1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
|
/*
* linux/fs/ext4/crypto_key.c
*
* Copyright (C) 2015, Google, Inc.
*
* This contains encryption key functions for ext4
*
* Written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar, 2015.
*/
#include <keys/encrypted-type.h>
#include <keys/user-type.h>
#include <linux/random.h>
#include <linux/scatterlist.h>
#include <uapi/linux/keyctl.h>
#include "ext4.h"
#include "ext4_ice.h"
#include "xattr.h"
static void derive_crypt_complete(struct crypto_async_request *req, int rc)
{
struct ext4_completion_result *ecr = req->data;
if (rc == -EINPROGRESS)
return;
ecr->res = rc;
complete(&ecr->completion);
}
/**
* ext4_derive_key_v1() - Derive a key using AES-128-ECB
* @deriving_key: Encryption key used for derivation.
* @source_key: Source key to which to apply derivation.
* @derived_key: Derived key.
*
* Return: 0 on success, -errno on failure
*/
static int ext4_derive_key_v1(const char deriving_key[EXT4_AES_128_ECB_KEY_SIZE],
const char source_key[EXT4_AES_256_XTS_KEY_SIZE],
char derived_key[EXT4_AES_256_XTS_KEY_SIZE])
{
int res = 0;
struct ablkcipher_request *req = NULL;
DECLARE_EXT4_COMPLETION_RESULT(ecr);
struct scatterlist src_sg, dst_sg;
struct crypto_ablkcipher *tfm = crypto_alloc_ablkcipher("ecb(aes)", 0,
0);
if (IS_ERR(tfm)) {
res = PTR_ERR(tfm);
tfm = NULL;
goto out;
}
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
req = ablkcipher_request_alloc(tfm, GFP_NOFS);
if (!req) {
res = -ENOMEM;
goto out;
}
ablkcipher_request_set_callback(req,
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
derive_crypt_complete, &ecr);
res = crypto_ablkcipher_setkey(tfm, deriving_key,
EXT4_AES_128_ECB_KEY_SIZE);
if (res < 0)
goto out;
sg_init_one(&src_sg, source_key, EXT4_AES_256_XTS_KEY_SIZE);
sg_init_one(&dst_sg, derived_key, EXT4_AES_256_XTS_KEY_SIZE);
ablkcipher_request_set_crypt(req, &src_sg, &dst_sg,
EXT4_AES_256_XTS_KEY_SIZE, NULL);
res = crypto_ablkcipher_encrypt(req);
if (res == -EINPROGRESS || res == -EBUSY) {
wait_for_completion(&ecr.completion);
res = ecr.res;
}
out:
if (req)
ablkcipher_request_free(req);
if (tfm)
crypto_free_ablkcipher(tfm);
return res;
}
/**
* ext4_derive_key_v2() - Derive a key non-reversibly
* @nonce: the nonce associated with the file
* @master_key: the master key referenced by the file
* @derived_key: (output) the resulting derived key
*
* This function computes the following:
* derived_key[0:127] = AES-256-ENCRYPT(master_key[0:255], nonce)
* derived_key[128:255] = AES-256-ENCRYPT(master_key[0:255], nonce ^ 0x01)
* derived_key[256:383] = AES-256-ENCRYPT(master_key[256:511], nonce)
* derived_key[384:511] = AES-256-ENCRYPT(master_key[256:511], nonce ^ 0x01)
*
* 'nonce ^ 0x01' denotes flipping the low order bit of the last byte.
*
* Unlike the v1 algorithm, the v2 algorithm is "non-reversible", meaning that
* compromising a derived key does not also compromise the master key.
*
* Return: 0 on success, -errno on failure
*/
static int ext4_derive_key_v2(const char nonce[EXT4_KEY_DERIVATION_NONCE_SIZE],
const char master_key[EXT4_MAX_KEY_SIZE],
char derived_key[EXT4_MAX_KEY_SIZE])
{
const int noncelen = EXT4_KEY_DERIVATION_NONCE_SIZE;
struct crypto_cipher *tfm;
int err;
int i;
/*
* Since we only use each transform for a small number of encryptions,
* requesting just "aes" turns out to be significantly faster than
* "ecb(aes)", by about a factor of two.
*/
tfm = crypto_alloc_cipher("aes", 0, 0);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
BUILD_BUG_ON(4 * EXT4_KEY_DERIVATION_NONCE_SIZE != EXT4_MAX_KEY_SIZE);
BUILD_BUG_ON(2 * EXT4_AES_256_ECB_KEY_SIZE != EXT4_MAX_KEY_SIZE);
for (i = 0; i < 2; i++) {
memcpy(derived_key, nonce, noncelen);
memcpy(derived_key + noncelen, nonce, noncelen);
derived_key[2 * noncelen - 1] ^= 0x01;
err = crypto_cipher_setkey(tfm, master_key,
EXT4_AES_256_ECB_KEY_SIZE);
if (err)
break;
crypto_cipher_encrypt_one(tfm, derived_key, derived_key);
crypto_cipher_encrypt_one(tfm, derived_key + noncelen,
derived_key + noncelen);
master_key += EXT4_AES_256_ECB_KEY_SIZE;
derived_key += 2 * noncelen;
}
crypto_free_cipher(tfm);
return err;
}
/**
* ext4_derive_key() - Derive a per-file key from a nonce and master key
* @ctx: the encryption context associated with the file
* @master_key: the master key referenced by the file
* @derived_key: (output) the resulting derived key
*
* Return: 0 on success, -errno on failure
*/
static int ext4_derive_key(const struct ext4_encryption_context *ctx,
const char master_key[EXT4_MAX_KEY_SIZE],
char derived_key[EXT4_MAX_KEY_SIZE])
{
BUILD_BUG_ON(EXT4_AES_128_ECB_KEY_SIZE != EXT4_KEY_DERIVATION_NONCE_SIZE);
BUILD_BUG_ON(EXT4_AES_256_XTS_KEY_SIZE != EXT4_MAX_KEY_SIZE);
/*
* Although the key derivation algorithm is logically independent of the
* choice of encryption modes, in this kernel it is bundled with HEH
* encryption of filenames, which is another crypto improvement that
* requires an on-disk format change and requires userspace to specify
* different encryption policies.
*/
if (ctx->filenames_encryption_mode == EXT4_ENCRYPTION_MODE_AES_256_HEH)
return ext4_derive_key_v2(ctx->nonce, master_key, derived_key);
else
return ext4_derive_key_v1(ctx->nonce, master_key, derived_key);
}
void ext4_free_crypt_info(struct ext4_crypt_info *ci)
{
if (!ci)
return;
if (ci->ci_keyring_key)
key_put(ci->ci_keyring_key);
crypto_free_ablkcipher(ci->ci_ctfm);
kmem_cache_free(ext4_crypt_info_cachep, ci);
}
void ext4_free_encryption_info(struct inode *inode,
struct ext4_crypt_info *ci)
{
struct ext4_inode_info *ei = EXT4_I(inode);
struct ext4_crypt_info *prev;
if (ci == NULL)
ci = ACCESS_ONCE(ei->i_crypt_info);
if (ci == NULL)
return;
prev = cmpxchg(&ei->i_crypt_info, ci, NULL);
if (prev != ci)
return;
ext4_free_crypt_info(ci);
}
static int ext4_default_data_encryption_mode(void)
{
return ext4_is_ice_enabled() ? EXT4_ENCRYPTION_MODE_PRIVATE :
EXT4_ENCRYPTION_MODE_AES_256_XTS;
}
int _ext4_get_encryption_info(struct inode *inode)
{
struct ext4_inode_info *ei = EXT4_I(inode);
struct ext4_crypt_info *crypt_info;
char full_key_descriptor[EXT4_KEY_DESC_PREFIX_SIZE +
(EXT4_KEY_DESCRIPTOR_SIZE * 2) + 1];
struct key *keyring_key = NULL;
struct ext4_encryption_key *master_key;
struct ext4_encryption_context ctx;
const struct user_key_payload *ukp;
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct crypto_ablkcipher *ctfm;
const char *cipher_str;
int for_fname = 0;
int mode;
int res;
res = ext4_init_crypto();
if (res)
return res;
retry:
crypt_info = ACCESS_ONCE(ei->i_crypt_info);
if (crypt_info) {
if (!crypt_info->ci_keyring_key ||
key_validate(crypt_info->ci_keyring_key) == 0)
return 0;
ext4_free_encryption_info(inode, crypt_info);
goto retry;
}
res = ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
&ctx, sizeof(ctx));
if (res < 0) {
if (!DUMMY_ENCRYPTION_ENABLED(sbi))
return res;
ctx.contents_encryption_mode =
ext4_default_data_encryption_mode();
ctx.filenames_encryption_mode =
EXT4_ENCRYPTION_MODE_AES_256_CTS;
ctx.flags = 0;
} else if (res != sizeof(ctx))
return -EINVAL;
res = 0;
crypt_info = kmem_cache_alloc(ext4_crypt_info_cachep, GFP_KERNEL);
if (!crypt_info)
return -ENOMEM;
crypt_info->ci_flags = ctx.flags;
crypt_info->ci_data_mode = ctx.contents_encryption_mode;
crypt_info->ci_filename_mode = ctx.filenames_encryption_mode;
crypt_info->ci_ctfm = NULL;
crypt_info->ci_keyring_key = NULL;
memcpy(crypt_info->ci_master_key, ctx.master_key_descriptor,
sizeof(crypt_info->ci_master_key));
if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
for_fname = 1;
else if (!S_ISREG(inode->i_mode))
BUG();
mode = for_fname ? crypt_info->ci_filename_mode :
crypt_info->ci_data_mode;
switch (mode) {
case EXT4_ENCRYPTION_MODE_AES_256_XTS:
cipher_str = "xts(aes)";
break;
case EXT4_ENCRYPTION_MODE_AES_256_CTS:
cipher_str = "cts(cbc(aes))";
break;
case EXT4_ENCRYPTION_MODE_PRIVATE:
cipher_str = "bugon";
case EXT4_ENCRYPTION_MODE_AES_256_HEH:
cipher_str = "heh(aes)";
break;
default:
printk_once(KERN_WARNING
"ext4: unsupported key mode %d (ino %u)\n",
mode, (unsigned) inode->i_ino);
res = -ENOKEY;
goto out;
}
if (DUMMY_ENCRYPTION_ENABLED(sbi)) {
memset(crypt_info->ci_raw_key, 0x42, EXT4_AES_256_XTS_KEY_SIZE);
goto got_key;
}
memcpy(full_key_descriptor, EXT4_KEY_DESC_PREFIX,
EXT4_KEY_DESC_PREFIX_SIZE);
sprintf(full_key_descriptor + EXT4_KEY_DESC_PREFIX_SIZE,
"%*phN", EXT4_KEY_DESCRIPTOR_SIZE,
ctx.master_key_descriptor);
full_key_descriptor[EXT4_KEY_DESC_PREFIX_SIZE +
(2 * EXT4_KEY_DESCRIPTOR_SIZE)] = '\0';
keyring_key = request_key(&key_type_logon, full_key_descriptor, NULL);
if (IS_ERR(keyring_key)) {
res = PTR_ERR(keyring_key);
keyring_key = NULL;
goto out;
}
crypt_info->ci_keyring_key = keyring_key;
if (keyring_key->type != &key_type_logon) {
printk_once(KERN_WARNING
"ext4: key type must be logon\n");
res = -ENOKEY;
goto out;
}
down_read(&keyring_key->sem);
ukp = user_key_payload(keyring_key);
if (!ukp) {
/* key was revoked before we acquired its semaphore */
res = -EKEYREVOKED;
up_read(&keyring_key->sem);
goto out;
}
if (ukp->datalen != sizeof(struct ext4_encryption_key)) {
res = -EINVAL;
up_read(&keyring_key->sem);
goto out;
}
master_key = (struct ext4_encryption_key *)ukp->data;
BUILD_BUG_ON(EXT4_AES_128_ECB_KEY_SIZE !=
EXT4_KEY_DERIVATION_NONCE_SIZE);
if (master_key->size != EXT4_AES_256_XTS_KEY_SIZE) {
printk_once(KERN_WARNING
"ext4: key size incorrect: %d\n",
master_key->size);
res = -ENOKEY;
up_read(&keyring_key->sem);
goto out;
}
res = ext4_derive_key(&ctx, master_key->raw,
crypt_info->ci_raw_key);
up_read(&keyring_key->sem);
if (res)
goto out;
got_key:
if (for_fname ||
(crypt_info->ci_data_mode != EXT4_ENCRYPTION_MODE_PRIVATE)) {
ctfm = crypto_alloc_ablkcipher(cipher_str, 0, 0);
if (!ctfm || IS_ERR(ctfm)) {
res = ctfm ? PTR_ERR(ctfm) : -ENOMEM;
pr_debug("%s: error %d (inode %u) allocating crypto tfm\n",
__func__, res, (unsigned) inode->i_ino);
goto out;
}
crypt_info->ci_ctfm = ctfm;
crypto_ablkcipher_clear_flags(ctfm, ~0);
crypto_tfm_set_flags(crypto_ablkcipher_tfm(ctfm),
CRYPTO_TFM_REQ_WEAK_KEY);
res = crypto_ablkcipher_setkey(ctfm, crypt_info->ci_raw_key,
ext4_encryption_key_size(mode));
if (res)
goto out;
memzero_explicit(crypt_info->ci_raw_key,
sizeof(crypt_info->ci_raw_key));
} else if (!ext4_is_ice_enabled()) {
pr_warn("%s: ICE support not available\n",
__func__);
res = -EINVAL;
goto out;
}
if (cmpxchg(&ei->i_crypt_info, NULL, crypt_info) != NULL) {
ext4_free_crypt_info(crypt_info);
goto retry;
}
return 0;
out:
if (res == -ENOKEY)
res = 0;
memzero_explicit(crypt_info->ci_raw_key,
sizeof(crypt_info->ci_raw_key));
ext4_free_crypt_info(crypt_info);
return res;
}
int ext4_has_encryption_key(struct inode *inode)
{
struct ext4_inode_info *ei = EXT4_I(inode);
return (ei->i_crypt_info != NULL);
}
|