summaryrefslogtreecommitdiff
path: root/mm/process_reclaim.c
blob: 7f70a3784d9b9b3105dbcb368cecf502152cb44e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/*
 * Copyright (c) 2015, The Linux Foundation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 and
 * only version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/sort.h>
#include <linux/oom.h>
#include <linux/sched.h>
#include <linux/rcupdate.h>
#include <linux/notifier.h>
#include <linux/vmpressure.h>

#define CREATE_TRACE_POINTS
#include <trace/events/process_reclaim.h>

#define MAX_SWAP_TASKS SWAP_CLUSTER_MAX

static void swap_fn(struct work_struct *work);
DECLARE_WORK(swap_work, swap_fn);

/* User knob to enable/disable process reclaim feature */
static int enable_process_reclaim;
module_param_named(enable_process_reclaim, enable_process_reclaim, int,
	S_IRUGO | S_IWUSR);

/* The max number of pages tried to be reclaimed in a single run */
int per_swap_size = SWAP_CLUSTER_MAX * 32;
module_param_named(per_swap_size, per_swap_size, int, S_IRUGO | S_IWUSR);

int reclaim_avg_efficiency;
module_param_named(reclaim_avg_efficiency, reclaim_avg_efficiency,
			int, S_IRUGO);

/* The vmpressure region where process reclaim operates */
static unsigned long pressure_min = 50;
static unsigned long pressure_max = 90;
module_param_named(pressure_min, pressure_min, ulong, S_IRUGO | S_IWUSR);
module_param_named(pressure_max, pressure_max, ulong, S_IRUGO | S_IWUSR);

/*
 * Scheduling process reclaim workqueue unecessarily
 * when the reclaim efficiency is low does not make
 * sense. We try to detect a drop in efficiency and
 * disable reclaim for a time period. This period and the
 * period for which we monitor a drop in efficiency is
 * defined by swap_eff_win. swap_opt_eff is the optimal
 * efficincy used as theshold for this.
 */
static int swap_eff_win = 2;
module_param_named(swap_eff_win, swap_eff_win, int, S_IRUGO | S_IWUSR);

static int swap_opt_eff = 50;
module_param_named(swap_opt_eff, swap_opt_eff, int, S_IRUGO | S_IWUSR);

static atomic_t skip_reclaim = ATOMIC_INIT(0);
/* Not atomic since only a single instance of swap_fn run at a time */
static int monitor_eff;

struct selected_task {
	struct task_struct *p;
	int tasksize;
	short oom_score_adj;
};

int selected_cmp(const void *a, const void *b)
{
	const struct selected_task *x = a;
	const struct selected_task *y = b;
	int ret;

	ret = x->tasksize < y->tasksize ? -1 : 1;

	return ret;
}

static int test_task_flag(struct task_struct *p, int flag)
{
	struct task_struct *t = p;

	do {
		task_lock(t);
		if (test_tsk_thread_flag(t, flag)) {
			task_unlock(t);
			return 1;
		}
		task_unlock(t);
	} while_each_thread(p, t);

	return 0;
}

static void swap_fn(struct work_struct *work)
{
	struct task_struct *tsk;
	struct reclaim_param rp;

	/* Pick the best MAX_SWAP_TASKS tasks in terms of anon size */
	struct selected_task selected[MAX_SWAP_TASKS] = {{0, 0, 0},};
	int si = 0;
	int i;
	int tasksize;
	int total_sz = 0;
	short min_score_adj = 360;
	int total_scan = 0;
	int total_reclaimed = 0;
	int nr_to_reclaim;
	int efficiency;

	rcu_read_lock();
	for_each_process(tsk) {
		struct task_struct *p;
		short oom_score_adj;

		if (tsk->flags & PF_KTHREAD)
			continue;

		/* if task no longer has any memory ignore it */
		if (test_task_flag(tsk, TIF_MM_RELEASED))
			continue;

		if (test_task_flag(tsk, TIF_MEMDIE))
			continue;

		p = find_lock_task_mm(tsk);
		if (!p)
			continue;

		oom_score_adj = p->signal->oom_score_adj;
		if (oom_score_adj < min_score_adj) {
			task_unlock(p);
			continue;
		}

		tasksize = get_mm_counter(p->mm, MM_ANONPAGES);
		task_unlock(p);

		if (tasksize <= 0)
			continue;

		if (si == MAX_SWAP_TASKS) {
			sort(&selected[0], MAX_SWAP_TASKS,
					sizeof(struct selected_task),
					&selected_cmp, NULL);
			if (tasksize < selected[0].tasksize)
				continue;
			selected[0].p = p;
			selected[0].oom_score_adj = oom_score_adj;
			selected[0].tasksize = tasksize;
		} else {
			selected[si].p = p;
			selected[si].oom_score_adj = oom_score_adj;
			selected[si].tasksize = tasksize;
			si++;
		}
	}

	for (i = 0; i < si; i++) {
		get_task_struct(selected[i].p);
		total_sz += selected[i].tasksize;
	}

	rcu_read_unlock();

	/* Skip reclaim if total size is too less */
	if (total_sz < SWAP_CLUSTER_MAX) {
		for (i = 0; i < si; i++)
			put_task_struct(selected[i].p);
		return;
	}

	while (si--) {
		nr_to_reclaim =
			(selected[si].tasksize * per_swap_size) / total_sz;
		/* scan atleast a page */
		if (!nr_to_reclaim)
			nr_to_reclaim = 1;

		if ((test_task_flag(selected[si].p, TIF_MM_RELEASED))
			|| (test_task_flag(selected[si].p, TIF_MEMDIE))) {
			put_task_struct(selected[si].p);
			continue;
		}

		rp = reclaim_task_anon(selected[si].p, nr_to_reclaim);

		trace_process_reclaim(selected[si].tasksize,
				selected[si].oom_score_adj, rp.nr_scanned,
				rp.nr_reclaimed, per_swap_size, total_sz,
				nr_to_reclaim);
		total_scan += rp.nr_scanned;
		total_reclaimed += rp.nr_reclaimed;
		put_task_struct(selected[si].p);
	}

	if (total_scan) {
		efficiency = (total_reclaimed * 100) / total_scan;

		if (efficiency < swap_opt_eff) {
			if (++monitor_eff == swap_eff_win) {
				atomic_set(&skip_reclaim, swap_eff_win + 1);
				monitor_eff = 0;
			}
		} else {
			monitor_eff = 0;
		}

		reclaim_avg_efficiency =
			(efficiency + reclaim_avg_efficiency) / 2;
		trace_process_reclaim_eff(efficiency, reclaim_avg_efficiency);
	}
}

static int vmpressure_notifier(struct notifier_block *nb,
			unsigned long action, void *data)
{
	unsigned long pressure = action;

	if (!enable_process_reclaim)
		return 0;

	if (!current_is_kswapd())
		return 0;

	if (!atomic_dec_and_test(&skip_reclaim))
		return 0;

	if ((pressure >= pressure_min) && (pressure < pressure_max))
		if (!work_pending(&swap_work))
			schedule_work(&swap_work);
	return 0;
}

static struct notifier_block vmpr_nb = {
	.notifier_call = vmpressure_notifier,
};

static int __init process_reclaim_init(void)
{
	vmpressure_notifier_register(&vmpr_nb);
	return 0;
}

static void __exit process_reclaim_exit(void)
{
	vmpressure_notifier_unregister(&vmpr_nb);
}

module_init(process_reclaim_init);
module_exit(process_reclaim_exit);