiency = cluster->efficiency;
cluster->notifier_sent = 0;
return cluster;
}
static void add_cluster(const struct cpumask *cpus, struct list_head *head)
{
struct sched_cluster *cluster = alloc_new_cluster(cpus);
int i;
if (!cluster)
return;
for_each_cpu(i, cpus)
cpu_rq(i)->cluster = cluster;
insert_cluster(cluster, head);
set_bit(num_clusters, all_cluster_ids);
num_clusters++;
}
void update_cluster_topology(void)
{
struct cpumask cpus = *cpu_possible_mask;
const struct cpumask *cluster_cpus;
struct list_head new_head;
int i;
INIT_LIST_HEAD(&new_head);
for_each_cpu(i, &cpus) {
cluster_cpus = cpu_coregroup_mask(i);
cpumask_or(&all_cluster_cpus, &all_cluster_cpus, cluster_cpus);
cpumask_andnot(&cpus, &cpus, cluster_cpus);
add_cluster(cluster_cpus, &new_head);
}
assign_cluster_ids(&new_head);
/*
* Ensure cluster ids are visible to all CPUs before making
* cluster_head visible.
*/
move_list(&cluster_head, &new_head, false);
update_all_clusters_stats();
}
void init_clusters(void)
{
bitmap_clear(all_cluster_ids, 0, NR_CPUS);
init_cluster.cpus = *cpu_possible_mask;
raw_spin_lock_init(&init_cluster.load_lock);
INIT_LIST_HEAD(&cluster_head);
}
int register_cpu_cycle_counter_cb(struct cpu_cycle_counter_cb *cb)
{
mutex_lock(&cluster_lock);
if (!cb->get_cpu_cycle_counter) {
mutex_unlock(&cluster_lock);
return -EINVAL;
}
cpu_cycle_counter_cb = *cb;
use_cycle_counter = true;
mutex_unlock(&cluster_lock);
return 0;
}
/* Clear any HMP scheduler related requests pending from or on cpu */
void clear_hmp_request(int cpu)
{
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
clear_boost_kick(cpu);
clear_reserved(cpu);
if (rq->push_task) {
struct task_struct *push_task = NULL;
raw_spin_lock_irqsave(&rq->lock, flags);
if (rq->push_task) {
clear_reserved(rq->push_cpu);
push_task = rq->push_task;
rq->push_task = NULL;
}
rq->active_balance = 0;
raw_spin_unlock_irqrestore(&rq->lock, flags);
if (push_task)
put_task_struct(push_task);
}
}
int sched_set_static_cpu_pwr_cost(int cpu, unsigned int cost)
{
struct rq *rq = cpu_rq(cpu);
rq->static_cpu_pwr_cost = cost;
return 0;
}
unsigned int sched_get_static_cpu_pwr_cost(int cpu)
{
return cpu_rq(cpu)->static_cpu_pwr_cost;
}
int sched_set_static_cluster_pwr_cost(int cpu, unsigned int cost)
{
struct sched_cluster *cluster = cpu_rq(cpu)->cluster;
cluster->static_cluster_pwr_cost = cost;
return 0;
}
unsigned int sched_get_static_cluster_pwr_cost(int cpu)
{
return cpu_rq(cpu)->cluster->static_cluster_pwr_cost;
}
int sched_set_cluster_wake_idle(int cpu, unsigned int wake_idle)
{
struct sched_cluster *cluster = cpu_rq(cpu)->cluster;
cluster->wake_up_idle = !!wake_idle;
return 0;
}
unsigned int sched_get_cluster_wake_idle(int cpu)
{
return cpu_rq(cpu)->cluster->wake_up_idle;
}
/*
* sched_window_stats_policy and sched_ravg_hist_size have a 'sysctl' copy
* associated with them. This is required for atomic update of those variables
* when being modifed via sysctl interface.
*
* IMPORTANT: Initialize both copies to same value!!
*/
/*
* Tasks that are runnable continuously for a period greather than
* EARLY_DETECTION_DURATION can be flagged early as potential
* high load tasks.
*/
#define EARLY_DETECTION_DURATION 9500000
static __read_mostly unsigned int sched_ravg_hist_size = 5;
__read_mostly unsigned int sysctl_sched_ravg_hist_size = 5;
static __read_mostly unsigned int sched_window_stats_policy =
WINDOW_STATS_MAX_RECENT_AVG;
__read_mostly unsigned int sysctl_sched_window_stats_policy =
WINDOW_STATS_MAX_RECENT_AVG;
#define SCHED_ACCOUNT_WAIT_TIME 1
__read_mostly unsigned int sysctl_sched_cpu_high_irqload = (10 * NSEC_PER_MSEC);
/*
* Enable colocation and frequency aggregation for all threads in a process.
* The children inherits the group id from the parent.
*/
unsigned int __read_mostly sysctl_sched_enable_thread_grouping;
#define SCHED_NEW_TASK_WINDOWS 5
#define SCHED_FREQ_ACCOUNT_WAIT_TIME 0
/*
* This governs what load needs to be used when reporting CPU busy time
* to the cpufreq governor.
*/
__read_mostly unsigned int sysctl_sched_freq_reporting_policy;
/*
* For increase, send notification if
* freq_required - cur_freq > sysctl_sched_freq_inc_notify
*/
__read_mostly int sysctl_sched_freq_inc_notify = 10 * 1024 * 1024; /* + 10GHz */
/*
* For decrease, send notification if
* cur_freq - freq_required > sysctl_sched_freq_dec_notify
*/
__read_mostly int sysctl_sched_freq_dec_notify = 10 * 1024 * 1024; /* - 10GHz */
static __read_mostly unsigned int sched_io_is_busy;
__read_mostly unsigned int sysctl_sched_pred_alert_freq = 10 * 1024 * 1024;
/*
* Maximum possible frequency across all cpus. Task demand and cpu
* capacity (cpu_power) metrics are scaled in reference to it.
*/
unsigned int max_possible_freq = 1;
/*
* Minimum possible max_freq across all cpus. This will be same as
* max_possible_freq on homogeneous systems and could be different from
* max_possible_freq on heterogenous systems. min_max_freq is used to derive
* capacity (cpu_power) of cpus.
*/
unsigned int min_max_freq = 1;
unsigned int max_capacity = 1024; /* max(rq->capacity) */
unsigned int min_capacity = 1024; /* min(rq->capacity) */
unsigned int max_possible_capacity = 1024; /* max(rq->max_possible_capacity) */
unsigned int
min_max_possible_capacity = 1024; /* min(rq->max_possible_capacity) */
/* Min window size (in ns) = 10ms */
#define MIN_SCHED_RAVG_WINDOW 10000000
/* Max window size (in ns) = 1s */
#define MAX_SCHED_RAVG_WINDOW 1000000000
/* Window size (in ns) */
__read_mostly unsigned int sched_ravg_window = MIN_SCHED_RAVG_WINDOW;
/* Maximum allowed threshold before freq aggregation must be enabled */
#define MAX_FREQ_AGGR_THRESH 1000
/* Temporarily disable window-stats activity on all cpus */
unsigned int __read_mostly sched_disable_window_stats;
struct related_thread_group *related_thread_groups[MAX_NUM_CGROUP_COLOC_ID];
static LIST_HEAD(active_related_thread_groups);
static DEFINE_RWLOCK(related_thread_group_lock);
#define for_each_related_thread_group(grp) \
list_for_each_entry(grp, &active_related_thread_groups, list)
/*
* Task load is categorized into buckets for the purpose of top task tracking.
* The entire range of load from 0 to sched_ravg_window needs to be covered
* in NUM_LOAD_INDICES number of buckets. Therefore the size of each bucket
* is given by sched_ravg_window / NUM_LOAD_INDICES. Since the default value
* of sched_ravg_window is MIN_SCHED_RAVG_WINDOW, use that to compute
* sched_load_granule.
*/
__read_mostly unsigned int sched_load_granule =
MIN_SCHED_RAVG_WINDOW / NUM_LOAD_INDICES;
/* Size of bitmaps maintained to track top tasks */
static const unsigned int top_tasks_bitmap_size =
BITS_TO_LONGS(NUM_LOAD_INDICES + 1) * sizeof(unsigned long);
/*
* Demand aggregation for frequency purpose:
*
* 'sched_freq_aggregate' controls aggregation of cpu demand of related threads
* for frequency determination purpose. This aggregation is done per-cluster.
*
* CPU demand of tasks from various related groups is aggregated per-cluster and
* added to the "max_busy_cpu" in that cluster, where max_busy_cpu is determined
* by just rq->prev_runnable_sum.
*
* Some examples follow, which assume:
* Cluster0 = CPU0-3, Cluster1 = CPU4-7
* One related thread group A that has tasks A0, A1, A2
*
* A->cpu_time[X].curr/prev_sum = counters in which cpu execution stats of
* tasks belonging to group A are accumulated when they run on cpu X.
*
* CX->curr/prev_sum = counters in which cpu execution stats of all tasks
* not belonging to group A are accumulated when they run on cpu X
*
* Lets say the stats for window M was as below:
*
* C0->prev_sum = 1ms, A->cpu_time[0].prev_sum = 5ms
* Task A0 ran 5ms on CPU0
* Task B0 ran 1ms on CPU0
*
* C1->prev_sum = 5ms, A->cpu_time[1].prev_sum = 6ms
* Task A1 ran 4ms on CPU1
* Task A2 ran 2ms on CPU1
* Task B1 ran 5ms on CPU1
*
* C2->prev_sum = 0ms, A->cpu_time[2].prev_sum = 0
* CPU2 idle
*
* C3->prev_sum = 0ms, A->cpu_time[3].prev_sum = 0
* CPU3 idle
*
* In this case, CPU1 was most busy going by just its prev_sum counter. Demand
* from all group A tasks are added to CPU1. IOW, at end of window M, cpu busy
* time reported to governor will be:
*
*
* C0 busy time = 1ms
* C1 busy time = 5 + 5 + 6 = 16ms
*
*/
static __read_mostly unsigned int sched_freq_aggregate = 1;
__read_mostly unsigned int sysctl_sched_freq_aggregate = 1;
unsigned int __read_mostly sysctl_sched_freq_aggregate_threshold_pct;
static unsigned int __read_mostly sched_freq_aggregate_threshold;
/* Initial task load. Newly created tasks are assigned this load. */
unsigned int __read_mostly sched_init_task_load_windows;
unsigned int __read_mostly sysctl_sched_init_task_load_pct = 15;
unsigned int max_task_load(void)
{
return sched_ravg_window;
}
/* A cpu can no longer accommodate more tasks if:
*
* rq->nr_running > sysctl_sched_spill_nr_run ||
* rq->hmp_stats.cumulative_runnable_avg > sched_spill_load
*/
unsigned int __read_mostly sysctl_sched_spill_nr_run = 10;
/*
* Place sync wakee tasks those have less than configured demand to the waker's
* cluster.
*/
unsigned int __read_mostly sched_small_wakee_task_load;
unsigned int __read_mostly sysctl_sched_small_wakee_task_load_pct = 10;
unsigned int __read_mostly sched_big_waker_task_load;
unsigned int __read_mostly sysctl_sched_big_waker_task_load_pct = 25;
/*
* CPUs with load greater than the sched_spill_load_threshold are not
* eligible for task placement. When all CPUs in a cluster achieve a
* load higher than this level, tasks becomes eligible for inter
* cluster migration.
*/
unsigned int __read_mostly sched_spill_load;
unsigned int __read_mostly sysctl_sched_spill_load_pct = 100;
/*
* Prefer the waker CPU for sync wakee task, if the CPU has only 1 runnable
* task. This eliminates the LPM exit latency associated with the idle
* CPUs in the waker cluster.
*/
unsigned int __read_mostly sysctl_sched_prefer_sync_wakee_to_waker;
/*
* Tasks whose bandwidth consumption on a cpu is more than
* sched_upmigrate are considered "big" tasks. Big tasks will be
* considered for "up" migration, i.e migrating to a cpu with better
* capacity.
*/
unsigned int __read_mostly sched_upmigrate;
unsigned int __read_mostly sysctl_sched_upmigrate_pct = 80;
/*
* Big tasks, once migrated, will need to drop their bandwidth
* consumption to less than sched_downmigrate before they are "down"
* migrated.
*/
unsigned int __read_mostly sched_downmigrate;
unsigned int __read_mostly sysctl_sched_downmigrate_pct = 60;
/*
* Task groups whose aggregate demand on a cpu is more than
* sched_group_upmigrate need to be up-migrated if possible.
*/
unsigned int __read_mostly sched_group_upmigrate;
unsigned int __read_mostly sysctl_sched_group_upmigrate_pct = 100;
/*
* Task groups, once up-migrated, will need to drop their aggregate
* demand to less than sched_group_downmigrate before they are "down"
* migrated.
*/
unsigned int __read_mostly sched_group_downmigrate;
unsigned int __read_mostly sysctl_sched_group_downmigrate_pct = 95;
/*
* The load scale factor of a CPU gets boosted when its max frequency
* is restricted due to which the tasks are migrating to higher capacity
* CPUs early. The sched_upmigrate threshold is auto-upgraded by
* rq->max_possible_freq/rq->max_freq of a lower capacity CPU.
*/
unsigned int up_down_migrate_scale_factor = 1024;
/*
* Scheduler selects and places task to its previous CPU if sleep time is
* less than sysctl_sched_select_prev_cpu_us.
*/
unsigned int __read_mostly
sched_short_sleep_task_threshold = 2000 * NSEC_PER_USEC;
unsigned int __read_mostly sysctl_sched_select_prev_cpu_us = 2000;
unsigned int __read_mostly
sched_long_cpu_selection_threshold = 100 * NSEC_PER_MSEC;
unsigned int __read_mostly sysctl_sched_restrict_cluster_spill;
/*
* Scheduler tries to avoid waking up idle CPUs for tasks running
* in short bursts. If the task average burst is less than
* sysctl_sched_short_burst nanoseconds and it sleeps on an average
* for more than sysctl_sched_short_sleep nanoseconds, then the
* task is eligible for packing.
*/
unsigned int __read_mostly sysctl_sched_short_burst;
unsigned int __read_mostly sysctl_sched_short_sleep = 1 * NSEC_PER_MSEC;
static void _update_up_down_migrate(unsigned int *up_migrate,
unsigned int *down_migrate, bool is_group)
{
unsigned int delta;
if (up_down_migrate_scale_factor == 1024)
return;
delta = *up_migrate - *down_migrate;
*up_migrate /= NSEC_PER_USEC;
*up_migrate *= up_down_migrate_scale_factor;
*up_migrate >>= 10;
*up_migrate *= NSEC_PER_USEC;
if (!is_group)
*up_migrate = min(*up_migrate, sched_ravg_window);
*down_migrate /= NSEC_PER_USEC;
*down_migrate *= up_down_migrate_scale_factor;
*down_migrate >>= 10;
*down_migrate *= NSEC_PER_USEC;
*down_migrate = min(*down_migrate, *up_migrate - delta);
}
static void update_up_down_migrate(void)
{
unsigned int up_migrate = pct_to_real(sysctl_sched_upmigrate_pct);
unsigned int down_migrate = pct_to_real(sysctl_sched_downmigrate_pct);
_update_up_down_migrate(&up_migrate, &down_migrate, false);
sched_upmigrate = up_migrate;
sched_downmigrate = down_migrate;
up_migrate = pct_to_real(sysctl_sched_group_upmigrate_pct);
down_migrate = pct_to_real(sysctl_sched_group_downmigrate_pct);
_update_up_down_migrate(&up_migrate, &down_migrate, true);
sched_group_upmigrate = up_migrate;
sched_group_downmigrate = down_migrate;
}
void set_hmp_defaults(void)
{
sched_spill_load =
pct_to_real(sysctl_sched_spill_load_pct);
update_up_down_migrate();
sched_init_task_load_windows =
div64_u64((u64)sysctl_sched_init_task_load_pct *
(u64)sched_ravg_window, 100);
sched_short_sleep_task_threshold = sysctl_sched_select_prev_cpu_us *
NSEC_PER_USEC;
sched_small_wakee_task_load =
div64_u64((u64)sysctl_sched_small_wakee_task_load_pct *
(u64)sched_ravg_window, 100);
sched_big_waker_task_load =
div64_u64((u64)sysctl_sched_big_waker_task_load_pct *
(u64)sched_ravg_window, 100);
sched_freq_aggregate_threshold =
pct_to_real(sysctl_sched_freq_aggregate_threshold_pct);
}
u32 sched_get_init_task_load(struct task_struct *p)
{
return p->init_load_pct;
}
int sched_set_init_task_load(struct task_struct *p, int init_load_pct)
{
if (init_load_pct < 0 || init_load_pct > 100)
return -EINVAL;
p->init_load_pct = init_load_pct;
return 0;
}
#ifdef CONFIG_CGROUP_SCHED
int upmigrate_discouraged(struct task_struct *p)
{
return task_group(p)->upmigrate_discouraged;
}
#else
static inline int upmigrate_discouraged(struct task_struct *p)
{
return 0;
}
#endif
/* Is a task "big" on its current cpu */
static inline int __is_big_task(struct task_struct *p, u64 scaled_load)
{
int nice = task_nice(p);
if (nice > SCHED_UPMIGRATE_MIN_NICE || upmigrate_discouraged(p))
return 0;
return scaled_load > sched_upmigrate;
}
int is_big_task(struct task_struct *p)
{
return __is_big_task(p, scale_load_to_cpu(task_load(p), task_cpu(p)));
}
u64 cpu_load(int cpu)
{
struct rq *rq = cpu_rq(cpu);
return scale_load_to_cpu(rq->hmp_stats.cumulative_runnable_avg, cpu);
}
u64 cpu_load_sync(int cpu, int sync)
{
return scale_load_to_cpu(cpu_cravg_sync(cpu, sync), cpu);
}
/*
* Task will fit on a cpu if it's bandwidth consumption on that cpu
* will be less than sched_upmigrate. A big task that was previously
* "up" migrated will be considered fitting on "little" cpu if its
* bandwidth consumption on "little" cpu will be less than
* sched_downmigrate. This will help avoid frequenty migrations for
* tasks with load close to the upmigrate threshold
*/
int task_load_will_fit(struct task_struct *p, u64 task_load, int cpu,
enum sched_boost_policy boost_policy)
{
int upmigrate = sched_upmigrate;
if (cpu_capacity(cpu) == max_capacity)
return 1;
if (cpu_capacity(task_cpu(p)) > cpu_capacity(cpu))
upmigrate = sched_downmigrate;
if (boost_policy != SCHED_BOOST_ON_BIG) {
if (task_nice(p) > SCHED_UPMIGRATE_MIN_NICE ||
upmigrate_discouraged(p))
return 1;
if (task_load < upmigrate)
return 1;
} else {
if (task_sched_boost(p) || task_load >= upmigrate)
return 0;
return 1;
}
return 0;
}
int task_will_fit(struct task_struct *p, int cpu)
{
u64 tload = scale_load_to_cpu(task_load(p), cpu);
return task_load_will_fit(p, tload, cpu, sched_boost_policy());
}
static int
group_will_fit(struct sched_cluster *cluster, struct related_thread_group *grp,
u64 demand, bool group_boost)
{
int cpu = cluster_first_cpu(cluster);
int prev_capacity = 0;
unsigned int threshold = sched_group_upmigrate;
u64 load;
if (cluster->capacity == max_capacity)
return 1;
if (group_boost)
return 0;
if (!demand)
return 1;
if (grp->preferred_cluster)
prev_capacity = grp->preferred_cluster->capacity;
if (cluster->capacity < prev_capacity)
threshold = sched_group_downmigrate;
load = scale_load_to_cpu(demand, cpu);
if (load < threshold)
return 1;
return 0;
}
/*
* Return the cost of running task p on CPU cpu. This function
* currently assumes that task p is the only task which will run on
* the CPU.
*/
unsigned int power_cost(int cpu, u64 demand)
{
int first, mid, last;
struct cpu_pwr_stats *per_cpu_info = get_cpu_pwr_stats();
struct cpu_pstate_pwr *costs;
struct freq_max_load *max_load;
int total_static_pwr_cost = 0;
struct rq *rq = cpu_rq(cpu);
unsigned int pc;
if (!per_cpu_info || !per_cpu_info[cpu].ptable)
/*
* When power aware scheduling is not in use, or CPU
* power data is not available, just use the CPU
* capacity as a rough stand-in for real CPU power
* numbers, assuming bigger CPUs are more power
* hungry.
*/
return cpu_max_possible_capacity(cpu);
rcu_read_lock();
max_load = rcu_dereference(per_cpu(freq_max_load, cpu));
if (!max_load) {
pc = cpu_max_possible_capacity(cpu);
goto unlock;
}
costs = per_cpu_info[cpu].ptable;
if (demand <= max_load->freqs[0].hdemand) {
pc = costs[0].power;
goto unlock;
} else if (demand > max_load->freqs[max_load->length - 1].hdemand) {
pc = costs[max_load->length - 1].power;
goto unlock;
}
first = 0;
last = max_load->length - 1;
mid = (last - first) >> 1;
while (1) {
if (demand <= max_load->freqs[mid].hdemand)
last = mid;
else
first = mid;
if (last - first == 1)
break;
mid = first + ((last - first) >> 1);
}
pc = costs[last].power;
unlock:
rcu_read_unlock();
if (idle_cpu(cpu) && rq->cstate) {
total_static_pwr_cost += rq->static_cpu_pwr_cost;
if (rq->cluster->dstate)
total_static_pwr_cost +=
rq->cluster->static_cluster_pwr_cost;
}
return pc + total_static_pwr_cost;
}
void inc_nr_big_task(struct hmp_sched_stats *stats, struct task_struct *p)
{
if (sched_disable_window_stats)
return;
if (is_big_task(p))
stats->nr_big_tasks++;
}
void dec_nr_big_task(struct hmp_sched_stats *stats, struct task_struct *p)
{
if (sched_disable_window_stats)
return;
if (is_big_task(p))
stats->nr_big_tasks--;
BUG_ON(stats->nr_big_tasks < 0);
}
void inc_rq_hmp_stats(struct rq *rq, struct task_struct *p, int change_cra)
{
inc_nr_big_task(&rq->hmp_stats, p);
if (change_cra)
inc_cumulative_runnable_avg(&rq->hmp_stats, p);
}
void dec_rq_hmp_stats(struct rq *rq, struct task_struct *p, int change_cra)
{
dec_nr_big_task(&rq->hmp_stats, p);
if (change_cra)
dec_cumulative_runnable_avg(&rq->hmp_stats, p);
}
void reset_hmp_stats(struct hmp_sched_stats *stats, int reset_cra)
{
stats->nr_big_tasks = 0;
if (reset_cra) {
stats->cumulative_runnable_avg = 0;
stats->pred_demands_sum = 0;
}
}
int preferred_cluster(struct sched_cluster *cluster, struct task_struct *p)
{
struct related_thread_group *grp;
int rc = 1;
rcu_read_lock();
grp = task_related_thread_group(p);
if (grp)
rc = (grp->preferred_cluster == cluster);
rcu_read_unlock();
return rc;
}
struct sched_cluster *rq_cluster(struct rq *rq)
{
return rq->cluster;
}
/*
* reset_cpu_hmp_stats - reset HMP stats for a cpu
* nr_big_tasks
* cumulative_runnable_avg (iff reset_cra is true)
*/
void reset_cpu_hmp_stats(int cpu, int reset_cra)
{
reset_cfs_rq_hmp_stats(cpu, reset_cra);
reset_hmp_stats(&cpu_rq(cpu)->hmp_stats, reset_cra);
}
void fixup_nr_big_tasks(struct hmp_sched_stats *stats,
struct task_struct *p, s64 delta)
{
u64 new_task_load;
u64 old_task_load;
if (sched_disable_window_stats)
return;
old_task_load = scale_load_to_cpu(task_load(p), task_cpu(p));
new_task_load = scale_load_to_cpu(delta + task_load(p), task_cpu(p));
if (__is_big_task(p, old_task_load) && !__is_big_task(p, new_task_load))
stats->nr_big_tasks--;
else if (!__is_big_task(p, old_task_load) &&
__is_big_task(p, new_task_load))
stats->nr_big_tasks++;
BUG_ON(stats->nr_big_tasks < 0);
}
/*
* Walk runqueue of cpu and re-initialize 'nr_big_tasks' counters.
*/
static void update_nr_big_tasks(int cpu)
{
struct rq *rq = cpu_rq(cpu);
struct task_struct *p;
/* Do not reset cumulative_runnable_avg */
reset_cpu_hmp_stats(cpu, 0);
list_for_each_entry(p, &rq->cfs_tasks, se.group_node)
_inc_hmp_sched_stats_fair(rq, p, 0);
}
/* Disable interrupts and grab runqueue lock of all cpus listed in @cpus */
void pre_big_task_count_change(const struct cpumask *cpus)
{
int i;
local_irq_disable();
for_each_cpu(i, cpus)
raw_spin_lock(&cpu_rq(i)->lock);
}
/*
* Reinitialize 'nr_big_tasks' counters on all affected cpus
*/
void post_big_task_count_change(const struct cpumask *cpus)
{
int i;
/* Assumes local_irq_disable() keeps online cpumap stable */
for_each_cpu(i, cpus)
update_nr_big_tasks(i);
for_each_cpu(i, cpus)
raw_spin_unlock(&cpu_rq(i)->lock);
local_irq_enable();
}
DEFINE_MUTEX(policy_mutex);
unsigned int update_freq_aggregate_threshold(unsigned int threshold)
{
unsigned int old_threshold;
mutex_lock(&policy_mutex);
old_threshold = sysctl_sched_freq_aggregate_threshold_pct;
sysctl_sched_freq_aggregate_threshold_pct = threshold;
sched_freq_aggregate_threshold =
pct_to_real(sysctl_sched_freq_aggregate_threshold_pct);
mutex_unlock(&policy_mutex);
return old_threshold;
}
static inline int invalid_value_freq_input(unsigned int *data)
{
if (data == &sysctl_sched_freq_aggregate)
return !(*data == 0 || *data == 1);
return 0;
}
static inline int invalid_value(unsigned int *data)
{
unsigned int val = *data;
if (data == &sysctl_sched_ravg_hist_size)
return (val < 2 || val > RAVG_HIST_SIZE_MAX);
if (data == &sysctl_sched_window_stats_policy)
return val >= WINDOW_STATS_INVALID_POLICY;
return invalid_value_freq_input(data);
}
/*
* Handle "atomic" update of sysctl_sched_window_stats_policy,
* sysctl_sched_ravg_hist_size variables.
*/
int sched_window_update_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int ret;
unsigned int *data = (unsigned int *)table->data;
unsigned int old_val;
mutex_lock(&policy_mutex);
old_val = *data;
ret = proc_dointvec(table, write, buffer, lenp, ppos);
if (ret || !write || (write && (old_val == *data)))
goto done;
if (invalid_value(data)) {
*data = old_val;
ret = -EINVAL;
goto done;
}
reset_all_window_stats(0, 0);
done:
mutex_unlock(&policy_mutex);
return ret;
}
/*
* Convert percentage value into absolute form. This will avoid div() operation
* in fast path, to convert task load in percentage scale.
*/
int sched_hmp_proc_update_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int ret;
unsigned int old_val;
unsigned int *data = (unsigned int *)table->data;
int update_task_count = 0;
/*
* The policy mutex is acquired with cpu_hotplug.lock
* held from cpu_up()->cpufreq_governor_interactive()->
* sched_set_window(). So enforce the same order here.
*/
if (write && (data == &sysctl_sched_upmigrate_pct)) {
update_task_count = 1;
get_online_cpus();
}
mutex_lock(&policy_mutex);
old_val = *data;
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (ret || !write)
goto done;
if (write && (old_val == *data))
goto done;
if (sysctl_sched_downmigrate_pct > sysctl_sched_upmigrate_pct ||
sysctl_sched_group_downmigrate_pct >
sysctl_sched_group_upmigrate_pct) {
*data = old_val;
ret = -EINVAL;
goto done;
}
/*
* Big task tunable change will need to re-classify tasks on
* runqueue as big and set their counters appropriately.
* sysctl interface affects secondary variables (*_pct), which is then
* "atomically" carried over to the primary variables. Atomic change
* includes taking runqueue lock of all online cpus and re-initiatizing
* their big counter values based on changed criteria.
*/
if (update_task_count)
pre_big_task_count_change(cpu_online_mask);
set_hmp_defaults();
if (update_task_count)
post_big_task_count_change(cpu_online_mask);
done:
mutex_unlock(&policy_mutex);
if (update_task_count)
put_online_cpus();
return ret;
}
inline int nr_big_tasks(struct rq *rq)
{
return rq->hmp_stats.nr_big_tasks;
}
unsigned int cpu_temp(int cpu)
{
struct cpu_pwr_stats *per_cpu_info = get_cpu_pwr_stats();
if (per_cpu_info)
return per_cpu_info[cpu].temp;
else
return 0;
}
/*
* kfree() may wakeup kswapd. So this function should NOT be called
* with any CPU's rq->lock acquired.
*/
void free_task_load_ptrs(struct task_struct *p)
{
kfree(p->ravg.curr_window_cpu);
kfree(p->ravg.prev_window_cpu);
/*
* update_task_ravg() can be called for exiting tasks. While the
* function itself ensures correct behavior, the corresponding
* trace event requires that these pointers be NULL.
*/
p->ravg.curr_window_cpu = NULL;
p->ravg.prev_window_cpu = NULL;
}
void init_new_task_load(struct task_struct *p)
{
int i;
u32 init_load_windows = sched_init_task_load_windows;
u32 init_load_pct = current->init_load_pct;
p->init_load_pct = 0;
rcu_assign_pointer(p->grp, NULL);
INIT_LIST_HEAD(&p->grp_list);
memset(&p->ravg, 0, sizeof(struct ravg));
p->cpu_cycles = 0;
p->ravg.curr_burst = 0;
/*
* Initialize the avg_burst to twice the threshold, so that
* a task would not be classified as short burst right away
* after fork. It takes at least 6 sleep-wakeup cycles for
* the avg_burst to go below the threshold.
*/
p->ravg.avg_burst = 2 * (u64)sysctl_sched_short_burst;
p->ravg.avg_sleep_time = 0;
p->ravg.curr_window_cpu = kcalloc(nr_cpu_ids, sizeof(u32), GFP_KERNEL);
p->ravg.prev_window_cpu = kcalloc(nr_cpu_ids, sizeof(u32), GFP_KERNEL);
/* Don't have much choice. CPU frequency would be bogus */
BUG_ON(!p->ravg.curr_window_cpu || !p->ravg.prev_window_cpu);
if (init_load_pct)
init_load_windows = div64_u64((u64)init_load_pct *
(u64)sched_ravg_window, 100);
p->ravg.demand = init_load_windows;
p->ravg.pred_demand = 0;
for (i = 0; i < RAVG_HIST_SIZE_MAX; ++i)
p->ravg.sum_history[i] = init_load_windows;
}
/* Return task demand in percentage scale */
unsigned int pct_task_load(struct task_struct *p)
{
unsigned int load;
load = div64_u64((u64)task_load(p) * 100, (u64)max_task_load());
return load;
}
/*
* Return total number of tasks "eligible" to run on highest capacity cpu
*
* This is simply nr_big_tasks for cpus which are not of max_capacity and
* nr_running for cpus of max_capacity
*/
unsigned int nr_eligible_big_tasks(int cpu)
{
struct rq *rq = cpu_rq(cpu);
int nr_big = rq->hmp_stats.nr_big_tasks;
int nr = rq->nr_running;
if (!is_max_capacity_cpu(cpu))
return nr_big;
return nr;
}
static inline int exiting_task(struct task_struct *p)
{
return (p->ravg.sum_history[0] == EXITING_TASK_MARKER);
}
static int __init set_sched_ravg_window(char *str)
{
unsigned int window_size;
get_option(&str, &window_size);
if (window_size < MIN_SCHED_RAVG_WINDOW ||
window_size > MAX_SCHED_RAVG_WINDOW) {
WARN_ON(1);
return -EINVAL;
}
sched_ravg_window = window_size;
return 0;
}
early_param("sched_ravg_window", set_sched_ravg_window);
static inline void
update_window_start(struct rq *rq, u64 wallclock)
{
s64 delta;
int nr_windows;
delta = wallclock - rq->window_start;
BUG_ON(delta < 0);
if (delta < sched_ravg_window)
return;
nr_windows = div64_u64(delta, sched_ravg_window);
rq->window_start += (u64)nr_windows * (u64)sched_ravg_window;
}
#define DIV64_U64_ROUNDUP(X, Y) div64_u64((X) + (Y - 1), Y)
static inline u64 scale_exec_time(u64 delta, struct rq *rq)
{
u32 freq;
freq = cpu_cycles_to_freq(rq->cc.cycles, rq->cc.time);
delta = DIV64_U64_ROUNDUP(delta * freq, max_possible_freq);
delta *= rq->cluster->exec_scale_factor;
delta >>= 10;
return delta;
}
static inline int cpu_is_waiting_on_io(struct rq *rq)
{
if (!sched_io_is_busy)
return 0;
return atomic_read(&rq->nr_iowait);
}
/* Does freq_required sufficiently exceed or fall behind cur_freq? */
static inline int
nearly_same_freq(unsigned int cur_freq, unsigned int freq_required)
{
int delta = freq_required - cur_freq;
if (freq_required > cur_freq)
return delta < sysctl_sched_freq_inc_notify;
delta = -delta;
return delta < sysctl_sched_freq_dec_notify;
}
/* Convert busy time to frequency equivalent */
static inline unsigned int load_to_freq(struct rq *rq, u64 load)
{
unsigned int freq;
load = scale_load_to_cpu(load, cpu_of(rq));
load *= 128;
load = div64_u64(load, max_task_load());
freq = load * cpu_max_possible_freq(cpu_of(rq));
freq /= 128;
return freq;
}
/*
* Return load from all related groups in given frequency domain.
*/
static void group_load_in_freq_domain(struct cpumask *cpus,
u64 *grp_load, u64 *new_grp_load)
{
int j;
for_each_cpu(j, cpus) {
struct rq *rq = cpu_rq(j);
*grp_load += rq->grp_time.prev_runnable_sum;
*new_grp_load += rq->grp_time.nt_prev_runnable_sum;
}
}
static inline u64 freq_policy_load(struct rq *rq, u64 load);
/*
* Should scheduler alert governor for changing frequency?
*
* @check_pred - evaluate frequency based on the predictive demand
* @check_groups - add load from all related groups on given cpu
*
* check_groups is set to 1 if a "related" task movement/wakeup is triggering
* the notification check. To avoid "re-aggregation" of demand in such cases,
* we check whether the migrated/woken tasks demand (along with demand from
* existing tasks on the cpu) can be met on target cpu
*
*/
static int send_notification(struct rq *rq, int check_pred, int check_groups)
{
unsigned int cur_freq, freq_required;
unsigned long flags;
int rc = 0;
u64 group_load = 0, new_load = 0;
if (check_pred) {
u64 prev = rq->old_busy_time;
u64 predicted = rq->hmp_stats.pred_demands_sum;
if (rq->cluster->cur_freq == cpu_max_freq(cpu_of(rq)))
return 0;
prev = max(prev, rq->old_estimated_time);
if (prev > predicted)
return 0;
cur_freq = load_to_freq(rq, prev);
freq_required = load_to_freq(rq, predicted);
if (freq_required < cur_freq + sysctl_sched_pred_alert_freq)
return 0;
} else {
/*
* Protect from concurrent update of rq->prev_runnable_sum and
* group cpu load
*/
raw_spin_lock_irqsave(&rq->lock, flags);
if (check_groups)
group_load = rq->grp_time.prev_runnable_sum;
new_load = rq->prev_runnable_sum + group_load;
new_load = freq_policy_load(rq, new_load);
raw_spin_unlock_irqrestore(&rq->lock, flags);
cur_freq = load_to_freq(rq, rq->old_busy_time);
freq_required = load_to_freq(rq, new_load);
if (nearly_same_freq(cur_freq, freq_required))
return 0;
}
raw_spin_lock_irqsave(&rq->lock, flags);
if (!rq->cluster->notifier_sent) {
rq->cluster->notifier_sent = 1;
rc = 1;
trace_sched_freq_alert(cpu_of(rq), check_pred, check_groups, rq,
new_load);
}
raw_spin_unlock_irqrestore(&rq->lock, flags);
return rc;
}
/* Alert governor if there is a need to change frequency */
void check_for_freq_change(struct rq *rq, bool check_pred, bool check_groups)
{
int cpu = cpu_of(rq);
if (!send_notification(rq, check_pred, check_groups))
return;
atomic_notifier_call_chain(
&load_alert_notifier_head, 0,
(void *)(long)cpu);
}
void notify_migration(int src_cpu, int dest_cpu, bool src_cpu_dead,
struct task_struct *p)
{
bool check_groups;
rcu_read_lock();
check_groups = task_in_related_thread_group(p);
rcu_read_unlock();
if (!same_freq_domain(src_cpu, dest_cpu)) {
if (!src_cpu_dead)
check_for_freq_change(cpu_rq(src_cpu), false,
check_groups);
check_for_freq_change(cpu_rq(dest_cpu), false, check_groups);
} else {
check_for_freq_change(cpu_rq(dest_cpu), true, check_groups);
}
}
static int account_busy_for_cpu_time(struct rq *rq, struct task_struct *p,
u64 irqtime, int event)
{
if (is_idle_task(p)) {
/* TASK_WAKE && TASK_MIGRATE is not possible on idle task! */
if (event == PICK_NEXT_TASK)
return 0;
/* PUT_PREV_TASK, TASK_UPDATE && IRQ_UPDATE are left */
return irqtime || cpu_is_waiting_on_io(rq);
}
if (event == TASK_WAKE)
return 0;
if (event == PUT_PREV_TASK || event == IRQ_UPDATE)
return 1;
/*
* TASK_UPDATE can be called on sleeping task, when its moved between
* related groups
*/
if (event == TASK_UPDATE) {
if (rq->curr == p)
return 1;
return p->on_rq ? SCHED_FREQ_ACCOUNT_WAIT_TIME : 0;
}
/* TASK_MIGRATE, PICK_NEXT_TASK left */
return SCHED_FREQ_ACCOUNT_WAIT_TIME;
}
static inline bool is_new_task(struct task_struct *p)
{
return p->ravg.active_windows < SCHED_NEW_TASK_WINDOWS;
}
#define INC_STEP 8
#define DEC_STEP 2
#define CONSISTENT_THRES 16
#define INC_STEP_BIG 16
/*
* bucket_increase - update the count of all buckets
*
* @buckets: array of buckets tracking busy time of a task
* @idx: the index of bucket to be incremented
*
* Each time a complete window finishes, count of bucket that runtime
* falls in (@idx) is incremented. Counts of all other buckets are
* decayed. The rate of increase and decay could be different based
* on current count in the bucket.
*/
static inline void bucket_increase(u8 *buckets, int idx)
{
int i, step;
for (i = 0; i < NUM_BUSY_BUCKETS; i++) {
if (idx != i) {
if (buckets[i] > DEC_STEP)
buckets[i] -= DEC_STEP;
else
buckets[i] = 0;
} else {
step = buckets[i] >= CONSISTENT_THRES ?
INC_STEP_BIG : INC_STEP;
if (buckets[i] > U8_MAX - step)
buckets[i] = U8_MAX;
else
buckets[i] += step;
}
}
}
static inline int busy_to_bucket(u32 normalized_rt)
{
int bidx;
bidx = mult_frac(normalized_rt, NUM_BUSY_BUCKETS, max_task_load());
bidx = min(bidx, NUM_BUSY_BUCKETS - 1);
/*
* Combine lowest two buckets. The lowest frequency falls into
* 2nd bucket and thus keep predicting lowest bucket is not
* useful.
*/
if (!bidx)
bidx++;
return bidx;
}
static inline u64
scale_load_to_freq(u64 load, unsigned int src_freq, unsigned int dst_freq)
{
return div64_u64(load * (u64)src_freq, (u64)dst_freq);
}
/*
* get_pred_busy - calculate predicted demand for a task on runqueue
*
* @rq: runqueue of task p
* @p: task whose prediction is being updated
* @start: starting bucket. returned prediction should not be lower than
* this bucket.
* @runtime: runtime of the task. returned prediction should not be lower
* than this runtime.
* Note: @start can be derived from @runtime. It's passed in only to
* avoid duplicated calculation in some cases.
*
* A new predicted busy time is returned for task @p based on @runtime
* passed in. The function searches through buckets that represent busy
* time equal to or bigger than @runtime and attempts to find the bucket to
* to use for prediction. Once found, it searches through historical busy
* time and returns the latest that falls into the bucket. If no such busy
* time exists, it returns the medium of that bucket.
*/
static u32 get_pred_busy(struct rq *rq, struct task_struct *p,
int start, u32 runtime)
{
int i;
u8 *buckets = p->ravg.busy_buckets;
u32 *hist = p->ravg.sum_history;
u32 dmin, dmax;
u64 cur_freq_runtime = 0;
int first = NUM_BUSY_BUCKETS, final;
u32 ret = runtime;
/* skip prediction for new tasks due to lack of history */
if (unlikely(is_new_task(p)))
goto out;
/* find minimal bucket index to pick */
for (i = start; i < NUM_BUSY_BUCKETS; i++) {
if (buckets[i]) {
first = i;
break;
}
}
/* if no higher buckets are filled, predict runtime */
if (first >= NUM_BUSY_BUCKETS)
goto out;
/* compute the bucket for prediction */
final = first;
/* determine demand range for the predicted bucket */
if (final < 2) {
/* lowest two buckets are combined */
dmin = 0;
final = 1;
} else {
dmin = mult_frac(final, max_task_load(), NUM_BUSY_BUCKETS);
}
dmax = mult_frac(final + 1, max_task_load(), NUM_BUSY_BUCKETS);
/*
* search through runtime history and return first runtime that falls
* into the range of predicted bucket.
*/
for (i = 0; i < sched_ravg_hist_size; i++) {
if (hist[i] >= dmin && hist[i] < dmax) {
ret = hist[i];
break;
}
}
/* no historical runtime within bucket found, use average of the bin */
if (ret < dmin)
ret = (dmin + dmax) / 2;
/*
* when updating in middle of a window, runtime could be higher
* than all recorded history. Always predict at least runtime.
*/
ret = max(runtime, ret);
out:
trace_sched_update_pred_demand(rq, p, runtime,
mult_frac((unsigned int)cur_freq_runtime, 100,
sched_ravg_window), ret);
return ret;
}
static inline u32 calc_pred_demand(struct rq *rq, struct task_struct *p)
{
if (p->ravg.pred_demand >= p->ravg.curr_window)
return p->ravg.pred_demand;
return get_pred_busy(rq, p, busy_to_bucket(p->ravg.curr_window),
p->ravg.curr_window);
}
/*
* predictive demand of a task is calculated at the window roll-over.
* if the task current window busy time exceeds the predicted
* demand, update it here to reflect the task needs.
*/
void update_task_pred_demand(struct rq *rq, struct task_struct *p, int event)
{
u32 new, old;
if (is_idle_task(p) || exiting_task(p))
return;
if (event != PUT_PREV_TASK && event != TASK_UPDATE &&
(!SCHED_FREQ_ACCOUNT_WAIT_TIME ||
(event != TASK_MIGRATE &&
event != PICK_NEXT_TASK)))
return;
/*
* TASK_UPDATE can be called on sleeping task, when its moved between
* related groups
*/
if (event == TASK_UPDATE) {
if (!p->on_rq && !SCHED_FREQ_ACCOUNT_WAIT_TIME)
return;
}
new = calc_pred_demand(rq, p);
old = p->ravg.pred_demand;
if (old >= new)
return;
if (task_on_rq_queued(p) && (!task_has_dl_policy(p) ||
!p->dl.dl_throttled))
p->sched_class->fixup_hmp_sched_stats(rq, p,
p->ravg.demand,
new);
p->ravg.pred_demand = new;
}
void clear_top_tasks_bitmap(unsigned long *bitmap)
{
memset(bitmap, 0, top_tasks_bitmap_size);
__set_bit(NUM_LOAD_INDICES, bitmap);
}
/*
* Special case the last index and provide a fast path for index = 0.
* Note that sched_load_granule can change underneath us if we are not
* holding any runqueue locks while calling the two functions below.
*/
static u32 top_task_load(struct rq *rq)
{
int index = rq->prev_top;
u8 prev = 1 - rq->curr_table;
if (!index) {
int msb = NUM_LOAD_INDICES - 1;
if (!test_bit(msb, rq->top_tasks_bitmap[prev]))
return 0;
else
return sched_load_granule;
} else if (index == NUM_LOAD_INDICES - 1) {
return sched_ravg_window;
} else {
return (index + 1) * sched_load_granule;
}
}
static u32 load_to_index(u32 load)
{
u32 index = load / sched_load_granule;
return min(index, (u32)(NUM_LOAD_INDICES - 1));
}
static void update_top_tasks(struct task_struct *p, struct rq *rq,
u32 old_curr_window, int new_window, bool full_window)
{
u8 curr = rq->curr_table;
u8 prev = 1 - curr;
u8 *curr_table = rq->top_tasks[curr];
u8 *prev_table = rq->top_tasks[prev];
int old_index, new_index, update_index;
u32 curr_window = p->ravg.curr_window;
u32 prev_window = p->ravg.prev_window;
bool zero_index_update;
if (old_curr_window == curr_window && !new_window)
return;
old_index = load_to_index(old_curr_window);
new_index = load_to_index(curr_window);
if (!new_window) {
zero_index_update = !old_curr_window && curr_window;
if (old_index != new_index || zero_index_update) {
if (old_curr_window)
curr_table[old_index] -= 1;
if (curr_window)
curr_table[new_index] += 1;
if (new_index > rq->curr_top)
rq->curr_top = new_index;
}
if (!curr_table[old_index])
__clear_bit(NUM_LOAD_INDICES - old_index - 1,
rq->top_tasks_bitmap[curr]);
if (curr_table[new_index] == 1)
__set_bit(NUM_LOAD_INDICES - new_index - 1,
rq->top_tasks_bitmap[curr]);
return;
}
/*
* The window has rolled over for this task. By the time we get
* here, curr/prev swaps would has already occurred. So we need
* to use prev_window for the new index.
*/
update_index = load_to_index(prev_window);
if (full_window) {
/*
* Two cases here. Either 'p' ran for the entire window or
* it didn't run at all. In either case there is no entry
* in the prev table. If 'p' ran the entire window, we just
* need to create a new entry in the prev table. In this case
* update_index will be correspond to sched_ravg_window
* so we can unconditionally update the top index.
*/
if (prev_window) {
prev_table[update_index] += 1;
rq->prev_top = update_index;
}
if (prev_table[update_index] == 1)
__set_bit(NUM_LOAD_INDICES - update_index - 1,
rq->top_tasks_bitmap[prev]);
} else {
zero_index_update = !old_curr_window && prev_window;
if (old_index != update_index || zero_index_update) {
if (old_curr_window)
prev_table[old_index] -= 1;
prev_table[update_index] += 1;
if (update_index > rq->prev_top)
rq->prev_top = update_index;
if (!prev_table[old_index])
__clear_bit(NUM_LOAD_INDICES - old_index - 1,
rq->top_tasks_bitmap[prev]);
if (prev_table[update_index] == 1)
__set_bit(NUM_LOAD_INDICES - update_index - 1,
rq->top_tasks_bitmap[prev]);
}
}
if (curr_window) {
curr_table[new_index] += 1;
if (new_index > rq->curr_top)
rq->curr_top = new_index;
if (curr_table[new_index] == 1)
__set_bit(NUM_LOAD_INDICES - new_index - 1,
rq->top_tasks_bitmap[curr]);
}
}
static inline void clear_top_tasks_table(u8 *table)
{
memset(table, 0, NUM_LOAD_INDICES * sizeof(u8));
}
static void rollover_top_tasks(struct rq *rq, bool full_window)
{
u8 curr_table = rq->curr_table;
u8 prev_table = 1 - curr_table;
int curr_top = rq->curr_top;
clear_top_tasks_table(rq->top_tasks[prev_table]);
clear_top_tasks_bitmap(rq->top_tasks_bitmap[prev_table]);
if (full_window) {
curr_top = 0;
clear_top_tasks_table(rq->top_tasks[curr_table]);
clear_top_tasks_bitmap(
rq->top_tasks_bitmap[curr_table]);
}
rq->curr_table = prev_table;
rq->prev_top = curr_top;
rq->curr_top = 0;
}
static u32 empty_windows[NR_CPUS];
static void rollover_task_window(struct task_struct *p, bool full_window)
{
u32 *curr_cpu_windows = empty_windows;
u32 curr_window;
int i;
/* Rollover the sum */
curr_window = 0;
if (!full_window) {
curr_window = p->ravg.curr_window;
curr_cpu_windows = p->ravg.curr_window_cpu;
}
p->ravg.prev_window = curr_window;
p->ravg.curr_window = 0;
/* Roll over individual CPU contributions */
for (i = 0; i < nr_cpu_ids; i++) {
p->ravg.prev_window_cpu[i] = curr_cpu_windows[i];
p->ravg.curr_window_cpu[i] = 0;
}
}
static void rollover_cpu_window(struct rq *rq, bool full_window)
{
u64 curr_sum = rq->curr_runnable_sum;
u64 nt_curr_sum = rq->nt_curr_runnable_sum;
u64 grp_curr_sum = rq->grp_time.curr_runnable_sum;
u64 grp_nt_curr_sum = rq->grp_time.nt_curr_runnable_sum;
if (unlikely(full_window)) {
curr_sum = 0;
nt_curr_sum = 0;
grp_curr_sum = 0;
grp_nt_curr_sum = 0;
}
rq->prev_runnable_sum = curr_sum;
rq->nt_prev_runnable_sum = nt_curr_sum;
rq->grp_time.prev_runnable_sum = grp_curr_sum;
rq->grp_time.nt_prev_runnable_sum = grp_nt_curr_sum;
rq->curr_runnable_sum = 0;
rq->nt_curr_runnable_sum = 0;
rq->grp_time.curr_runnable_sum = 0;
rq->grp_time.nt_curr_runnable_sum = 0;
}
/*
* Account cpu activity in its busy time counters (rq->curr/prev_runnable_sum)
*/
static void update_cpu_busy_time(struct task_struct *p, struct rq *rq,
int event, u64 wallclock, u64 irqtime)
{
int new_window, full_window = 0;
int p_is_curr_task = (p == rq->curr);
u64 mark_start = p->ravg.mark_start;
u64 window_start = rq->window_start;
u32 window_size = sched_ravg_window;
u64 delta;
u64 *curr_runnable_sum = &rq->curr_runnable_sum;
u64 *prev_runnable_sum = &rq->prev_runnable_sum;
u64 *nt_curr_runnable_sum = &rq->nt_curr_runnable_sum;
u64 *nt_prev_runnable_sum = &rq->nt_prev_runnable_sum;
bool new_task;
struct related_thread_group *grp;
int cpu = rq->cpu;
u32 old_curr_window = p->ravg.curr_window;
new_window = mark_start < window_start;
if (new_window) {
full_window = (window_start - mark_start) >= window_size;
if (p->ravg.active_windows < USHRT_MAX)
p->ravg.active_windows++;
}
new_task = is_new_task(p);
/*
* Handle per-task window rollover. We don't care about the idle
* task or exiting tasks.
*/
if (!is_idle_task(p) && !exiting_task(p)) {
if (new_window)
rollover_task_window(p, full_window);
}
if (p_is_curr_task && new_window) {
rollover_cpu_window(rq, full_window);
rollover_top_tasks(rq, full_window);
}
if (!account_busy_for_cpu_time(rq, p, irqtime, event))
goto done;
grp = p->grp;
if (grp && sched_freq_aggregate) {
struct group_cpu_time *cpu_time = &rq->grp_time;
curr_runnable_sum = &cpu_time->curr_runnable_sum;
prev_runnable_sum = &cpu_time->prev_runnable_sum;
nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
}
if (!new_window) {
/*
* account_busy_for_cpu_time() = 1 so busy time needs
* to be accounted to the current window. No rollover
* since we didn't start a new window. An example of this is
* when a task starts execution and then sleeps within the
* same window.
*/
if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq))
delta = wallclock - mark_start;
else
delta = irqtime;
delta = scale_exec_time(delta, rq);
*curr_runnable_sum += delta;
if (new_task)
*nt_curr_runnable_sum += delta;
if (!is_idle_task(p) && !exiting_task(p)) {
p->ravg.curr_window += delta;
p->ravg.curr_window_cpu[cpu] += delta;
}
goto done;
}
if (!p_is_curr_task) {
/*
* account_busy_for_cpu_time() = 1 so busy time needs
* to be accounted to the current window. A new window
* has also started, but p is not the current task, so the
* window is not rolled over - just split up and account
* as necessary into curr and prev. The window is only
* rolled over when a new window is processed for the current
* task.
*
* Irqtime can't be accounted by a task that isn't the
* currently running task.
*/
if (!full_window) {
/*
* A full window hasn't elapsed, account partial
* contribution to previous completed window.
*/
delta = scale_exec_time(window_start - mark_start, rq);
if (!exiting_task(p)) {
p->ravg.prev_window += delta;
p->ravg.prev_window_cpu[cpu] += delta;
}
} else {
/*
* Since at least one full window has elapsed,
* the contribution to the previous window is the
* full window (window_size).
*/
delta = scale_exec_time(window_size, rq);
if (!exiting_task(p)) {
p->ravg.prev_window = delta;
p->ravg.prev_window_cpu[cpu] = delta;
}
}
*prev_runnable_sum += delta;
if (new_task)
*nt_prev_runnable_sum += delta;
/* Account piece of busy time in the current window. */
delta = scale_exec_time(wallclock - window_start, rq);
*curr_runnable_sum += delta;
if (new_task)
*nt_curr_runnable_sum += delta;
if (!exiting_task(p)) {
p->ravg.curr_window = delta;
p->ravg.curr_window_cpu[cpu] = delta;
}
goto done;
}
if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq)) {
/*
* account_busy_for_cpu_time() = 1 so busy time needs
* to be accounted to the current window. A new window
* has started and p is the current task so rollover is
* needed. If any of these three above conditions are true
* then this busy time can't be accounted as irqtime.
*
* Busy time for the idle task or exiting tasks need not
* be accounted.
*
* An example of this would be a task that starts execution
* and then sleeps once a new window has begun.
*/
if (!full_window) {
/*
* A full window hasn't elapsed, account partial
* contribution to previous completed window.
*/
delta = scale_exec_time(window_start - mark_start, rq);
if (!is_idle_task(p) && !exiting_task(p)) {
p->ravg.prev_window += delta;
p->ravg.prev_window_cpu[cpu] += delta;
}
} else {
/*
* Since at least one full window has elapsed,
* the contribution to the previous window is the
* full window (window_size).
*/
delta = scale_exec_time(window_size, rq);
if (!is_idle_task(p) && !exiting_task(p)) {
p->ravg.prev_window = delta;
p->ravg.prev_window_cpu[cpu] = delta;
}
}
/*
* Rollover is done here by overwriting the values in
* prev_runnable_sum and curr_runnable_sum.
*/
*prev_runnable_sum += delta;
if (new_task)
*nt_prev_runnable_sum += delta;
/* Account piece of busy time in the current window. */
delta = scale_exec_time(wallclock - window_start, rq);
*curr_runnable_sum += delta;
if (new_task)
*nt_curr_runnable_sum += delta;
if (!is_idle_task(p) && !exiting_task(p)) {
p->ravg.curr_window = delta;
p->ravg.curr_window_cpu[cpu] = delta;
}
goto done;
}
if (irqtime) {
/*
* account_busy_for_cpu_time() = 1 so busy time needs
* to be accounted to the current window. A new window
* has started and p is the current task so rollover is
* needed. The current task must be the idle task because
* irqtime is not accounted for any other task.
*
* Irqtime will be accounted each time we process IRQ activity
* after a period of idleness, so we know the IRQ busy time
* started at wallclock - irqtime.
*/
BUG_ON(!is_idle_task(p));
mark_start = wallclock - irqtime;
/*
* Roll window over. If IRQ busy time was just in the current
* window then that is all that need be accounted.
*/
if (mark_start > window_start) {
*curr_runnable_sum = scale_exec_time(irqtime, rq);
return;
}
/*
* The IRQ busy time spanned multiple windows. Process the
* busy time preceding the current window start first.
*/
delta = window_start - mark_start;
if (delta > window_size)
delta = window_size;
delta = scale_exec_time(delta, rq);
*prev_runnable_sum += delta;
/* Process the remaining IRQ busy time in the current window. */
delta = wallclock - window_start;
rq->curr_runnable_sum = scale_exec_time(delta, rq);
return;
}
done:
if (!is_idle_task(p) && !exiting_task(p))
update_top_tasks(p, rq, old_curr_window,
new_window, full_window);
}
static inline u32 predict_and_update_buckets(struct rq *rq,
struct task_struct *p, u32 runtime) {
int bidx;
u32 pred_demand;
bidx = busy_to_bucket(runtime);
pred_demand = get_pred_busy(rq, p, bidx, runtime);
bucket_increase(p->ravg.busy_buckets, bidx);
return pred_demand;
}
#define THRESH_CC_UPDATE (2 * NSEC_PER_USEC)
/*
* Assumes rq_lock is held and wallclock was recorded in the same critical
* section as this function's invocation.
*/
static inline u64 read_cycle_counter(int cpu, u64 wallclock)
{
struct sched_cluster *cluster = cpu_rq(cpu)->cluster;
u64 delta;
if (unlikely(!cluster))
return cpu_cycle_counter_cb.get_cpu_cycle_counter(cpu);
/*
* Why don't we need locking here? Let's say that delta is negative
* because some other CPU happened to update last_cc_update with a
* more recent timestamp. We simply read the conter again in that case
* with no harmful side effects. This can happen if there is an FIQ
* between when we read the wallclock and when we use it here.
*/
delta = wallclock - atomic64_read(&cluster->last_cc_update);
if (delta > THRESH_CC_UPDATE) {
atomic64_set(&cluster->cycles,
cpu_cycle_counter_cb.get_cpu_cycle_counter(cpu));
atomic64_set(&cluster->last_cc_update, wallclock);
}
return atomic64_read(&cluster->cycles);
}
static void update_task_cpu_cycles(struct task_struct *p, int cpu,
u64 wallclock)
{
if (use_cycle_counter)
p->cpu_cycles = read_cycle_counter(cpu, wallclock);
}
static void
update_task_rq_cpu_cycles(struct task_struct *p, struct rq *rq, int event,
u64 wallclock, u64 irqtime)
{
u64 cur_cycles;
int cpu = cpu_of(rq);
lockdep_assert_held(&rq->lock);
if (!use_cycle_counter) {
rq->cc.cycles = cpu_cur_freq(cpu);
rq->cc.time = 1;
return;
}
cur_cycles = read_cycle_counter(cpu, wallclock);
/*
* If current task is idle task and irqtime == 0 CPU was
* indeed idle and probably its cycle counter was not
* increasing. We still need estimatied CPU frequency
* for IO wait time accounting. Use the previously
* calculated frequency in such a case.
*/
if (!is_idle_task(rq->curr) || irqtime) {
if (unlikely(cur_cycles < p->cpu_cycles))
rq->cc.cycles = cur_cycles + (U64_MAX - p->cpu_cycles);
else
rq->cc.cycles = cur_cycles - p->cpu_cycles;
rq->cc.cycles = rq->cc.cycles * NSEC_PER_MSEC;
if (event == IRQ_UPDATE && is_idle_task(p))
/*
* Time between mark_start of idle task and IRQ handler
* entry time is CPU cycle counter stall period.
* Upon IRQ handler entry sched_account_irqstart()
* replenishes idle task's cpu cycle counter so
* rq->cc.cycles now represents increased cycles during
* IRQ handler rather than time between idle entry and
* IRQ exit. Thus use irqtime as time delta.
*/
rq->cc.time = irqtime;
else
rq->cc.time = wallclock - p->ravg.mark_start;
BUG_ON((s64)rq->cc.time < 0);
}
p->cpu_cycles = cur_cycles;
trace_sched_get_task_cpu_cycles(cpu, event, rq->cc.cycles,
rq->cc.time, p);
}
static int
account_busy_for_task_demand(struct rq *rq, struct task_struct *p, int event)
{
/*
* No need to bother updating task demand for exiting tasks
* or the idle task.
*/
if (exiting_task(p) || is_idle_task(p))
return 0;
/*
* When a task is waking up it is completing a segment of non-busy
* time. Likewise, if wait time is not treated as busy time, then
* when a task begins to run or is migrated, it is not running and
* is completing a segment of non-busy time.
*/
if (event == TASK_WAKE || (!SCHED_ACCOUNT_WAIT_TIME &&
(event == PICK_NEXT_TASK || event == TASK_MIGRATE)))
return 0;
/*
* TASK_UPDATE can be called on sleeping task, when its moved between
* related groups
*/
if (event == TASK_UPDATE) {
if (rq->curr == p)
return 1;
return p->on_rq ? SCHED_ACCOUNT_WAIT_TIME : 0;
}
return 1;
}
/*
* Called when new window is starting for a task, to record cpu usage over
* recently concluded window(s). Normally 'samples' should be 1. It can be > 1
* when, say, a real-time task runs without preemption for several windows at a
* stretch.
*/
static void update_history(struct rq *rq, struct task_struct *p,
u32 runtime, int samples, int event)
{
u32 *hist = &p->ravg.sum_history[0];
int ridx, widx;
u32 max = 0, avg, demand, pred_demand;
u64 sum = 0;
/* Ignore windows where task had no activity */
if (!runtime || is_idle_task(p) || exiting_task(p) || !samples)
goto done;
/* Push new 'runtime' value onto stack */
widx = sched_ravg_hist_size - 1;
ridx = widx - samples;
for (; ridx >= 0; --widx, --ridx) {
hist[widx] = hist[ridx];
sum += hist[widx];
if (hist[widx] > max)
max = hist[widx];
}
for (widx = 0; widx < samples && widx < sched_ravg_hist_size; widx++) {
hist[widx] = runtime;
sum += hist[widx];
if (hist[widx] > max)
max = hist[widx];
}
p->ravg.sum = 0;
if (sched_window_stats_policy == WINDOW_STATS_RECENT) {
demand = runtime;
} else if (sched_window_stats_policy == WINDOW_STATS_MAX) {
demand = max;
} else {
avg = div64_u64(sum, sched_ravg_hist_size);
if (sched_window_stats_policy == WINDOW_STATS_AVG)
demand = avg;
else
demand = max(avg, runtime);
}
pred_demand = predict_and_update_buckets(rq, p, runtime);
/*
* A throttled deadline sched class task gets dequeued without
* changing p->on_rq. Since the dequeue decrements hmp stats
* avoid decrementing it here again.
*/
if (task_on_rq_queued(p) && (!task_has_dl_policy(p) ||
!p->dl.dl_throttled))
p->sched_class->fixup_hmp_sched_stats(rq, p, demand,
pred_demand);
p->ravg.demand = demand;
p->ravg.pred_demand = pred_demand;
done:
trace_sched_update_history(rq, p, runtime, samples, event);
}
static u64 add_to_task_demand(struct rq *rq, struct task_struct *p, u64 delta)
{
delta = scale_exec_time(delta, rq);
p->ravg.sum += delta;
if (unlikely(p->ravg.sum > sched_ravg_window))
p->ravg.sum = sched_ravg_window;
return delta;
}
/*
* Account cpu demand of task and/or update task's cpu demand history
*
* ms = p->ravg.mark_start;
* wc = wallclock
* ws = rq->window_start
*
* Three possibilities:
*
* a) Task event is contained within one window.
* window_start < mark_start < wallclock
*
* ws ms wc
* | | |
* V V V
* |---------------|
*
* In this case, p->ravg.sum is updated *iff* event is appropriate
* (ex: event == PUT_PREV_TASK)
*
* b) Task event spans two windows.
* mark_start < window_start < wallclock
*
* ms ws wc
* | | |
* V V V
* -----|-------------------
*
* In this case, p->ravg.sum is updated with (ws - ms) *iff* event
* is appropriate, then a new window sample is recorded followed
* by p->ravg.sum being set to (wc - ws) *iff* event is appropriate.
*
* c) Task event spans more than two windows.
*
* ms ws_tmp ws wc
* | | | |
* V V V V
* ---|-------|-------|-------|-------|------
* | |
* |<------ nr_full_windows ------>|
*
* In this case, p->ravg.sum is updated with (ws_tmp - ms) first *iff*
* event is appropriate, window sample of p->ravg.sum is recorded,
* 'nr_full_window' samples of window_size is also recorded *iff*
* event is appropriate and finally p->ravg.sum is set to (wc - ws)
* *iff* event is appropriate.
*
* IMPORTANT : Leave p->ravg.mark_start unchanged, as update_cpu_busy_time()
* depends on it!
*/
static u64 update_task_demand(struct task_struct *p, struct rq *rq,
int event, u64 wallclock)
{
u64 mark_start = p->ravg.mark_start;
u64 delta, window_start = rq->window_start;
int new_window, nr_full_windows;
u32 window_size = sched_ravg_window;
u64 runtime;
new_window = mark_start < window_start;
if (!account_busy_for_task_demand(rq, p, event)) {
if (new_window)
/*
* If the time accounted isn't being accounted as
* busy time, and a new window started, only the
* previous window need be closed out with the
* pre-existing demand. Multiple windows may have
* elapsed, but since empty windows are dropped,
* it is not necessary to account those.
*/
update_history(rq, p, p->ravg.sum, 1, event);
return 0;
}
if (!new_window) {
/*
* The simple case - busy time contained within the existing
* window.
*/
return add_to_task_demand(rq, p, wallclock - mark_start);
}
/*
* Busy time spans at least two windows. Temporarily rewind
* window_start to first window boundary after mark_start.
*/
delta = window_start - mark_start;
nr_full_windows = div64_u64(delta, window_size);
window_start -= (u64)nr_full_windows * (u64)window_size;
/* Process (window_start - mark_start) first */
runtime = add_to_task_demand(rq, p, window_start - mark_start);
/* Push new sample(s) into task's demand history */
update_history(rq, p, p->ravg.sum, 1, event);
if (nr_full_windows) {
u64 scaled_window = scale_exec_time(window_size, rq);
update_history(rq, p, scaled_window, nr_full_windows, event);
runtime += nr_full_windows * scaled_window;
}
/*
* Roll window_start back to current to process any remainder
* in current window.
*/
window_start += (u64)nr_full_windows * (u64)window_size;
/* Process (wallclock - window_start) next */
mark_start = window_start;
runtime += add_to_task_demand(rq, p, wallclock - mark_start);
return runtime;
}
static inline void
update_task_burst(struct task_struct *p, struct rq *rq, int event, u64 runtime)
{
/*
* update_task_demand() has checks for idle task and
* exit task. The runtime may include the wait time,
* so update the burst only for the cases where the
* task is running.
*/
if (event == PUT_PREV_TASK || (event == TASK_UPDATE &&
rq->curr == p))
p->ravg.curr_burst += runtime;
}
/* Reflect task activity on its demand and cpu's busy time statistics */
void update_task_ravg(struct task_struct *p, struct rq *rq, int event,
u64 wallclock, u64 irqtime)
{
u64 runtime;
if (!rq->window_start || sched_disable_window_stats ||
p->ravg.mark_start == wallclock)
return;
lockdep_assert_held(&rq->lock);
update_window_start(rq, wallclock);
if (!p->ravg.mark_start) {
update_task_cpu_cycles(p, cpu_of(rq), wallclock);
goto done;
}
update_task_rq_cpu_cycles(p, rq, event, wallclock, irqtime);
runtime = update_task_demand(p, rq, event, wallclock);
if (runtime)
update_task_burst(p, rq, event, runtime);
update_cpu_busy_time(p, rq, event, wallclock, irqtime);
update_task_pred_demand(rq, p, event);
if (exiting_task(p))
goto done;
trace_sched_update_task_ravg(p, rq, event, wallclock, irqtime,
rq->cc.cycles, rq->cc.time,
p->grp ? &rq->grp_time : NULL);
done:
p->ravg.mark_start = wallclock;
}
void sched_account_irqtime(int cpu, struct task_struct *curr,
u64 delta, u64 wallclock)
{
struct rq *rq = cpu_rq(cpu);
unsigned long flags, nr_windows;
u64 cur_jiffies_ts;
raw_spin_lock_irqsave(&rq->lock, flags);
/*
* cputime (wallclock) uses sched_clock so use the same here for
* consistency.
*/
delta += sched_clock() - wallclock;
cur_jiffies_ts = get_jiffies_64();
if (is_idle_task(curr))
update_task_ravg(curr, rq, IRQ_UPDATE, sched_ktime_clock(),
delta);
nr_windows = cur_jiffies_ts - rq->irqload_ts;
if (nr_windows) {
if (nr_windows < 10) {
/* Decay CPU's irqload by 3/4 for each window. */
rq->avg_irqload *= (3 * nr_windows);
rq->avg_irqload = div64_u64(rq->avg_irqload,
4 * nr_windows);
} else {
rq->avg_irqload = 0;
}
rq->avg_irqload += rq->cur_irqload;
rq->cur_irqload = 0;
}
rq->cur_irqload += delta;
rq->irqload_ts = cur_jiffies_ts;
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
void sched_account_irqstart(int cpu, struct task_struct *curr, u64 wallclock)
{
struct rq *rq = cpu_rq(cpu);
if (!rq->window_start || sched_disable_window_stats)
return;
if (is_idle_task(curr)) {
/* We're here without rq->lock held, IRQ disabled */
raw_spin_lock(&rq->lock);
update_task_cpu_cycles(curr, cpu, sched_ktime_clock());
raw_spin_unlock(&rq->lock);
}
}
void reset_task_stats(struct task_struct *p)
{
u32 sum = 0;
u32 *curr_window_ptr = NULL;
u32 *prev_window_ptr = NULL;
if (exiting_task(p)) {
sum = EXITING_TASK_MARKER;
} else {
curr_window_ptr = p->ravg.curr_window_cpu;
prev_window_ptr = p->ravg.prev_window_cpu;
memset(curr_window_ptr, 0, sizeof(u32) * nr_cpu_ids);
memset(prev_window_ptr, 0, sizeof(u32) * nr_cpu_ids);
}
memset(&p->ravg, 0, sizeof(struct ravg));
p->ravg.curr_window_cpu = curr_window_ptr;
p->ravg.prev_window_cpu = prev_window_ptr;
p->ravg.avg_burst = 2 * (u64)sysctl_sched_short_burst;
/* Retain EXITING_TASK marker */
p->ravg.sum_history[0] = sum;
}
void mark_task_starting(struct task_struct *p)
{
u64 wallclock;
struct rq *rq = task_rq(p);
if (!rq->window_start || sched_disable_window_stats) {
reset_task_stats(p);
return;
}
wallclock = sched_ktime_clock();
p->ravg.mark_start = p->last_wake_ts = wallclock;
p->last_cpu_selected_ts = wallclock;
p->last_switch_out_ts = 0;
update_task_cpu_cycles(p, cpu_of(rq), wallclock);
}
void set_window_start(struct rq *rq)
{
static int sync_cpu_available;
if (rq->window_start)
return;
if (!sync_cpu_available) {
rq->window_start = sched_ktime_clock();
sync_cpu_available = 1;
} else {
struct rq *sync_rq = cpu_rq(cpumask_any(cpu_online_mask));
raw_spin_unlock(&rq->lock);
double_rq_lock(rq, sync_rq);
rq->window_start = sync_rq->window_start;
rq->curr_runnable_sum = rq->prev_runnable_sum = 0;
rq->nt_curr_runnable_sum = rq->nt_prev_runnable_sum = 0;
raw_spin_unlock(&sync_rq->lock);
}
rq->curr->ravg.mark_start = rq->window_start;
}
static void reset_all_task_stats(void)
{
struct task_struct *g, *p;
do_each_thread(g, p) {
reset_task_stats(p);
} while_each_thread(g, p);
}
enum reset_reason_code {
WINDOW_CHANGE,
POLICY_CHANGE,
HIST_SIZE_CHANGE,
FREQ_AGGREGATE_CHANGE,
};
const char *sched_window_reset_reasons[] = {
"WINDOW_CHANGE",
"POLICY_CHANGE",
"HIST_SIZE_CHANGE",
"FREQ_AGGREGATE_CHANGE",
};
/* Called with IRQs enabled */
void reset_all_window_stats(u64 window_start, unsigned int window_size)
{
int cpu, i;
unsigned long flags;
u64 start_ts = sched_ktime_clock();
int reason = WINDOW_CHANGE;
unsigned int old = 0, new = 0;
local_irq_save(flags);
read_lock(&tasklist_lock);
read_lock(&related_thread_group_lock);
/* Taking all runqueue locks prevents race with sched_exit(). */
for_each_possible_cpu(cpu)
raw_spin_lock(&cpu_rq(cpu)->lock);
sched_disable_window_stats = 1;
reset_all_task_stats();
read_unlock(&tasklist_lock);
if (window_size) {
sched_ravg_window = window_size * TICK_NSEC;
set_hmp_defaults();
sched_load_granule = sched_ravg_window / NUM_LOAD_INDICES;
}
sched_disable_window_stats = 0;
for_each_possible_cpu(cpu) {
struct rq *rq = cpu_rq(cpu);
if (window_start)
rq->window_start = window_start;
rq->curr_runnable_sum = rq->prev_runnable_sum = 0;
rq->nt_curr_runnable_sum = rq->nt_prev_runnable_sum = 0;
memset(&rq->grp_time, 0, sizeof(struct group_cpu_time));
for (i = 0; i < NUM_TRACKED_WINDOWS; i++) {
memset(&rq->load_subs[i], 0,
sizeof(struct load_subtractions));
clear_top_tasks_table(rq->top_tasks[i]);
clear_top_tasks_bitmap(rq->top_tasks_bitmap[i]);
}
rq->curr_table = 0;
rq->curr_top = 0;
rq->prev_top = 0;
reset_cpu_hmp_stats(cpu, 1);
}
if (sched_window_stats_policy != sysctl_sched_window_stats_policy) {
reason = POLICY_CHANGE;
old = sched_window_stats_policy;
new = sysctl_sched_window_stats_policy;
sched_window_stats_policy = sysctl_sched_window_stats_policy;
} else if (sched_ravg_hist_size != sysctl_sched_ravg_hist_size) {
reason = HIST_SIZE_CHANGE;
old = sched_ravg_hist_size;
new = sysctl_sched_ravg_hist_size;
sched_ravg_hist_size = sysctl_sched_ravg_hist_size;
} else if (sched_freq_aggregate !=
sysctl_sched_freq_aggregate) {
reason = FREQ_AGGREGATE_CHANGE;
old = sched_freq_aggregate;
new = sysctl_sched_freq_aggregate;
sched_freq_aggregate = sysctl_sched_freq_aggregate;
}
for_each_possible_cpu(cpu)
raw_spin_unlock(&cpu_rq(cpu)->lock);
read_unlock(&related_thread_group_lock);
local_irq_restore(flags);
trace_sched_reset_all_window_stats(window_start, window_size,
sched_ktime_clock() - start_ts, reason, old, new);
}
/*
* In this function we match the accumulated subtractions with the current
* and previous windows we are operating with. Ignore any entries where
* the window start in the load_subtraction struct does not match either
* the curent or the previous window. This could happen whenever CPUs
* become idle or busy with interrupts disabled for an extended period.
*/
static inline void account_load_subtractions(struct rq *rq)
{
u64 ws = rq->window_start;
u64 prev_ws = ws - sched_ravg_window;
struct load_subtractions *ls = rq->load_subs;
int i;
for (i = 0; i < NUM_TRACKED_WINDOWS; i++) {
if (ls[i].window_start == ws) {
rq->curr_runnable_sum -= ls[i].subs;
rq->nt_curr_runnable_sum -= ls[i].new_subs;
} else if (ls[i].window_start == prev_ws) {
rq->prev_runnable_sum -= ls[i].subs;
rq->nt_prev_runnable_sum -= ls[i].new_subs;
}
ls[i].subs = 0;
ls[i].new_subs = 0;
}
BUG_ON((s64)rq->prev_runnable_sum < 0);
BUG_ON((s64)rq->curr_runnable_sum < 0);
BUG_ON((s64)rq->nt_prev_runnable_sum < 0);
BUG_ON((s64)rq->nt_curr_runnable_sum < 0);
}
static inline u64 freq_policy_load(struct rq *rq, u64 load)
{
unsigned int reporting_policy = sysctl_sched_freq_reporting_policy;
switch (reporting_policy) {
case FREQ_REPORT_MAX_CPU_LOAD_TOP_TASK:
load = max_t(u64, load, top_task_load(rq));
break;
case FREQ_REPORT_TOP_TASK:
load = top_task_load(rq);
break;
case FREQ_REPORT_CPU_LOAD:
break;
default:
break;
}
return load;
}
void sched_get_cpus_busy(struct sched_load *busy,
const struct cpumask *query_cpus)
{
unsigned long flags;
struct rq *rq;
const int cpus = cpumask_weight(query_cpus);
u64 load[cpus], group_load[cpus];
u64 nload[cpus], ngload[cpus];
u64 pload[cpus];
unsigned int max_freq[cpus];
int notifier_sent = 0;
int early_detection[cpus];
int cpu, i = 0;
unsigned int window_size;
u64 max_prev_sum = 0;
int max_busy_cpu = cpumask_first(query_cpus);
u64 total_group_load = 0, total_ngload = 0;
bool aggregate_load = false;
struct sched_cluster *cluster = cpu_cluster(cpumask_first(query_cpus));
if (unlikely(cpus == 0))
return;
local_irq_save(flags);
/*
* This function could be called in timer context, and the
* current task may have been executing for a long time. Ensure
* that the window stats are current by doing an update.
*/
for_each_cpu(cpu, query_cpus)
raw_spin_lock(&cpu_rq(cpu)->lock);
window_size = sched_ravg_window;
/*
* We don't really need the cluster lock for this entire for loop
* block. However, there is no advantage in optimizing this as rq
* locks are held regardless and would prevent migration anyways
*/
raw_spin_lock(&cluster->load_lock);
for_each_cpu(cpu, query_cpus) {
rq = cpu_rq(cpu);
update_task_ravg(rq->curr, rq, TASK_UPDATE, sched_ktime_clock(),
0);
/*
* Ensure that we don't report load for 'cpu' again via the
* cpufreq_update_util path in the window that started at
* rq->window_start
*/
rq->load_reported_window = rq->window_start;
account_load_subtractions(rq);
load[i] = rq->prev_runnable_sum;
nload[i] = rq->nt_prev_runnable_sum;
pload[i] = rq->hmp_stats.pred_demands_sum;
rq->old_estimated_time = pload[i];
if (load[i] > max_prev_sum) {
max_prev_sum = load[i];
max_busy_cpu = cpu;
}
/*
* sched_get_cpus_busy() is called for all CPUs in a
* frequency domain. So the notifier_sent flag per
* cluster works even when a frequency domain spans
* more than 1 cluster.
*/
if (rq->cluster->notifier_sent) {
notifier_sent = 1;
rq->cluster->notifier_sent = 0;
}
early_detection[i] = (rq->ed_task != NULL);
max_freq[i] = cpu_max_freq(cpu);
i++;
}
raw_spin_unlock(&cluster->load_lock);
group_load_in_freq_domain(
&cpu_rq(max_busy_cpu)->freq_domain_cpumask,
&total_group_load, &total_ngload);
aggregate_load = !!(total_group_load > sched_freq_aggregate_threshold);
i = 0;
for_each_cpu(cpu, query_cpus) {
group_load[i] = 0;
ngload[i] = 0;
if (early_detection[i])
goto skip_early;
rq = cpu_rq(cpu);
if (aggregate_load) {
if (cpu == max_busy_cpu) {
group_load[i] = total_group_load;
ngload[i] = total_ngload;
}
} else {
group_load[i] = rq->grp_time.prev_runnable_sum;
ngload[i] = rq->grp_time.nt_prev_runnable_sum;
}
load[i] += group_load[i];
nload[i] += ngload[i];
load[i] = freq_policy_load(rq, load[i]);
rq->old_busy_time = load[i];
/*
* Scale load in reference to cluster max_possible_freq.
*
* Note that scale_load_to_cpu() scales load in reference to
* the cluster max_freq.
*/
load[i] = scale_load_to_cpu(load[i], cpu);
nload[i] = scale_load_to_cpu(nload[i], cpu);
pload[i] = scale_load_to_cpu(pload[i], cpu);
skip_early:
i++;
}
for_each_cpu(cpu, query_cpus)
raw_spin_unlock(&(cpu_rq(cpu))->lock);
local_irq_restore(flags);
i = 0;
for_each_cpu(cpu, query_cpus) {
rq = cpu_rq(cpu);
if (early_detection[i]) {
busy[i].prev_load = div64_u64(sched_ravg_window,
NSEC_PER_USEC);
busy[i].new_task_load = 0;
busy[i].predicted_load = 0;
goto exit_early;
}
load[i] = scale_load_to_freq(load[i], max_freq[i],
cpu_max_possible_freq(cpu));
nload[i] = scale_load_to_freq(nload[i], max_freq[i],
cpu_max_possible_freq(cpu));
pload[i] = scale_load_to_freq(pload[i], max_freq[i],
rq->cluster->max_possible_freq);
busy[i].prev_load = div64_u64(load[i], NSEC_PER_USEC);
busy[i].new_task_load = div64_u64(nload[i], NSEC_PER_USEC);
busy[i].predicted_load = div64_u64(pload[i], NSEC_PER_USEC);
exit_early:
trace_sched_get_busy(cpu, busy[i].prev_load,
busy[i].new_task_load,
busy[i].predicted_load,
early_detection[i],
aggregate_load &&
cpu == max_busy_cpu);
i++;
}
}
void sched_set_io_is_busy(int val)
{
sched_io_is_busy = val;
}
int sched_set_window(u64 window_start, unsigned int window_size)
{
u64 now, cur_jiffies, jiffy_ktime_ns;
s64 ws;
unsigned long flags;
if (window_size * TICK_NSEC < MIN_SCHED_RAVG_WINDOW)
return -EINVAL;
mutex_lock(&policy_mutex);
/*
* Get a consistent view of ktime, jiffies, and the time
* since the last jiffy (based on last_jiffies_update).
*/
local_irq_save(flags);
cur_jiffies = jiffy_to_ktime_ns(&now, &jiffy_ktime_ns);
local_irq_restore(flags);
/* translate window_start from jiffies to nanoseconds */
ws = (window_start - cur_jiffies); /* jiffy difference */
ws *= TICK_NSEC;
ws += jiffy_ktime_ns;
/*
* Roll back calculated window start so that it is in
* the past (window stats must have a current window).
*/
while (ws > now)
ws -= (window_size * TICK_NSEC);
BUG_ON(sched_ktime_clock() < ws);
reset_all_window_stats(ws, window_size);
sched_update_freq_max_load(cpu_possible_mask);
mutex_unlock(&policy_mutex);
return 0;
}
static inline void create_subtraction_entry(struct rq *rq, u64 ws, int index)
{
rq->load_subs[index].window_start = ws;
rq->load_subs[index].subs = 0;
rq->load_subs[index].new_subs = 0;
}
static bool get_subtraction_index(struct rq *rq, u64 ws)
{
int i;
u64 oldest = ULLONG_MAX;
int oldest_index = 0;
for (i = 0; i < NUM_TRACKED_WINDOWS; i++) {
u64 entry_ws = rq->load_subs[i].window_start;
if (ws == entry_ws)
return i;
if (entry_ws < oldest) {
oldest = entry_ws;
oldest_index = i;
}
}
create_subtraction_entry(rq, ws, oldest_index);
return oldest_index;
}
static void update_rq_load_subtractions(int index, struct rq *rq,
u32 sub_load, bool new_task)
{
rq->load_subs[index].subs += sub_load;
if (new_task)
rq->load_subs[index].new_subs += sub_load;
}
static void update_cluster_load_subtractions(struct task_struct *p,
int cpu, u64 ws, bool new_task)
{
struct sched_cluster *cluster = cpu_cluster(cpu);
struct cpumask cluster_cpus = cluster->cpus;
u64 prev_ws = ws - sched_ravg_window;
int i;
cpumask_clear_cpu(cpu, &cluster_cpus);
raw_spin_lock(&cluster->load_lock);
for_each_cpu(i, &cluster_cpus) {
struct rq *rq = cpu_rq(i);
int index;
if (p->ravg.curr_window_cpu[i]) {
index = get_subtraction_index(rq, ws);
update_rq_load_subtractions(index, rq,
p->ravg.curr_window_cpu[i], new_task);
p->ravg.curr_window_cpu[i] = 0;
}
if (p->ravg.prev_window_cpu[i]) {
index = get_subtraction_index(rq, prev_ws);
update_rq_load_subtractions(index, rq,
p->ravg.prev_window_cpu[i], new_task);
p->ravg.prev_window_cpu[i] = 0;
}
}
raw_spin_unlock(&cluster->load_lock);
}
static inline void inter_cluster_migration_fixup
(struct task_struct *p, int new_cpu, int task_cpu, bool new_task)
{
struct rq *dest_rq = cpu_rq(new_cpu);
struct rq *src_rq = cpu_rq(task_cpu);
if (same_freq_domain(new_cpu, task_cpu))
return;
p->ravg.curr_window_cpu[new_cpu] = p->ravg.curr_window;
p->ravg.prev_window_cpu[new_cpu] = p->ravg.prev_window;
dest_rq->curr_runnable_sum += p->ravg.curr_window;
dest_rq->prev_runnable_sum += p->ravg.prev_window;
src_rq->curr_runnable_sum -= p->ravg.curr_window_cpu[task_cpu];
src_rq->prev_runnable_sum -= p->ravg.prev_window_cpu[task_cpu];
if (new_task) {
dest_rq->nt_curr_runnable_sum += p->ravg.curr_window;
dest_rq->nt_prev_runnable_sum += p->ravg.prev_window;
src_rq->nt_curr_runnable_sum -=
p->ravg.curr_window_cpu[task_cpu];
src_rq->nt_prev_runnable_sum -=
p->ravg.prev_window_cpu[task_cpu];
}
p->ravg.curr_window_cpu[task_cpu] = 0;
p->ravg.prev_window_cpu[task_cpu] = 0;
update_cluster_load_subtractions(p, task_cpu,
src_rq->window_start, new_task);
BUG_ON((s64)src_rq->prev_runnable_sum < 0);
BUG_ON((s64)src_rq->curr_runnable_sum < 0);
BUG_ON((s64)src_rq->nt_prev_runnable_sum < 0);
BUG_ON((s64)src_rq->nt_curr_runnable_sum < 0);
}
static int get_top_index(unsigned long *bitmap, unsigned long old_top)
{
int index = find_next_bit(bitmap, NUM_LOAD_INDICES, old_top);
if (index == NUM_LOAD_INDICES)
return 0;
return NUM_LOAD_INDICES - 1 - index;
}
static void
migrate_top_tasks(struct task_struct *p, struct rq *src_rq, struct rq *dst_rq)
{
int index;
int top_index;
u32 curr_window = p->ravg.curr_window;
u32 prev_window = p->ravg.prev_window;
u8 src = src_rq->curr_table;
u8 dst = dst_rq->curr_table;
u8 *src_table;
u8 *dst_table;
if (curr_window) {
src_table = src_rq->top_tasks[src];
dst_table = dst_rq->top_tasks[dst];
index = load_to_index(curr_window);
src_table[index] -= 1;
dst_table[index] += 1;
if (!src_table[index])
__clear_bit(NUM_LOAD_INDICES - index - 1,
src_rq->top_tasks_bitmap[src]);
if (dst_table[index] == 1)
__set_bit(NUM_LOAD_INDICES - index - 1,
dst_rq->top_tasks_bitmap[dst]);
if (index > dst_rq->curr_top)
dst_rq->curr_top = index;
top_index = src_rq->curr_top;
if (index == top_index && !src_table[index])
src_rq->curr_top = get_top_index(
src_rq->top_tasks_bitmap[src], top_index);
}
if (prev_window) {
src = 1 - src;
dst = 1 - dst;
src_table = src_rq->top_tasks[src];
dst_table = dst_rq->top_tasks[dst];
index = load_to_index(prev_window);
src_table[index] -= 1;
dst_table[index] += 1;
if (!src_table[index])
__clear_bit(NUM_LOAD_INDICES - index - 1,
src_rq->top_tasks_bitmap[src]);
if (dst_table[index] == 1)
__set_bit(NUM_LOAD_INDICES - index - 1,
dst_rq->top_tasks_bitmap[dst]);
if (index > dst_rq->prev_top)
dst_rq->prev_top = index;
top_index = src_rq->prev_top;
if (index == top_index && !src_table[index])
src_rq->prev_top = get_top_index(
src_rq->top_tasks_bitmap[src], top_index);
}
}
void fixup_busy_time(struct task_struct *p, int new_cpu)
{
struct rq *src_rq = task_rq(p);
struct rq *dest_rq = cpu_rq(new_cpu);
u64 wallclock;
u64 *src_curr_runnable_sum, *dst_curr_runnable_sum;
u64 *src_prev_runnable_sum, *dst_prev_runnable_sum;
u64 *src_nt_curr_runnable_sum, *dst_nt_curr_runnable_sum;
u64 *src_nt_prev_runnable_sum, *dst_nt_prev_runnable_sum;
bool new_task;
struct related_thread_group *grp;
if (!p->on_rq && p->state != TASK_WAKING)
return;
if (exiting_task(p)) {
clear_ed_task(p, src_rq);
return;
}
if (p->state == TASK_WAKING)
double_rq_lock(src_rq, dest_rq);
if (sched_disable_window_stats)
goto done;
wallclock = sched_ktime_clock();
update_task_ravg(task_rq(p)->curr, task_rq(p),
TASK_UPDATE,
wallclock, 0);
update_task_ravg(dest_rq->curr, dest_rq,
TASK_UPDATE, wallclock, 0);
update_task_ravg(p, task_rq(p), TASK_MIGRATE,
wallclock, 0);
update_task_cpu_cycles(p, new_cpu, wallclock);
new_task = is_new_task(p);
/* Protected by rq_lock */
grp = p->grp;
/*
* For frequency aggregation, we continue to do migration fixups
* even for intra cluster migrations. This is because, the aggregated
* load has to reported on a single CPU regardless.
*/
if (grp && sched_freq_aggregate) {
struct group_cpu_time *cpu_time;
cpu_time = &src_rq->grp_time;
src_curr_runnable_sum = &cpu_time->curr_runnable_sum;
src_prev_runnable_sum = &cpu_time->prev_runnable_sum;
src_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
src_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
cpu_time = &dest_rq->grp_time;
dst_curr_runnable_sum = &cpu_time->curr_runnable_sum;
dst_prev_runnable_sum = &cpu_time->prev_runnable_sum;
dst_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
dst_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
if (p->ravg.curr_window) {
*src_curr_runnable_sum -= p->ravg.curr_window;
*dst_curr_runnable_sum += p->ravg.curr_window;
if (new_task) {
*src_nt_curr_runnable_sum -=
p->ravg.curr_window;
*dst_nt_curr_runnable_sum +=
p->ravg.curr_window;
}
}
if (p->ravg.prev_window) {
*src_prev_runnable_sum -= p->ravg.prev_window;
*dst_prev_runnable_sum += p->ravg.prev_window;
if (new_task) {
*src_nt_prev_runnable_sum -=
p->ravg.prev_window;
*dst_nt_prev_runnable_sum +=
p->ravg.prev_window;
}
}
} else {
inter_cluster_migration_fixup(p, new_cpu,
task_cpu(p), new_task);
}
migrate_top_tasks(p, src_rq, dest_rq);
if (!same_freq_domain(new_cpu, task_cpu(p))) {
cpufreq_update_util(dest_rq, SCHED_CPUFREQ_INTERCLUSTER_MIG);
cpufreq_update_util(src_rq, SCHED_CPUFREQ_INTERCLUSTER_MIG);
}
if (p == src_rq->ed_task) {
src_rq->ed_task = NULL;
if (!dest_rq->ed_task)
dest_rq->ed_task = p;
}
done:
if (p->state == TASK_WAKING)
double_rq_unlock(src_rq, dest_rq);
}
#define sched_up_down_migrate_auto_update 1
static void check_for_up_down_migrate_update(const struct cpumask *cpus)
{
int i = cpumask_first(cpus);
if (!sched_up_down_migrate_auto_update)
return;
if (cpu_max_possible_capacity(i) == max_possible_capacity)
return;
if (cpu_max_possible_freq(i) == cpu_max_freq(i))
up_down_migrate_scale_factor = 1024;
else
up_down_migrate_scale_factor = (1024 *
cpu_max_possible_freq(i)) / cpu_max_freq(i);
update_up_down_migrate();
}
/* Return cluster which can offer required capacity for group */
static struct sched_cluster *best_cluster(struct related_thread_group *grp,
u64 total_demand, bool group_boost)
{
struct sched_cluster *cluster = NULL;
for_each_sched_cluster(cluster) {
if (group_will_fit(cluster, grp, total_demand, group_boost))
return cluster;
}
return sched_cluster[0];
}
static void _set_preferred_cluster(struct related_thread_group *grp)
{
struct task_struct *p;
u64 combined_demand = 0;
bool boost_on_big = sched_boost_policy() == SCHED_BOOST_ON_BIG;
bool group_boost = false;
u64 wallclock;
if (list_empty(&grp->tasks))
return;
wallclock = sched_ktime_clock();
/*
* wakeup of two or more related tasks could race with each other and
* could result in multiple calls to _set_preferred_cluster being issued
* at same time. Avoid overhead in such cases of rechecking preferred
* cluster
*/
if (wallclock - grp->last_update < sched_ravg_window / 10)
return;
list_for_each_entry(p, &grp->tasks, grp_list) {
if (boost_on_big && task_sched_boost(p)) {
group_boost = true;
break;
}
if (p->ravg.mark_start < wallclock -
(sched_ravg_window * sched_ravg_hist_size))
continue;
combined_demand += p->ravg.demand;
}
grp->preferred_cluster = best_cluster(grp,
combined_demand, group_boost);
grp->last_update = sched_ktime_clock();
trace_sched_set_preferred_cluster(grp, combined_demand);
}
void set_preferred_cluster(struct related_thread_group *grp)
{
raw_spin_lock(&grp->lock);
_set_preferred_cluster(grp);
raw_spin_unlock(&grp->lock);
}
#define ADD_TASK 0
#define REM_TASK 1
#define DEFAULT_CGROUP_COLOC_ID 1
/*
* Task's cpu usage is accounted in:
* rq->curr/prev_runnable_sum, when its ->grp is NULL
* grp->cpu_time[cpu]->curr/prev_runnable_sum, when its ->grp is !NULL
*
* Transfer task's cpu usage between those counters when transitioning between
* groups
*/
static void transfer_busy_time(struct rq *rq, struct related_thread_group *grp,
struct task_struct *p, int event)
{
u64 wallclock;
struct group_cpu_time *cpu_time;
u64 *src_curr_runnable_sum, *dst_curr_runnable_sum;
u64 *src_prev_runnable_sum, *dst_prev_runnable_sum;
u64 *src_nt_curr_runnable_sum, *dst_nt_curr_runnable_sum;
u64 *src_nt_prev_runnable_sum, *dst_nt_prev_runnable_sum;
int migrate_type;
int cpu = cpu_of(rq);
bool new_task;
int i;
if (!sched_freq_aggregate)
return;
wallclock = sched_ktime_clock();
update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
update_task_ravg(p, rq, TASK_UPDATE, wallclock, 0);
new_task = is_new_task(p);
cpu_time = &rq->grp_time;
if (event == ADD_TASK) {
migrate_type = RQ_TO_GROUP;
src_curr_runnable_sum = &rq->curr_runnable_sum;
dst_curr_runnable_sum = &cpu_time->curr_runnable_sum;
src_prev_runnable_sum = &rq->prev_runnable_sum;
dst_prev_runnable_sum = &cpu_time->prev_runnable_sum;
src_nt_curr_runnable_sum = &rq->nt_curr_runnable_sum;
dst_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
src_nt_prev_runnable_sum = &rq->nt_prev_runnable_sum;
dst_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
*src_curr_runnable_sum -= p->ravg.curr_window_cpu[cpu];
*src_prev_runnable_sum -= p->ravg.prev_window_cpu[cpu];
if (new_task) {
*src_nt_curr_runnable_sum -=
p->ravg.curr_window_cpu[cpu];
*src_nt_prev_runnable_sum -=
p->ravg.prev_window_cpu[cpu];
}
update_cluster_load_subtractions(p, cpu,
rq->window_start, new_task);
} else {
migrate_type = GROUP_TO_RQ;
src_curr_runnable_sum = &cpu_time->curr_runnable_sum;
dst_curr_runnable_sum = &rq->curr_runnable_sum;
src_prev_runnable_sum = &cpu_time->prev_runnable_sum;
dst_prev_runnable_sum = &rq->prev_runnable_sum;
src_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
dst_nt_curr_runnable_sum = &rq->nt_curr_runnable_sum;
src_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
dst_nt_prev_runnable_sum = &rq->nt_prev_runnable_sum;
*src_curr_runnable_sum -= p->ravg.curr_window;
*src_prev_runnable_sum -= p->ravg.prev_window;
if (new_task) {
*src_nt_curr_runnable_sum -= p->ravg.curr_window;
*src_nt_prev_runnable_sum -= p->ravg.prev_window;
}
/*
* Need to reset curr/prev windows for all CPUs, not just the
* ones in the same cluster. Since inter cluster migrations
* did not result in the appropriate book keeping, the values
* per CPU would be inaccurate.
*/
for_each_possible_cpu(i) {
p->ravg.curr_window_cpu[i] = 0;
p->ravg.prev_window_cpu[i] = 0;
}
}
*dst_curr_runnable_sum += p->ravg.curr_window;
*dst_prev_runnable_sum += p->ravg.prev_window;
if (new_task) {
*dst_nt_curr_runnable_sum += p->ravg.curr_window;
*dst_nt_prev_runnable_sum += p->ravg.prev_window;
}
/*
* When a task enter or exits a group, it's curr and prev windows are
* moved to a single CPU. This behavior might be sub-optimal in the
* exit case, however, it saves us the overhead of handling inter
* cluster migration fixups while the task is part of a related group.
*/
p->ravg.curr_window_cpu[cpu] = p->ravg.curr_window;
p->ravg.prev_window_cpu[cpu] = p->ravg.prev_window;
trace_sched_migration_update_sum(p, migrate_type, rq);
BUG_ON((s64)*src_curr_runnable_sum < 0);
BUG_ON((s64)*src_prev_runnable_sum < 0);
BUG_ON((s64)*src_nt_curr_runnable_sum < 0);
BUG_ON((s64)*src_nt_prev_runnable_sum < 0);
}
static inline struct related_thread_group*
lookup_related_thread_group(unsigned int group_id)
{
return related_thread_groups[group_id];
}
int alloc_related_thread_groups(void)
{
int i, ret;
struct related_thread_group *grp;
/* groupd_id = 0 is invalid as it's special id to remove group. */
for (i = 1; i < MAX_NUM_CGROUP_COLOC_ID; i++) {
grp = kzalloc(sizeof(*grp), GFP_NOWAIT);
if (!grp) {
ret = -ENOMEM;
goto err;
}
grp->id = i;
INIT_LIST_HEAD(&grp->tasks);
INIT_LIST_HEAD(&grp->list);
raw_spin_lock_init(&grp->lock);
related_thread_groups[i] = grp;
}
return 0;
err:
for (i = 1; i < MAX_NUM_CGROUP_COLOC_ID; i++) {
grp = lookup_related_thread_group(i);
if (grp) {
kfree(grp);
related_thread_groups[i] = NULL;
} else {
break;
}
}
return ret;
}
static void remove_task_from_group(struct task_struct *p)
{
struct related_thread_group *grp = p->grp;
struct rq *rq;
int empty_group = 1;
raw_spin_lock(&grp->lock);
rq = __task_rq_lock(p);
transfer_busy_time(rq, p->grp, p, REM_TASK);
list_del_init(&p->grp_list);
rcu_assign_pointer(p->grp, NULL);
__task_rq_unlock(rq);
if (!list_empty(&grp->tasks)) {
empty_group = 0;
_set_preferred_cluster(grp);
}
raw_spin_unlock(&grp->lock);
/* Reserved groups cannot be destroyed */
if (empty_group && grp->id != DEFAULT_CGROUP_COLOC_ID)
/*
* We test whether grp->list is attached with list_empty()
* hence re-init the list after deletion.
*/
list_del_init(&grp->list);
}
static int
add_task_to_group(struct task_struct *p, struct related_thread_group *grp)
{
struct rq *rq;
raw_spin_lock(&grp->lock);
/*
* Change p->grp under rq->lock. Will prevent races with read-side
* reference of p->grp in various hot-paths
*/
rq = __task_rq_lock(p);
transfer_busy_time(rq, grp, p, ADD_TASK);
list_add(&p->grp_list, &grp->tasks);
rcu_assign_pointer(p->grp, grp);
__task_rq_unlock(rq);
_set_preferred_cluster(grp);
raw_spin_unlock(&grp->lock);
return 0;
}
void add_new_task_to_grp(struct task_struct *new)
{
unsigned long flags;
struct related_thread_group *grp;
struct task_struct *leader = new->group_leader;
unsigned int leader_grp_id = sched_get_group_id(leader);
if (!sysctl_sched_enable_thread_grouping &&
leader_grp_id != DEFAULT_CGROUP_COLOC_ID)
return;
if (thread_group_leader(new))
return;
if (leader_grp_id == DEFAULT_CGROUP_COLOC_ID) {
if (!same_schedtune(new, leader))
return;
}
write_lock_irqsave(&related_thread_group_lock, flags);
rcu_read_lock();
grp = task_related_thread_group(leader);
rcu_read_unlock();
/*
* It's possible that someone already added the new task to the
* group. A leader's thread group is updated prior to calling
* this function. It's also possible that the leader has exited
* the group. In either case, there is nothing else to do.
*/
if (!grp || new->grp) {
write_unlock_irqrestore(&related_thread_group_lock, flags);
return;
}
raw_spin_lock(&grp->lock);
rcu_assign_pointer(new->grp, grp);
list_add(&new->grp_list, &grp->tasks);
raw_spin_unlock(&grp->lock);
write_unlock_irqrestore(&related_thread_group_lock, flags);
}
static int __sched_set_group_id(struct task_struct *p, unsigned int group_id)
{
int rc = 0;
unsigned long flags;
struct related_thread_group *grp = NULL;
if (group_id >= MAX_NUM_CGROUP_COLOC_ID)
return -EINVAL;
raw_spin_lock_irqsave(&p->pi_lock, flags);
write_lock(&related_thread_group_lock);
/* Switching from one group to another directly is not permitted */
if ((current != p && p->flags & PF_EXITING) ||
(!p->grp && !group_id) ||
(p->grp && group_id))
goto done;
if (!group_id) {
remove_task_from_group(p);
goto done;
}
grp = lookup_related_thread_group(group_id);
if (list_empty(&grp->list))
list_add(&grp->list, &active_related_thread_groups);
rc = add_task_to_group(p, grp);
done:
write_unlock(&related_thread_group_lock);
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
return rc;
}
int sched_set_group_id(struct task_struct *p, unsigned int group_id)
{
/* DEFAULT_CGROUP_COLOC_ID is a reserved id */
if (group_id == DEFAULT_CGROUP_COLOC_ID)
return -EINVAL;
return __sched_set_group_id(p, group_id);
}
unsigned int sched_get_group_id(struct task_struct *p)
{
unsigned int group_id;
struct related_thread_group *grp;
rcu_read_lock();
grp = task_related_thread_group(p);
group_id = grp ? grp->id : 0;
rcu_read_unlock();
return group_id;
}
#if defined(CONFIG_SCHED_TUNE) && defined(CONFIG_CGROUP_SCHEDTUNE)
/*
* We create a default colocation group at boot. There is no need to
* synchronize tasks between cgroups at creation time because the
* correct cgroup hierarchy is not available at boot. Therefore cgroup
* colocation is turned off by default even though the colocation group
* itself has been allocated. Furthermore this colocation group cannot
* be destroyted once it has been created. All of this has been as part
* of runtime optimizations.
*
* The job of synchronizing tasks to the colocation group is done when
* the colocation flag in the cgroup is turned on.
*/
static int __init create_default_coloc_group(void)
{
struct related_thread_group *grp = NULL;
unsigned long flags;
grp = lookup_related_thread_group(DEFAULT_CGROUP_COLOC_ID);
write_lock_irqsave(&related_thread_group_lock, flags);
list_add(&grp->list, &active_related_thread_groups);
write_unlock_irqrestore(&related_thread_group_lock, flags);
update_freq_aggregate_threshold(MAX_FREQ_AGGR_THRESH);
return 0;
}
late_initcall(create_default_coloc_group);
int sync_cgroup_colocation(struct task_struct *p, bool insert)
{
unsigned int grp_id = insert ? DEFAULT_CGROUP_COLOC_ID : 0;
return __sched_set_group_id(p, grp_id);
}
#endif
static void update_cpu_cluster_capacity(const cpumask_t *cpus)
{
int i;
struct sched_cluster *cluster;
struct cpumask cpumask;
cpumask_copy(&cpumask, cpus);
pre_big_task_count_change(cpu_possible_mask);
for_each_cpu(i, &cpumask) {
cluster = cpu_rq(i)->cluster;
cpumask_andnot(&cpumask, &cpumask, &cluster->cpus);
cluster->capacity = compute_capacity(cluster);
cluster->load_scale_factor = compute_load_scale_factor(cluster);
/* 'cpus' can contain cpumask more than one cluster */
check_for_up_down_migrate_update(&cluster->cpus);
}
__update_min_max_capacity();
post_big_task_count_change(cpu_possible_mask);
}
static DEFINE_SPINLOCK(cpu_freq_min_max_lock);
void sched_update_cpu_freq_min_max(const cpumask_t *cpus, u32 fmin, u32 fmax)
{
struct cpumask cpumask;
struct sched_cluster *cluster;
int i, update_capacity = 0;
unsigned long flags;
spin_lock_irqsave(&cpu_freq_min_max_lock, flags);
cpumask_copy(&cpumask, cpus);
for_each_cpu(i, &cpumask) {
cluster = cpu_rq(i)->cluster;
cpumask_andnot(&cpumask, &cpumask, &cluster->cpus);
update_capacity += (cluster->max_mitigated_freq != fmax);
cluster->max_mitigated_freq = fmax;
}
spin_unlock_irqrestore(&cpu_freq_min_max_lock, flags);
if (update_capacity)
update_cpu_cluster_capacity(cpus);
}
static int cpufreq_notifier_policy(struct notifier_block *nb,
unsigned long val, void *data)
{
struct cpufreq_policy *policy = (struct cpufreq_policy *)data;
struct sched_cluster *cluster = NULL;
struct cpumask policy_cluster = *policy->related_cpus;
unsigned int orig_max_freq = 0;
int i, j, update_capacity = 0;
if (val != CPUFREQ_NOTIFY && val != CPUFREQ_REMOVE_POLICY &&
val != CPUFREQ_CREATE_POLICY)
return 0;
if (val == CPUFREQ_REMOVE_POLICY || val == CPUFREQ_CREATE_POLICY) {
update_min_max_capacity();
return 0;
}
max_possible_freq = max(max_possible_freq, policy->cpuinfo.max_freq);
if (min_max_freq == 1)
min_max_freq = UINT_MAX;
min_max_freq = min(min_max_freq, policy->cpuinfo.max_freq);
BUG_ON(!min_max_freq);
BUG_ON(!policy->max);
for_each_cpu(i, &policy_cluster) {
cluster = cpu_rq(i)->cluster;
cpumask_andnot(&policy_cluster, &policy_cluster,
&cluster->cpus);
orig_max_freq = cluster->max_freq;
cluster->min_freq = policy->min;
cluster->max_freq = policy->max;
cluster->cur_freq = policy->cur;
if (!cluster->freq_init_done) {
mutex_lock(&cluster_lock);
for_each_cpu(j, &cluster->cpus)
cpumask_copy(&cpu_rq(j)->freq_domain_cpumask,
policy->related_cpus);
cluster->max_possible_freq = policy->cpuinfo.max_freq;
cluster->max_possible_capacity =
compute_max_possible_capacity(cluster);
cluster->freq_init_done = true;
sort_clusters();
update_all_clusters_stats();
mutex_unlock(&cluster_lock);
continue;
}
update_capacity += (orig_max_freq != cluster->max_freq);
}
if (update_capacity)
update_cpu_cluster_capacity(policy->related_cpus);
return 0;
}
static int cpufreq_notifier_trans(struct notifier_block *nb,
unsigned long val, void *data)
{
struct cpufreq_freqs *freq = (struct cpufreq_freqs *)data;
unsigned int cpu = freq->cpu, new_freq = freq->new;
unsigned long flags;
struct sched_cluster *cluster;
struct cpumask policy_cpus = cpu_rq(cpu)->freq_domain_cpumask;
int i, j;
if (val != CPUFREQ_POSTCHANGE)
return 0;
BUG_ON(!new_freq);
if (cpu_cur_freq(cpu) == new_freq)
return 0;
for_each_cpu(i, &policy_cpus) {
cluster = cpu_rq(i)->cluster;
for_each_cpu(j, &cluster->cpus) {
struct rq *rq = cpu_rq(j);
raw_spin_lock_irqsave(&rq->lock, flags);
update_task_ravg(rq->curr, rq, TASK_UPDATE,
sched_ktime_clock(), 0);
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
cluster->cur_freq = new_freq;
cpumask_andnot(&policy_cpus, &policy_cpus, &cluster->cpus);
}
return 0;
}
static int pwr_stats_ready_notifier(struct notifier_block *nb,
unsigned long cpu, void *data)
{
cpumask_t mask = CPU_MASK_NONE;
cpumask_set_cpu(cpu, &mask);
sched_update_freq_max_load(&mask);
mutex_lock(&cluster_lock);
sort_clusters();
mutex_unlock(&cluster_lock);
return 0;
}
static struct notifier_block notifier_policy_block = {
.notifier_call = cpufreq_notifier_policy
};
static struct notifier_block notifier_trans_block = {
.notifier_call = cpufreq_notifier_trans
};
static struct notifier_block notifier_pwr_stats_ready = {
.notifier_call = pwr_stats_ready_notifier
};
int __weak register_cpu_pwr_stats_ready_notifier(struct notifier_block *nb)
{
return -EINVAL;
}
static int register_sched_callback(void)
{
int ret;
ret = cpufreq_register_notifier(¬ifier_policy_block,
CPUFREQ_POLICY_NOTIFIER);
if (!ret)
ret = cpufreq_register_notifier(¬ifier_trans_block,
CPUFREQ_TRANSITION_NOTIFIER);
register_cpu_pwr_stats_ready_notifier(¬ifier_pwr_stats_ready);
return 0;
}
/*
* cpufreq callbacks can be registered at core_initcall or later time.
* Any registration done prior to that is "forgotten" by cpufreq. See
* initialization of variable init_cpufreq_transition_notifier_list_called
* for further information.
*/
core_initcall(register_sched_callback);
int update_preferred_cluster(struct related_thread_group *grp,
struct task_struct *p, u32 old_load)
{
u32 new_load = task_load(p);
if (!grp)
return 0;
/*
* Update if task's load has changed significantly or a complete window
* has passed since we last updated preference
*/
if (abs(new_load - old_load) > sched_ravg_window / 4 ||
sched_ktime_clock() - grp->last_update > sched_ravg_window)
return 1;
return 0;
}
bool early_detection_notify(struct rq *rq, u64 wallclock)
{
struct task_struct *p;
int loop_max = 10;
if (sched_boost_policy() == SCHED_BOOST_NONE || !rq->cfs.h_nr_running)
return 0;
rq->ed_task = NULL;
list_for_each_entry(p, &rq->cfs_tasks, se.group_node) {
if (!loop_max)
break;
if (wallclock - p->last_wake_ts >= EARLY_DETECTION_DURATION) {
rq->ed_task = p;
return 1;
}
loop_max--;
}
return 0;
}
void update_avg_burst(struct task_struct *p)
{
update_avg(&p->ravg.avg_burst, p->ravg.curr_burst);
p->ravg.curr_burst = 0;
}
void note_task_waking(struct task_struct *p, u64 wallclock)
{
u64 sleep_time = wallclock - p->last_switch_out_ts;
/*
* When a short burst and short sleeping task goes for a long
* sleep, the task's avg_sleep_time gets boosted. It will not
* come below short_sleep threshold for a lot of time and it
* results in incorrect packing. The idead behind tracking
* avg_sleep_time is to detect if a task is short sleeping
* or not. So limit the sleep time to twice the short sleep
* threshold. For regular long sleeping tasks, the avg_sleep_time
* would be higher than threshold, and packing happens correctly.
*/
sleep_time = min_t(u64, sleep_time, 2 * sysctl_sched_short_sleep);
update_avg(&p->ravg.avg_sleep_time, sleep_time);
p->last_wake_ts = wallclock;
}
#ifdef CONFIG_CGROUP_SCHED
u64 cpu_upmigrate_discourage_read_u64(struct cgroup_subsys_state *css,
struct cftype *cft)
{
struct task_group *tg = css_tg(css);
return tg->upmigrate_discouraged;
}
int cpu_upmigrate_discourage_write_u64(struct cgroup_subsys_state *css,
struct cftype *cft, u64 upmigrate_discourage)
{
struct task_group *tg = css_tg(css);
int discourage = upmigrate_discourage > 0;
if (tg->upmigrate_discouraged == discourage)
return 0;
/*
* Revisit big-task classification for tasks of this cgroup. It would
* have been efficient to walk tasks of just this cgroup in running
* state, but we don't have easy means to do that. Walk all tasks in
* running state on all cpus instead and re-visit their big task
* classification.
*/
get_online_cpus();
pre_big_task_count_change(cpu_online_mask);
tg->upmigrate_discouraged = discourage;
post_big_task_count_change(cpu_online_mask);
put_online_cpus();
return 0;
}
#endif /* CONFIG_CGROUP_SCHED */
|